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Abstract 

Background:  Disease-drug associations provide essential information for drug discovery and disease treatment. 
Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-
consuming and expensive. To better understand and explore these valuable associations, it would be useful to 
develop computational methods for predicting unobserved disease-drug associations. With the advent of various 
datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correla‑
tion between disease and drugs.

Results:  In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it 
studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug 
interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of 
drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the 
association score of each pair of diseases and drugs in the database. This method achieves good performance on 
Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational 
models.

Conclusions:  The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse 
multiple similar networks and combine matrix complement technology to predict potential association. We have 
demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association 
inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two 
real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results 
also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for 
drug repositioning.
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Background
Understanding the relationship between disease and dis-
ease, between drugs and drugs, and between diseases and 
drugs based on underlying pathological mechanisms is a 
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great challenge for modern biomedicine. Exploring the 
relationship between diseases and drugs with system-
level biomedical data is expected to improve our current 
understanding of the relationship between diseases, assist 
in repositioning drugs, and further improve the effec-
tiveness of disease diagnosis, prognosis and treatment. 
Accurate diagnosis and rational drug use are the keys to 
effective treatment of diseases [1–5]. In the past decade, 
large-scale biomedical research has produced a wealth of 
data, leading the scientific community to better under-
stand the relationship between diseases based on their 
underlying biological mechanisms. We are increasingly 
using all types of biomedical data to infer the association 
between disease and drug. There are two broad classes of 
knowledge behind diseases and drugs that allow them to 
model each other. One of the hallmarks of disease is that 
it does not usually occur in isolation. In cases where the 
immune system is compromised, diseases with similar 
risk factors and similar genetic characteristics may co-
occur as comorbidities. Chronic diseases such as diabe-
tes, cardiovascular disease, and cancer, for example, are 
complex diseases affected by the epistatic combination 
of the environment and many genes, often accompanied 
by multiple complications. Therefore, the disease can 
be seen as by the genetic and environmental influence 
of complex networks’ potential. In other words, a natu-
ral way is to use the expression of the disease to evalu-
ate the degree of impact it has on essential issues such as 
patient risk or drug efficacy. A drug is a chemical used 
to treat, prevent, or diagnose a disease. The drug discov-
ery mechanism is the process of finding the best drug for 
a single target of a single disease, that is, identifying the 
disease, selecting the target, and optimizing the molecule. 
Researchers typically study a specific protein in vitro, in 
cells, and throughout the organism to assess whether it 
can target a specific therapeutic disease. Through this 
set of mechanisms, effective chemical molecules that 
affect specific proteins have been identified. The tradi-
tional drug discovery mechanism is usually based on a 
hypothesis. The effective chemical molecules are only 
for single disease in the single factor design, regardless of 
which is essentially a complex disease. Today, new drug 
research and development at a slower pace, one reason 
is that traditional discovery mechanism ignores many 
complicated diseases tend to have more similarities. A 
new drug passes initial testing, animal trials, clinical tri-
als, and FDA review, and it takes 10–15 years to reach the 
market at the cost of more than $1 billion [6–8]. As the 
diseases to be solved become more complex, the success 
rate of new drugs gradually declines, leading to a contin-
uous decline in the number of new drugs approved by the 
FDA [9]. Therefore, we urgently need to find an alterna-
tive method that can better discover the mechanism of 

complex diseases and use the knowledge of known drugs 
to reduce the cost of research and development. The 
drug-disease association can be divided into therapeutic 
effects and side effects. Therapeutic effects are positive 
effects, such as insulin drugs that lower blood sugar. Side 
effects are those that have adverse effects in addition to 
the original condition, such as increased blood pressure 
after taking dexamethasone. With reasonable observa-
tion, the close relationship between drugs and diseases 
may help to identify some redirected drugs. Drug redi-
rection is the identification of new disease treatment 
options for drugs that have been approved by regulators. 
Repositioning a drug can shorten the drug development 
cycle by half and save about half of the drug develop-
ment cost. Theoretically, drug reuse has two advantages. 
One advantage is that these drugs are safe because all 
known drugs have passed clinical trials, which signifi-
cantly reduces development costs. Another advantage is 
that these drugs’ side effects have been screened and have 
been determined not to cause significant side effects, 
ensuring that new therapeutic effects are not affected 
by side effects [10–12]. Past success shows that the most 
crucial factor in repositioning drugs is the online biologi-
cal database. To reproduce the complicated relationship 
between disease and drug, we need a variety of relevant 
information to describe the disease and drug.

Many disease and drug related information like 
sequence, structure, side-effects and function of pro-
teins have been collected to public databases. For exam-
ple, there are thousands of human proteins are recorded 
in Uni-ProtKB database [13]. On the other hand, there 
are around thousands known drug compounds are 
deposited in Drug Bank [14]. Other databases such as 
CHEMBL [15], therapeutic target database (TTD) [16], 
OMIM [17], LncRNADisease [18] and SIDER database 
[19] have been designed as resources for drug func-
tions and also used to improve the understanding of 
disease relationships in different ways. These emerg-
ing public databases allow access to useful parts lists 
of diseases and drugs. Therefore, many unexplored 
compounds and human proteins make it impossible to 
evaluate disease-drug association by biological experi-
ments effectively. Standard drug discovery processing 
may generate products different from the initial treat-
ment. Instability and no specificity of disease-drug 
association have to be addressed appropriately dur-
ing the disease exploring, drug screening, and clinical 
phases. Many computational models have been built to 
elucidate interesting disease-drug relationships of most 
promising candidates for further experimental valida-
tion to reduce the huge time and cost of experimental 
approaches. However, these models have many limita-
tions. Existing methods usually only take into account 
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linear combinations of multiple features and still lose a 
lot of information when extrapolating new disease-drug 
association networks. The attributes of various types of 
features are different, and it isn’t easy to combine mul-
tiple modes and make use of the complementarity of 
heterogeneous data to provide more reliable prediction. 
Besides, another significant challenge is that merging 
numerous types of data typically increases model com-
plexity significantly. Fortunately, previous experiments 
have provided a starting point for understanding mech-
anisms and the collection of sufficiently large samples. 
Motivated by recent discoveries and some known asso-
ciation rules, we present here a low-rank multimodal 
fusion-based algorithm, called LMFDA, that is capable 
of developing models to predict disease-drug associa-
tions. The predicting and discovering of disease-drug 
associations is expected to promote the understanding 
towards the drug mechanisms of various human dis-
eases at the molecule and genomics level and contrib-
ute to the development of diagnostic biomarkers, drug 
repurpose and treatment tools for diseases. Also, com-
putational models can make the discovery more effi-
cient and experiments more productive.

There has not been any report on previous attempts 
to predict novel disease-drug associations that can scale 
linearly in the number of modalities to the best of our 
knowledge. The proposed LMFDA does not just make 
use single similarity network of disease and drug as any 
conclusion that can be drawn based on this alone may 
not be very convincing. To evaluate the performance 
of LMFDA, we have performed experiments using the 
most up-to-date version of the public data set. Experi-
mental results show it can have better prediction per-
formance over existing models. The proposed model 
can achieve AUROC of 0.921 on Cdataset and 0.916 
on Fdataset based on the results of fivefold cross-vali-
dation. So, we believe that LMFDA could make reliable 
predictions and might guide future experimental stud-
ies on disease-drug associations. Experimental results 
show that LMFDA can better predict disease-drug 
associations more accurately than existing algorithms.

In summary, this paper proposed LMFDA:

•	 To learn a comprehensive view, we involve low-
rank multimodal representation instead of the 
single network or liner combination that existing 
approaches rely on,

•	 to capture a multimodal output representation 
by performing low-rank multimodal fusion with 
modality-specific factors and that can achieve sig-
nificant performance improvement over other 
methods when used with the real-world dataset,

•	 representations of multi-modality can be fully 
exploited to infer the association between disease 
and drug.

Results
Experimental datasets
In this study, the disease and drug information which 
we used to predict disease-drug associations come from 
[20]. There are two different scale datasets: Cdataset and 
Fdataset [21, 22]. These two disease-drug datasets in 
this work also come from two different public sources. 
Fdataset is a comprehensive dataset collected by Gottlieb 
et al. This dataset includes over 593 drugs, 313 diseases 
and 1933 proven disease-drug associations. Cdataset is a 
comprehensive dataset collected by Luo et al. It collected 
over 663 drugs, 409 diseases and 2532 proven disease-
drug associations. The drug information is extracted 
from DrugBank [14], the largest comprehensive database. 
The fingerprint information is extracted from PubChem 
[23] database to calculate chemical sub-structural simi-
larity. The disease information in the dataset is derived 
from the definition of human phenotypes in the Man 
(OMIM) online Mendelian genetic database [24]. That is 
to say, we would construct two 593 × 593 drug similarity 
networks and two 313 × 313 disease similarity networks 
from Fdataset. Also, we would construct two 663 × 663 
drug similarity networks and two 409 × 409 disease simi-
larity networks from Cdataset. Here, we use two types of 
expressions to represent diseases: Gaussian interaction 
profile kernel similarity and semantic similarity. The data 
which are used to represent drugs include two types of 
expressions: Gaussian interaction profile kernel similarity 
and Jaccard similarity of the chemical substructure.

Evaluation measures
Generally speaking, we advocate the use of AUROC (area 
under ROC curve) to evaluate the prediction perfor-
mance of the interaction in a biological network, which 
can objectively evaluate the prediction performance in 
different tasks [25]. We inferred the disease-drug inter-
actions and compared them to the interactions that had 
been set aside for use, using AUROC to measure perfor-
mance in our prediction task. The ROC curve is obtained 
by plotting TPR and FPR, that is, the true positive rate 
and false-positive rate under different thresholds. The 
calculation formulas of TPR and FPR are respectively 
TPR = TP/TP + FN and FPR = FP/FP + TN. In the for-
mula, TP (true positive) refers to the number of correctly 
predicted disease-drug correlation, and FP(false posi-
tive) refers to the number of wrongly predicted disease-
drug interactions. TN (true negative) is the number of 
disease-drug associations that predict not to be observed 
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in the category; FN (false negative) predicts the number 
of disease-drug associations that do not fall into this cat-
egory. To more fully evaluate the performance of the pro-
posed method, we also used several additional metrics: 
over-all prediction accuracy, recall rate, accuracy, and 
F-measurement.

Performance and comparison
To evaluate the performance of the proposed prediction 
method, we also applied the TLHGBI [26], LRSSL [27], 
SCMFDD [28] and KBMF [29] to predict disease-drug 
associations for comparison.

In order to obtain reliable evaluation results, we con-
ducted cross-validation on Fdataset and Cdataset respec-
tively to evaluate the performance of the model. In this 
method, all data sets are randomly divided into ten 
roughly equal parts for cross-validation. One group was 
used as the test set, the other 9 groups were used as the 
training set, and different subsets were used as the test 
set each time, and the other 9 subsets were used as the 
training set, and they were run ten times successively. 
We used the GridSearch method to test the effects of the 
important parameter ℜ for the similarity network fusion 
of disease and drug. After several rounds of testing, the 
parameters of the best results are ℜ = 300 for drugs and 
ℜ = 150 for disease fusion in the Fdataset experiment. 
In the experiment of Cdataset, the best parameters are 
ℜ = 330 for drugs and ℜ = 200 for disease respectively. 
Finally, we combined the evaluation results of ten test sets 
to get the final predicted performance. Table  1 reports 
the accuracies of different algorithms on both Fdataset 
dataset and Cdataset dataset. The scores of AUROC, 
AUPRC, ACC and F-MEASURE also be listed in Table 1. 
On Fdataset, LMFDA achieved AUROC, AUPRC, ACC 
and F-MEASURE being 91.6%, 90.6%, 81.2%, and 82.8%. 
On Cdataset, LMFDA achieved AUROC, AUPRC, ACC 
and F-MEASURE being 92.1%, 91.2%, 82.2%, and 83.9%, 

respectively. We further compared the performance of 
each method by the ROC curve. Figures  1 and 2 show 
the ROC curves of the 5 algorithms compared against 
the standard on the Fdataset and Cdataset. As expected, 
among all measures, LMFDA achieves the higher score. 
Comparing the two figures, we can learn that the area 
under curve based on larger data, namely Cdataset, 
is higher, which indicates that the performance of the 
model will be improved as the data keeps increasing. This 
result shows that LMFDA extracted more meaningful 
representations to disease and drug from the fused net-
work and improved the prediction performance.

Discussion
Earlier studies used biological elements common to 
drugs and diseases to predict the relationship between 
drugs and diseases. Some researchers believe that the 
association between drugs and disease comes from the 
same target gene, so the more the same target gene, the 
more likely the drug is to be associated with the disease. 
In [30, 31], researchers proposed to incorporate infor-
mation about drugs, genes and diseases into the model 
to find new purpose for drugs. Then, some studies have 
tried to share the targeted protein complexes and added 
to the model of the active gene [32, 33], to enhance the 
accuracy in predicting drug associated with the disease. 
These methods have achieved good results but have not 
been a further extension. Such studies are limited by 
drugs and disease shared elements, because many drugs 
and disease do not share any element, which under-
mines the availability of this type of work. More recent 
work has focused on how various types of data, includ-
ing drug similarity and disease similarity, can be used to 
predict how diseases relate to drugs. Such studies typi-
cally abstract the prediction of disease-drug associations 
into a classification task. All of them are novel calculation 
methods, which mainly focus on the two processes of 
optimizing feature extraction and accurate classification. 
In terms of feature computing methods, how to extract 
the most significant features from the multi-source fea-
tures is the main challenge faced by the prediction task 
[34–40]. In [41], the authors proposed to train a support 
vector machine based on molecular structure, molecular 
activity, and phenotype data to reposition drugs. Wang 
et  al. [26] input the existing disease omics data, drug 
omics data, and drug target omics data into a three-layer 
heterogeneous network model and use the new network 
output to reposition the drug. In [42], the authors put for-
ward a model named ProphNet to integrate data from the 
complex network, the network involved in drugs, protein 
and related disease, and the network is applied to differ-
ent types of drugs to reposition the test. In [43], DR2DI 
specifically processed high-dimensional isometrics data 

Table 1  Comparison for the Auroc, Auprc, Mcc and F-Measure 
values of the LMFDA versus baselines on the two datasets

By contrast, the best performers have been shown in bold

Measures AUROC AUPRC ACC​ F-measure

LMFDA Fdataset 0.916 0.906 0.812 0.828
Cdataset 0.921 0.912 0.822 0.839

TLHGBI Fdataset 0.846 0.852 0.775 0.789

Cdataset 0.860 0.867 0.780 0.799

LRSSL Fdataset 0.879 0.885 0.772 0.791

Cdataset 0.897 0.907 0.788 0.803

SCMFDD Fdataset 0.859 0.839 0.776 0.801

Cdataset 0.878 0.840 0.786 0.809

KBMF Fdataset 0.871 0.889 0.804 0.816

Cdataset 0.886 0.890 0.816 0.819
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and accurately revealed the potential association between 
diseases and drugs. Some of the most advanced meth-
ods not only integrate information about drugs, targets, 
and diseases but also employ a matrix approach. For 
example, Laplace regularized sparse subspace learn-
ing method (LRSSL) [27], and similar constraint matrix 
decomposition model [28] was used to infer the rela-
tionship between drug candidates and diseases. With 
the popularization of deep learning, the feature learning 
method based on deep learning is also widely applied 
to extract the characteristics of drugs and diseases. The 
autoencoder can learn the low-dimensional feature by 
learning the expression of the hidden layer. For example, 
some work applies autoencoder and its modified model 
to the learning of disease characteristics [44, 45] and 
predicts the association of the disease with other targets 
with new features. Yi et al. and Wang et al. also applied 
autoencoder to the learning purpose of protein features 

[25, 46]. In line with this trend, Jiang et al. [20] proposed 
a calculation method combining gaussian interaction 
spectral core and automatic encoder to map the original 
features into low-dimensional space and more effectively 
measure the relationship between drugs and diseases. 
Above studies provide useful computational methods for 
finding links between diseases and drugs. However, exist-
ing methods usually use linear combinations of multiple 
features to infer new disease-drug association networks. 
These methods use features of a certain type to find pat-
terns and use prediction models to provide more reliable 
prediction of disease-drug association.

Case studies
The highest ranking on the list of possible drug markers 
for the disease is considered a high potential disease-
drug interaction. This study’s output results can be used 
to complement the confirmed disease-drug interactions 

LMFDA: 0.921
TLHGBI: 0.860
LRSSL: 0.897
SCMFDD: 0.878
KBMF: 0.886

Fig. 1  Comparison of the ROC curves of LMFDA with TLHGBI, LRSSL, SCMFDD, KBMF on collected Cdataset
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in these experimental databases. In this section, we select 
two typical chronic diseases, Type 2 Diabetes Melli-
tus (T2DM) and Ischemic Stroke, as case studies. In the 
experiment, we used the known disease-drug associa-
tion in Cdataset as the LMFDA training sample, Type 2 
Diabetes Mellitus (T2DM), and Ischemic Stroke as the 
prediction sample delete all the associations between 
the disease and the drug from the training set. For each 
disease, we manually screened out the predictions that 
didn’t make sense, leaving the top 10 potential disease–
drug associations for new predictions. Through literature 
verification and careful comparison, we found that there 
were cases reported in the literature among the predicted 
associations, marked as literature support in the table. 
And these predicted associations were not originally in 
our dataset, but we were able to find them through our 
method, thus showing the practicality of the proposed 
LMFDA.

T2DM is a type of diabetes mellitus known as non-
insulin-dependent diabetes mellitus, often in obese 
adults. T2DM is also the result of complex genetic and 
environmental factors. Currently, the etiology of T2DM 
is still poorly understood, and T2DM may be a hetero-
geneous condition. Long-term T2DM will cause dam-
age to the great vessels and microvessels and endanger 
the heart, brain, kidney, eyes, feet, etc. According to 
the World Health Organization statistics, diabetes has 
more than 100 complications, a disease with the most 
known complications. The new predicted top 10 dis-
ease-drug associations are shown in Table  2. A close 
examination of our literature validation found that 3 of 
the top 10 predictive associations were indirectly sup-
ported by the most recent literature. In addition, other 
predicted high-order interactions may actually exist but 
have not been reported.

LMFDA: 0.916
TLHGBI: 0.846
LRSSL: 0.879
SCMFDD: 0.859
KBMF: 0.871

Fig. 2  Comparison of the ROC curves of LMFDA with TLHGBI, LRSSL, SCMFDD, KBMF on collected Fdataset
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Another case study focuses on Ischemic Stroke, also 
known as cerebral infarction, localized Ischemic necro-
sis and softening of the brain tissue caused by blood cir-
culation disturbance, ischemia and hypoxia. Most of the 
clinical manifestations are the symptoms and signs of 
focal neurological impairment, such as hemiplegia, hemi-
anopia and partial sensory impairment. Table 3 lists the 
top 10 drugs that LMFDA predicts are associated with 
Ischemic Stroke. Through literature verification, three of 
the predicted associations were indirectly supported by 
the literature. Both of these chronic disease case studies 
demonstrate the promising predictive performance of 
LMFDA.

Conclusion
In this paper, a low-rank based fusion approach for dis-
ease-drug association prediction is proposed. The pro-
posed method addressed the challenges in multimodal 
network incompletion and network fusion. Summarized 

from the aspects of approach, LMFDA using modality-
specific low-rank factors for multimodal fusion. Given 
the fused representations, we used an inductive matrix 
completion for predicting unknown associations. In 
other words, LMFDA has better performance than some 
previous methods of multimodal fusion using tensor rep-
resentation. The Gaussian interaction profile kernel simi-
larity of drugs and diseases, the semantic similarity and 
structure similarity of drugs are all information that has 
been proved to be effective in predicting the disease-drug 
association, but a lot of available information is lost when 
used alone. With proposed sophisticated technique, the 
LMFDA can fuse heterogeneous information embedded 
in disease-disease and drug-drug network data, respec-
tively. For the present situation of missing information 
expression in modality, we reduce the incompleteness 
caused by the incomplete detection of vertex features in 
heterogeneous network data. In practice, for a disease, 
LMFDA can identify potential drugs associated with the 
disease through calculation, and these drugs are possible 
interactions that have not been reported before. These 
potential associations are likely to be real, meaning that 
drug developers will be able to screen out existing drugs 
that show the most promise for treating diseases. By ana-
lyzing these drugs, it may be possible to identify further 
small molecules associated with treating diseases.

Methods
To predict unknown associations between diseases and 
drugs, we need to establish similar networks of diseases 
and drugs. Now, several different expressions can be used 
to build similar networks of diseases and drugs. As an 
overview (Fig.  3), LMFDA builds multiple diseases and 
drug similarity networks separately and integrates them 
separately into a compact, multi-peak representation of 
downstream tasks. Next, LMFDA will look for the best 
projection from the disease space to the drug space, that 

Table 2  Top-10 drugs predicted by LMFDA to be associated with Type 2 Diabetes Mellitus (T2DM) based on Cdataset

Disease Drug bank ID Drug name Rank Evidence

Type 2 Diabetes Mellitus (T2DM) DB00687 Fludrocortisone 1 NA

DB00342 Terfenadine 2 NA

DB00213 Pantoprazole 3 Literature support

DB00795 Sulfasalazine 4 Literature support

DB00868 Benzonatate 5 NA

DB00177 Valsartan 6 Literature support

DB00489 Sotalol 7 NA

DB00428 Streptozocin 8 NA

DB01125 Anisindione 9 NA

DB00570 Vinblastine 10 NA

Table 3  Top-10 drugs predicted by LMFDA to be associated 
with Ischemic Stroke based on Cdataset

Disease Drug bank ID Drug name Rank Evidence

Ischemic 
stroke

DB00035 Desmopressin 1 Literature 
support

DB00412 Rosiglitazone 2 Literature 
support

DB00374 Treprostinil 3 NA

DB00808 Indapamide 4 NA

DB00933 Mesoridazine 5 NA

DB00530 Erlotinib 6 NA

DB00297 Bupivacaine 7 NA

DB00428 Celecoxib 8 Literature 
support

DB00310 Chlorthalidone 9 NA

DB00180 Flunisolide 10 NA
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is, finding that the mapping feature vector of the disease 
is geometrically close to its known associated drug. The 
LMFDA ranks a candidate based on its proximity to the 
desired feature vector for that drug, thereby inferring a 
new association with a disease. The above two feature 
expression steps imply different functions respectively. 
The first feature representation process is to transform 
disease and drug features of different modes into similar-
ity networks respectively. In the second feature represen-
tation process, we fuse multiple network expressions of 
diseases and drugs into one network expression, that is, 
the matrix’s fusion process. These are two steps that are 
responsible for different tasks. For example, diseases that 

are in a similar direction to the signature vector are more 
likely to respond to the same drug and vice versa. The 
details of each step of the proposed method are described 
below.

Similarity for drugs and disease
With the rapid development of computing technology, 
biomedical data is no longer as difficult to obtain as it 
used to be. The flood of data on the market has created 
multiple open data sources that can describe diseases and 
molecules from multiple perspectives, providing a vari-
ety of computable features. For each disease and drug, 
different information representations may have various 

Fig. 3  The procedure of LMFDA. (The matrix of different color systems represents the similarity matrix of different types. In each matrix, the shade 
of color represents the 0–1 value of similarity between two points in the matrix)
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contributions to network learning. Similarity measure-
ment also influences network learning. Therefore, we 
obtained two different types of disease/drug informa-
tion, all of which came from various sources. Using this 
information, we constructed several similarity networks 
for disease/drug. Specifically, we introduced two types of 
disease similarity, a Gaussian interaction profile kernel 
similarity and a semantic similarity model. The Gauss-
ian kernel function is applied to the topological relation 
network of nodes, and the kernel method is used to build 
the kernel function from the feature vector to extract the 
associated features of biological information. The Gauss-
ian interaction profile kernel similarity has been used 
in many studies to generate diseases and their similar-
ity networks [46, 47]. Inspired by this work, we assume 
that similar diseases (for example, subtypes of cardio-
vascular disease) tend to be associated with similar drug 
molecules, and vice versa. Let the binary vector Y(r(x)) 
represent the interaction profile of disease r(x), and the 
correlation value of the two diseases is 1, otherwise it is 
0. The correlation is equivalent to the row vectors of the 
adjacency matrix. Then, Gaussian interaction profile ker-
nel similarity between r(x) and r(y) was defined, in which 
the original parameters were normalized by using param-
eters to realize the optimization of the kernel bandwidth:

In this case, the higher the GIP value, the higher the 
similarity between the two diseases. We use the Mim-
Miner algorithm [48] further calculate another similar-
ity network of disease, namely the semantic similarity of 
disease. MimMiner is a text mining method for mapping 
the relationships between more than 5000 human genetic 
disease phenotypes from the OMIM database. The inter-
face enables the user to retrieve a similarity ranking of 
specific OMIM phenotypes and contains phenotypic 
knowledge based on clinical observations. In this work, 
we use MimMiner to assess semantic similarity in dis-
ease-related phenotypic terms. For each disease, it builds 
an eigenvector of medical subject term (MeSH) concepts 
that collect all the synonyms and uniquely identify terms, 
making it more generic than keyword-based searches. 
Using these eigenvectors to compute MimMiner simi-
larity scores, we obtain semantic similarity networks for 
disease.

Besides, we introduced two types of drug similarity, a 
Gaussian interaction profile kernel similarity and a struc-
ture similarity model. Similar to the process of calculating 
the similarity of the disease, the Gaussian interaction pro-
file kernel similarity between two drugs can be defined as 
GIPg

(

g(x), g
(

y
))

 . The binary vector Y(g(x)) represent the 

(1)
GIPs

(

r(x), r
(

y
))

= exp
(

−∂r
∥

∥Y (r(x))− Y
(

r
(

y
))∥

∥

2
)

interaction profile of drug g(x), the binary vector Y(g(y)) 
represent the interaction profile of drug g(y). Each drug 
can be expressed as a subset of several descriptors, that is, 
a drug can be expressed as a bit vector with or without a 
descriptor, and the number of descriptors available deter-
mines its dimension. The most common expression mode 
of compounds is chemical substructure fingerprint. Here, 
P and Q are allowed to represent the fingerprint vectors of 
the two drugs, and then a most common similarity calcula-
tion method Jaccard similarity is introduced:

where |P ∩ Q| is the number of bits, where the two drugs 
contain a fingerprint, and |P ∪ Q| is the number of bits, 
where two drugs either contains a fingerprint.

Low‑rank multimodal fusion
In this step, we combined the similarity of the two dis-
eases and the similarity of the two drugs obtained from 
various data sources to predict the disease-drug associa-
tions. The advantage of this method is that it can reflect 
the features of disease/drug from different perspectives. 
The tensor approach and the low-rank concept have been 
applied extensively in disease and genomics prediction 
[47, 49–53]. Therefore, LMFDA combines disease Gauss-
ian similarity and disease semantic similarity to generate 
more robust feature representation for more accurate 
association prediction. In reference [54], the authors pro-
posed a new concept to use low-rank tensor to fuse mul-
timodal data, and it has been applied to multiple data sets 
and achieved good results. This work has inspired us to 
use a similar approach to generate disease-drug feature 
representation. Zsg is taken as the input feature tensor 
here, and its formula is:

where ⊗ donates the outer tensor product over input two 
kinds of feature vector.

Here, multiple input features will be expressed in terms 
of the input tensor Zsg ∈ ℜd1×d2×···×dM and M in terms of 
the number of modalities. For extracted disease Gauss-
ian similarity f

(

Ufea

)

m
 and disease semantic similarity 

f
(

Mfea

)

 , we further train the multimodal fusion model 
and use several linear functions (layers) g(·) to achieve 
this goal. The output fusion feature is represented by fsg:

where b is the bias. W is the weight of one linear function 
(layer) and it is a tensor of order-(M + 1) in 
ℜ
d1×d2×···×dM×dzsg . Here, b is the bias. Ref. [54] proposed 

a method to decompose the weight into specific factors 

(2)J (P,Q) =
|P ∩ Q|

|P ∪ Q|

(3)Zsg = f
(

Ufea

)

m
⊗ f

(

Mfea

)

(4)fsg = g
(

Zsg ;W , b
)

= W ·Zsg + b
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of different modalities, and used this method to decom-
pose the weight W, so as to complete low-rank multi-
modal fusion. Suppose w be the set of rank ℜ 
decomposition factors. W =

r
∑

i=1

⊗M
m=1w

(i) can recover a 

low-rank weight tensor. Then we can extend the linear 
function to a low-rank format:

where ◦ denotes the element-wise product and w is set of 
rank ℜ decomposition factors. In this way, fused disease 
representation can be generated. In the same way, we will 
receive a multimodal feature fusion representation of 
drugs.

Predicting disease–drug associations
Let X =

[

x1, . . . , xNd

]T
, xi ∈ Rfd , i = 1, . . . ,Nd 

represent a fused disease network, the vector in 
row i represents the disease feature and Nd rep-
resents the numbers of diseases. Similarly, let 
Y =

[

y1, . . . , yNg

]T
, yi ∈ Rfg , i = 1, . . . ,Ng represent the 

drug feature vector and Ng represents for the numbers of 
drugs. The final state matrix X ∈ RNd×fd and Y ∈ RNg×fg 
are produced at the last stage of the network fusion 
process. Let O be a disease–drug association matrix, if 
we know that disease i interacts with drug j, each item 
Oij = 1, otherwise Oij = 0. To infer the unknown disease-
drug associations, we use the bilinear function to under-
stand the projection matrix P between the fused disease 
space and the fused drug space. Bilinear function is 
defined as:

where A ∈ RNd×Ng defined as the known disease–drug 
association matrix. Our target is learning the projection 
matrix P ∈ Rfd×fg and Rfd×fg . We use a score equation to 
show the strength of the association between disease i 
and drug j:

then we use the score to determine the disease-drug 
association. The projection matrix P is of dimension 
fd × fg , and it is known that there is significant associa-
tion between the eigenvectors of geometrically similar 
targets. Based on this assumption, we can greatly reduce 
the number of parameters in the disease-drug association 
model P.

(5)

fsg =

(

r
∑

i=1

⊗w(i)

)

· Zsg

=

(

r
∑

i=1

⊗w(i)
s · f

(

Tfea

)

m

)

◦

(

r
∑

i=1

⊗w(i)
g · f

(

Tfea

)

)

(6)XPYT ≈ O

(7)score
(

i, j
)

= xiPy
T
j

To consider this issue, we impose a low-rank constraint 
on P, only learning a few potential factors, by considering 
a low-rank decomposition of the form:

where W ∈ Rfd×fp and H ∈ Rfg×fp . fp is a dimensional 
parameter, and the number of dimensions of p is usually 
less than d and t. This low-rank constraint can solve the 
overfitting problem to a certain extent and is also benefi-
cial to the computation of the optimization process [55]. 
This kind of low-rank constrained optimization problem 
is NP-hard to solve on the original projection matrix P. 
Minimize the trace norm of the matrix (8) can achieve 
a standard relaxation of the low-rank constraint, which 
is equivalent to minimize: 12

(

�W�2F − �H�2F

)

 . Based on 
the above, the decomposition of P into W and H can be 
achieved through an optimization problem of alternate 
minimization:
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