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Background 
Intramedullary nails (IMNs) are the current gold standard treatment for long bone 
diaphyseal and selected metaphyseal fractures. The design of IMNs has undergone many 
revisions since its invention in the 16th century, with a dramatic increase in novel designs 
in recent years aiming to further improve intramedullary fixation techniques. 

Aims 
To map the evolution of IMNs in orthopedic surgery, discuss the limitations and 
complications of current IMNs and identify novel IMNs that may influence future design 
innovations. 

Methods 
We undertook a scoping review on the status of orthopedic IMNs by reviewing Google 
Scholar with the following keywords. Publications and patents selected for retrieval were 
initially assessed on the title and abstract by five independent reviewers. 52 papers were 
retrieved for complete text examination, and secondary references were checked from 
these papers. The results were discussed within the research group and consensus was 
obtained describing novel IMNs. 

Results 
Novel IMN designs include growth factor and/or antimicrobial coatings targeting fracture 
healing and perioperative infection risk, respectively; minimally invasive expandable 
IMNs to avoid the need for interlocking screws; and novel materials such as carbon fiber 
for their theoretically superior biomechanical properties and avoidance of artifact on CT 
and MRI imaging. 

Conclusion 
The novel IMNs proposed in recent years collectively aim to improve intramedullary 
fixation techniques by reducing operative time and radiation exposure, improving 
fracture healing or monitoring bone cancer progression. However, more research and 
development are necessary to solve these complex problems. 

INTRODUCTION 
THE BEGINNINGS OF INTRAMEDULLARY NAILS (IMNS) 

Orthopedic implants are constantly being refined with the 

introduction of new technologies and evolving clinical re-
quirements. However, as demonstrated in the past, novel 
designs can inadvertently ignore past failures and as Dr. 
Carl Sagan (1980) said, “You have to know the past to un-
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derstand the present.” This statement is particularly true 
when aiming to see the future directions of the design of 
IMNs. 

The first intramedullary device as described in the 16th 
century by Bernardino Da Sahagun. He documented Aztec 
physicians using solid, wooden pegs for the treatment of 
non-unions.1 

In 1875, Heine introduced the use of ivory IMNs for 
femoral shaft fractures in Germany2 and the use of ivory 
later became the material of choice for IMNs until 1910.3 

The period between 1875 to 1910 also witnessed the de-
velopment of interlocking nails and pins made from ivory 
to improve rotational stability.4 It later became apparent 
that ivory materials are resorbable. This meant that ivory 
implants could not provide sufficient stability for fracture 
healing, particularly in cases involving delayed unions.5 

This eventually led to experiments with various other 
metallic nails over the years. In 1911, Lilienthal used alu-
minum intramedullary splints for the treatment of femoral 
shaft fractures; in 1913, Georg Schöne used silver pins for 
the treatment of upper limb fractures6,7; and in 1921, Oskar 
Müller-Meenarch implanted internal splints called 
“Bolzen” that were made from stainless steel or chromi-
cized brass.8 

The widespread transition from ivory to metal happened 
during World War I, where Groves reported the use of metal-
lic implants for the treatment of gunshot wounds.9 Unfor-
tunately, due to high infection rates and reported cases of 
fretting, Groves’ technique was initially not universally ac-
cepted, and progress stalled.10,11 

In 1931, Smith Peterson’s report on the successful ap-
plication of stainless-steel nails for femoral neck fractures 
and his introduction of metal, solid triflanged nails for sub-
capital femoral neck fractures revolutionized fracture fixa-
tion. It became the standard management for the next 40 
years.11,12 However, there were limitations to Smith Peter-
son’s IMN, including documented cases of femoral fractures 
among inexperienced surgeons and a higher risk of postop-
erative complications such as iatrogenic lateral femoral cu-
taneous nerve injury. Hence, further improvements in de-
sign were demanded by clinicians.6,8 

As shown in figure 1, early IMNs can be characterized as 
solid and inflexible nails. These nails quickly became obso-
lete due to high failure rates associated with a discrepancy 
in nail-bone stiffness. However, it was an important inven-
tion that subsequent designs leveraged to extend the indi-
cations and improve clinical outcomes of fracture fixation. 

PRESENT: CURRENT IMN IN PRACTICE 

Gerhard Küntscher is often credited as one of the founding 
fathers of the modern day intramedullary nail.13 His first 
invention was the V-shaped, stainless steel IMN for femoral 
shaft fractures, followed by the cloverleaf-shaped IMN in 
the late 1940s.14 The latter was particularly well-received 
for its low complication rates and ease of implantation.15 

Both Küntscher’s V-shaped and cloverleaf-shaped IMNs 
nails were designed with a slotted configuration. The slot 
allowed for elastic radial compression of the IMN to maxi-
mize bone-nail contact for rotational and axial stability.16 

The slot also allows the nail to adapt to the unique infra-

structure of the medullary canal, thus avoiding undesirable 
mechanical stress during implantation.16 

In the 1960s, Huckstep introduced titanium metal for 
IMNs after the invention of image intensifiers. The titanium 
IMNs boasts superior mechanical properties such as a 
Young Modulus closer to the intact diaphyseal cortical 
bone, higher fatigue, and yield tensile strength and lower 
density as compared to its predecessor, the medical-grade 
stainless steel IMNs.13 

The turning point from slotted to non-slotted configu-
ration occurred in 1986 when Russel & Taylor introduced 
the non-slotted femoral IMN that was made possible using 
a gun-drilling computerized machining technique.16 This 
technique allowed for the construction of an IMN with 
lower bending stiffness and better rotational stability. The 
non-slotted IMNs subsequently became the preferred de-
vice up to the 21st century. 

Over the years, numerous surgical techniques were in-
troduced to enhance the implantation of IMNs. In-
tramedullary reamers were introduced in 1942 to allow for 
the insertion of larger IMNs to promote bone-nail contact 
for improved implant stability. In 1953, interlocking screws 
were introduced after nearly 60 years since they were first 
considered in the ivory interlocking pin design.17 Between 
1975 to 1985, guide rods, capitalizing on the benefit of a 
cannulated IMN design, were introduced to direct the im-
plantation of IMNs.15 

METHODS 

We undertook a scoping review on the status of orthopedic 
IMNs by reviewing Google Scholar with the following key-
words (orthopedic, intramedullary nails, coated nails, ex-
pandable nails, carbon fiber nails). Publications and patents 
selected for retrieval were initially assessed on the title and 
abstract by five independent reviewers. 52 papers were re-
trieved for complete text examination, and secondary refer-
ences were checked from these papers. The results are dis-
cussed below. 

RESULTS 
FUTURE: NOVEL IMNS 

Three main groups of novel IMNs were identified in the last 
twenty years. They are divided into expandable, coated, and 
carbon fiber nails. 

EXPANDABLE INTRAMEDULLARY NAILS 

Expandable IMNs were first introduced in 1999 and became 
widely known as the Fixion IMN (CarboFix Orthopedics NC, 
USA).18 The Fixion IMN (figure 2) was indicated to treat 
acute diaphyseal fractures, pathological fractures, non-
unions, and malunions of long bones.18 It was also suitable 
for osteoporotic bones, osteotomy, and other revisional 
procedures that had failed in its initial fixation methods.18 

The Fixion IMN is hydraulically expanded with pressur-
ized saline throughout the length of the nail, thereby in-
creasing the diameter by up to 160% of its original size.18 

Expandable nails aimed to avoid the need for reaming and 
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Figure 1. Timeline of the evolution of IMNs 

the use of interlocking screws by providing rotational sta-
bility with the four longitudinal reinforcement bars.18,20 

By negating the need for distal interlocking screws, ex-
pandable IMNs potentially reduce the operation time and 
radiation exposure to both the patient and the surgeon. 
Papers have reported that the average time for insertion 
of expandable intramedullary nails can be as short as 35 
minutes18,21 Additionally, with only a single incision point 
required to implant expandable nails without the need for 
locking screw insertion, the procedure is minimally inva-
sive.22 

Another potential advantage of expandable IMN is its 
narrow diameter in its unexpanded form. This negates the 
need to ream the medullary canal before implantation, thus 
avoiding damage to the surrounding bone and vascular 
structures.20 

The further potential advantage of these nails is their 
ability to conform to the unique geometry of the medullary 
canal, allowing for a larger bone-nail contact which the-
oretically implies greater stability, bending stiffness, and 
more even pressure distribution.18,20,22 

However, expandable nails have reported some con-
traindications and complications that must be considered 
when considering them as a novel nail design. Contraindi-
cations for the Fixion IMN included fractures with greater 
than 50% fragmentation, conditions with brittle bones such 
as osteogenesis imperfecta, and fractures involving the 
head or neck of the femur and humerus due to the risk of ia-
trogenic new or extension of fracture.18,23 

Unfortunately, papers have reported an overall compli-
cation rate of up to 13% for the Fixion expandable IMN.24 

Identified intra-operative complications include device-in-
duced fracture extension, inflator breakage, pre-inflation 
leakage of saline, and bending of the Fixion IMN upon in-

Figure 2. Illustration of Fixion IMN – a cross-section 
of a long bone pre-and post-expansion19 

sertion leading to device failure.24 The major postoperative 
complication identified with the Fixion IMN involves the 
limb’s shortening by up to 1cm.24 A consideration for the 
Fixion IMN is the need for an additional procedure to re-
move the IMN before cremation to prevent an explosion of 
the nail.25 

The above considerations subsequently led to the demise 
of the Fixion IMN in routine practice. 

Other designs of expandable IMNs proposed over the 
years to capitalize on the potential advantages of a self-
locking IMN - minimally invasive, shorter procedure time, 
avoidance of reaming, and avoidance of interlocking screws. 
Unfortunately, there has been limited published literature 
regarding these newer designs. 

In 2006, the United States patented a novel expandable 
IMN (figure 3) that used splines to stabilize long bone frac-
tures.19 
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In 2019, a ‘Screwless Blade Expandable Nail’ (figure 4) 
was introduced by Tianjin Walkman China.26 

In 2020, a new expandable IMN – known as EXPN (figure 
5) was tested in an animal study in Germany.27 This IMN 
featured expandable segments and bridging elements but 
proved to be weaker in neutralizing axial compressive forces 
when compared to traditional solid IMNs.27 

However, common to all expandable IMN designs, the 
challenge faced is removing the nail when complications do 
arise. However, no studies have been conducted or reported 
on the ease of removing these novel expandable IMNs if re-
quired at a later stage. 

Although several novel IMN designs have been explored 
in recent years, few or no clinical studies have been pub-
lished to demonstrate the hypothesized benefits, and more 
evidence would be demanded before expandable IMNs can 
be accepted into standard practice. 

COATED INTRAMEDULLARY NAILS 

Coated nails can be categorized into coatings to prevent in-
fection or coatings to promote fracture healing. Infection 
prevention has been attempted with either antibiotic coat-
ing (custom or manufactured) or antiseptic coatings. 

ANTIBIOTIC COATINGS AND DELIVERY SYSTEMS 

Peri-prosthetic intramedullary nail infections reportedly 
cost 80% more than non-infected cases and require a length 
of stay over double that of a non-infected case.28 

Organisms associated with peri-prosthetic infections 
classically adhere to the implant surface, forming a protec-
tive biofilm against antimicrobials.29 Therefore, peri-im-
plant infections are often difficult to treat, requiring treat-
ment with revision operations and long-term systemic 
antibiotics.30 

The disadvantages of systemic antibiotics delivery in-
clude insufficient drug concentration at the fracture site 
and potential systemic toxicities.31 These trends demon-
strate a substantial benefit in incorporating antimicrobial 
surface coating technology with IMNs. Hence, the increased 
interest and development in new nailing systems can po-
tentially reduce infection rates. 

The bio-resorbable Poly-D,L lactic acid (PDLLA) matrix 
has been proposed as a local delivery medium for both an-
tibiotic and growth factors in implants. It has been increas-
ingly popular in many dental and orthopedic devices due to 
its ease of handling, good soft tissue response, and ability 
to resorb over time. 

PDLLA was first used in the UTN PROtect nail (Synthes, 
Massachusetts, USA)) – an antibiotic-coated interlocking 
nail in 2006.32 

Further revisions led to the modern day Synthes Expert 
Tibial Nail PROtect (ETN PROtect™). Currently, the only 
manufactured gentamicin sulfate coated tibial nail in the 
market with a PDLLA delivery medium.16,33 Gentamicin 
sulphate is delivered to the surrounding tissue in a burst 
release profile immediately after implantation – over 40% 
of the antibiotic is released within an hour, 70% within 24 
hours, and 80% within 48 hours of implantation.30 This sys-
tem allows for the delivery of a local concentration 1000 

Figure 3. Illustration of US Patent Expandable 
Orthopeedic Device19 

Figure 4. Illustration of Screwless Blade Expandable 
Nail26 

times greater than systemic antibiotics.34 The cost of the 
ETN may vary. However, one paper reported that in Belgium 
and ETN without the coating would cost 508.95 euro com-
pared to 684.00 euro when coated (ETN PROtect™).35 How-
ever, no large economic cost-benefit study or randomized 
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controlled study has been conducted to rationalize the 
widespread adoption of the ETN Protect™ nail to prevent 
infections. 

Other coatings being considered to include the Polymer-
Lipid Encapsulation Matrix (PLEX) (PolyPid Ltd., Israel) - 
a biodegradable delivery system made of alternating layers 
of polymers and lipids that enables controlled and continu-
ous drug delivery over periods ranging from days to several 
months.35,36 With PLEX, drugs can be delivered by them-
selves or inserted during surgery as an injectable material 
or coating for medical devices. 

The safety and efficacy of PLEX have been trialed with 
the controlled release of doxycycline (doxycycline/polymer-
lipid encapsulation matrix [D-PLEX]) most recently in an 
abdominal surgery incision model of miniature swine.37 

The D-PLEX matrix did not show any evidence of systemic 
toxicities and was essentially absorbed at 6 months, 
demonstrating its safety and favorable degradability pro-
file37 However, further research is warranted to evaluate the 
safety and degradability profile in humans. 

CUSTOM-MADE ANTIBIOTIC COATING CEMENTS 

Custom-made antibiotic-coated cement for IMNs was first 
published 30 years ago by Klemm et al. and has been im-
proved upon several iterations.38 The antibiotic-coated ce-
ment is typically used to treat an established infection 
rather than for infection prevention. By doing so, a directed 
antibiotic regime based on established bacterial susceptibil-
ity can be conducted, preventing the development of antibi-
otic resistance.32 Studies have reported that custom-made 
antibiotic cement nails could clear known infections by 6 
months in 76% of cases.39 

However, limitations and challenges of this approach in-
clude: requiring an antibiotic that is heat resistant to the 
cementing process; arduous and long preparation time for 
the fabrication of the antibiotic cement nails40; risk of ad-
herence of cement to the plastic sleeve used to create the 
implant40; and the increased diameter of the medullary 
canal required to accommodate the cement consequently 
requiring the need for additional reaming or the use of a 
thinner nail thereby compromising the strength of fixa-
tion.41 

ANTISEPTIC COATING 

Silver-coated IMNs have been explored as an alternative to 
antibiotic coatings due to their lower risk of developing an-
tibiotic resistance. Silver in its cation state (Ag+) induces 
cell death by reacting and disrupting cell membranes, meta-
bolic proteins, and bacteria42 This multilevel microbial 
mode of action, compared to the focal action of antibiotics, 
prevents the development of resistance.43 

Silver is also hypothesized to have a broad bactericidal 
spectrum.36 A study by Hardes et al. showed an infection 
rate of 5.9% in patients with silver-coated endoprosthesis 
versus an infection rate of 17.6% in patients with uncoated 
prostheses.44 

Although there have been concerns regarding local and 
systemic toxicities associated with higher doses of silver, 
they are rarely seen in clinical practice.45 Although copper 

Figure 5. Illustration of the Novel Expandable Nail 
Model27 

and zinc are known to exhibit broad-spectrum antimicro-
bial properties, they are not as widely utilized as silver due 
to their systemic toxicities.46 

Iodine-oxide antiseptic coating is another alternative to 
prevent periprosthetic infections.47 This technique has 
been implemented on titanium plates and endoprostheses 
but has yet to be trialed IMNs.47 

A recent meta-analysis combining 1307 patients with 
coated implants demonstrated that antimicrobial coatings 
effectively prevent periprosthetic infections.48 

GROWTH FACTOR COATINGS 

Multiple attempts to promote bone healing have been ex-
plored to address complications such as delayed fracture 
healing and non-unions associated with long bone diaphy-
seal fractures.49 

Growth factors such as bone morphogenetic proteins 
(BMPs), insulin-like growth factor-1 (IGF-1), and trans-
forming growth factor-β1 (TGF-β1) have demonstrated 
osteoinductive effects.50 Studies have shown that the local 
application of growth factors may improve the clinical out-
come in fracture treatment – biomechanical studies showed 
significantly higher torsional stiffness and maximum load 
in the growth factor group; histological analyses showed a 
larger callus volume in the growth factor group.50 

However, the manipulation of growth factors to stimu-
late fracture healing is a complicated process. The physi-
ology of growth factors involves an intricate cascade of in-
tracellular and extracellular interactions. Inability to alter 
growth factors after implantation and the risk of dysregu-
lated growth stimulation leading to oncological bone dis-
eases are challenging to be resolved before growth-stimu-

Intramedullary nail: the past, present and the future – a review exploring where the future may lead us

Orthopedic Reviews 5

https://orthopedicreviews.openmedicalpublishing.org/article/25546-intramedullary-nail-the-past-present-and-the-future-a-review-exploring-where-the-future-may-lead-us/attachment/65255.jpeg


lating coatings can be popularized. 
Along with the pursuit for the appropriate combination 

of growth factors for fracture healing, extensive research to 
identify a suitable medium to deliver the growth factors has 
been conducted.51 

Options for the delivery medium investigated include: 

To date, the majority of the data on growth-factor coated 
nails have been based on animal models with limited ran-
domized controlled trials for efficacy and effectiveness in 
humans. 

OVERVIEW OF COATED INTRAMEDULLARY NAILS 

Coated intramedullary nails (IMNs) have the potential to 
reduce the risk of infections and delayed unions. Although 
the different coatings have been discussed separately in the 
above sections, multifunctional combination coatings have 
been attempted to improve clinical outcomes – growth fac-
tor and antibiotic combination coatings. 

More research is required to optimize the delivery of 
drugs or chemicals further, minimize the toxicity profile, 
improve cost-effectiveness and improve ease of applica-
tion.52 Ultimately, IMN coatings must be capable of surviv-
ing the insertional process and provide local drug delivery 
in a perfectly timed fashion without compromising on the 
overall stability of fracture fixation or excessively increas-
ing the operative time. 

These challenges, along with the increased regulatory 
complexities for drug-eluding medical devices for therapeu-
tic purposes, have hampered the development of coated im-
plants.53 

CARBON FIBER INTRAMEDULLARY NAILS 

Biomechanical studies of metal IMNs have shown that most 
of the weight-bearing load is borne by the IMN due to the 
large bone-implant discrepancy in the Young’s modulus of 
elasticity.16 In the absence of adequate load-bearing on the 
surrounding bone, peri-implant osteopenia is common with 
metal IMNs.54 Hence, various materials have been trialed 
to develop an IMN with a modulus of elasticity closely 
matched to the bone.16 One such material is carbon fiber. 

Carbon fibers are created by multiple layers of fibers, 
5-10 micrometers in diameter. Each fiber is formed by car-
bon atoms arranged in a regular hexagonal pattern. The 
ability to vary the arrangement of fibers can alter the tensile 
strength of the matrix, thereby providing the opportunity 
to manipulate the tensile strength at various focal points as 
intended. 

CarboFix, a commercially available composite IMN, is 
made up of carbon fiber reinforced with a poly-ether-ether-
ketone (PEEK) matrix. The carbon fibers bear the load, and 
the PEEK matrix holds the fibers in place.16 Variation of 
the composition of carbon fibers and polymer matrix allows 
customization of the desired stiffness and strength to 
match the biomechanical environment.55 This customiz-

ability allows for a modulus of elasticity similar to bone, de-
creasing the “stress shielding” effect and promoting callus 
formation.56 

Composite carbon fiber IMNs claim to have an improved 
fatigue life compared to conventional metallic IMNs. An 
implant’s fatigue failure results from progressive structural 
damage that occurs when a material is subjected to cyclical 
loading. Commercially available CFR-PEEK nails claim to 
be able to withstand one million fatigue cycles without im-
plant failure.57 A recent prospective study on CFR-PEEK 
IMNs has shown 95% union rates in femoral fractures and 
the absence of hardware failure.58 However, this study is 
limited by a lack of a control group and a small sample size 
of 20 subjects. 

Another potential advantage of carbon fiber IMNs has 
been increasingly attractive due to their radiolucency prop-
erties. The provision of artifact-free images allows for eval-
uating bone tumor progression or recurrence in bone tu-
mors requiring prophylactic intramedullary nailing.55,56 

Moreover, with lesser radio interference and a more com-
prehensive evaluation of pathology, an appropriate radia-
tion dose can be administered to patients to reach the ther-
apeutic threshold for adjuvant radiotherapy.59 

Conversely, carbon fiber implant’s radiolucency may 
pose a challenge in identifying and removing a broken im-
plant. However, CFR-PEEK nails have displayed good stabil-
ity and favorable mechanical properties for fracture healing 
– low risk of device failure.58 

A recent comparative study between CFR-PEEK plates 
and stainless steel plates has shown encouraging short-
term results in treating distal femur fractures with compa-
rable non-union, re-operation, and hardware rates to those 
treated with stainless steel plates.60 This encouraging ev-
idence suggests the CFR-PEEK may be a viable alternative 
for IMNs. 

Despite its laboratory-confirmed biomechanical and ra-
diological benefits, there is currently insufficient literature 
regarding long-term outcomes and cost-effectiveness for 
carbon fiber nails to be widely utilized in the market. With 
its increasing availability and usage,55 further randomized 
controlled studies and cost-benefit studies are needed to 
confirm the performance of carbon fiber as an alternate ma-
terial for intramedullary nails. 

DISCUSSIONS 

The limitations of current intramedullary nails (IMNs) can 
be divided into insertional limitations or postoperative 
complications, as summarized in Table 1. 

Reviewing the literature highlighted several advantages 
and disadvantages with the novel IMN designs summarized 
in Table 2. 

Despite many attempts to improve the design of IMNs, 
each new design still has limitations that need to be over-
come, and further clinical trials are required to confirm the 
theoretical advantages described. 

CONCLUSION 

The design of intramedullary nails has undergone countless 

• Synthetic polymers, e.g., PDLLA 
• Natural polymers, e.g., collagen or alginate 
• Microparticles and nanoparticles 
• Biomimetic coatings, e.g., ceramics 
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Table 1. Limitations in current intramedullary nails 

Insertional Limitations Postoperative Complications 

Location of entry point for a straight nail 
Damage to adjacent structures upon insertion 

Time required to lock the nail proximally & distally 
Radiation risk associated with an image intensifier guidance 

Infection risk 
Non-union 

Radio-interference of tumors 

Table 2. Advantages vs. Disadvantages of Novel IMNs 

Novel Intramedullary Nails 

Advantages Disadvantages 

Expendable 
Nail 

Superior Rotational Stability 
Greater Flexural Stiffness 
Even pressure distribution 
Does not require interlocking screws or reaming 
Minimally invasive 
Decreased radiation exposure 

Risk of fracture extension 
Explosion during cremation 

Coated Nail 
(Antibiotics) 

High local concentrations without high systemic doses 
Reduce implant-related infections 
Prevent formation of biofilm 

Reaming required 

Coated Nail 
(Anti-septic) 

Wide bactericidal activity 
Reduced antibiotic resistance 

Silver toxicity 

Coated Nail 
(growth-
stimulating) 

Osteoinductive effects 
Angiogenic effects 

Risk of ectopic growth 

Carbon Fiber 
Nail 

Even load distribution 
Customizable to suit the bone structure 
High fatigue strength and low implant failure 
High union rates 
Radiolucent – improved visualization of bone structures 
post-implantation 
Radiotherapy – lower effective radiation dose 

Lack of evidence of long-term outcomes and 
cost-effectiveness 
Difficult nail extraction 

revisions since its invention in the 16th century. The ad-
vancement of technology and knowledge has allowed nu-
merous novel nails to be created, aiming to address the 
limitations of current techniques. However, more work is 
required in this field to establish the safety and long-term 
efficacy of the novel IMNs. 

The main unresolved challenges are providing rotational 
stability without the need for increased radiation exposure 
or operative time; improving the rates of a union while pre-
venting increased infection rates, particularly in high en-
ergy trauma or patients with multiple comorbidities; and 
damaging structures inserting a rigid straight IMN. 
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