Skip to main content
. 2021 Oct 21;12:741698. doi: 10.3389/fendo.2021.741698

Table 2.

Radiomics features selected in ANOVA and LASSO regression analysis.

Radiomics features Coefficient
lbp-2D_firstorder_Range_ scan 0.007418999
lbp-2D_firstorder_10Percentile_scan 0.004015608
Wavelet-HHL_glrlm_RunLengthNonUniformityNormalized_scan
wavelet-HHH_ngtdm_Contrast_scan
-0.07654446
-0.00770341
wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_scan -0.01873799
wavelet-HHL_firstorder_10Percentile_scan 0.015804638
wavelet-HLH_glszm_SmallAreaHighGrayLevelEmphasis_scan -0.02602846
wavelet-HHH_glszm_HighGrayLevelZoneEmphasis_scan 0.001441019
wavelet-HHL_firstorder_Mean_scan 0.003108156
original_shape_LeastAxisLength_AP 0.006855814
original_shape_Elongation_AP 0.00434467
original_gldm_LargeDependenceEmphasis_AP 0.017969827
original_glrlm_RunLengthNonUniformityNormalized_AP -0.0047654
logarithm_glrlm_RunLengthNonUniformityNormalized_AP -0.00065297

Fourteen radiomics features with non-zero coefficients in one-way analysis of variance (ANOVA) and the least absolute shrinkage and selection operator (LASSO) logistic regression model were selected.