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Abstract

This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional
brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels.
Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they
completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing.
They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive
relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between
physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global
within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with
higher network modularity, a measure of functional network specialization. These associations were largely independent of
APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher
connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity
were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings
suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement
reduces cognitive decline.
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Introduction
In light of the understanding that Alzheimer’s disease (AD)
pathology begins to develop in mid-life, there is an increased
focus on identifying modifiable aspects of behavior that confer
resilience to AD neuropathology and reduce its effects on cogni-
tion. Current evidence suggests that lifestyle factors, above and
beyond lifelong intellectual attainment, such as engagement in
activities that are cognitively, socially, or physically stimulating
are associated with a reduced risk of MCI (Laurin et al. 2001;
Wilson et al. 2007; Krell-Roesch et al. 2017) and dementia (Laurin
et al. 2001; Verghese et al. 2003; Fratiglioni et al. 2004) and
reduced or delayed cognitive decline (Vemuri et al. 2012; Petti-
grew et al. 2019). However, little is known about whether there
are selective neural mechanisms related to engagement in these
specific lifestyle activities that can be identified and if these
brain changes reduce cognitive impairment in the presence of
pathology.

Prior studies among older individuals without dementia have
reported that measures of educational and intellectual attain-
ment are related to functional connectivity in large-scale brain
networks, as assessed by resting-state functional magnetic res-
onance imaging (rsfMRI) (e.g., Arenaza-Urquijo et al. 2013; Boz-
zali et al. 2015; Perry et al. 2017; Serra et al. 2017; Franzmeier,
Caballero, et al. 2017a; Franzmeier, Duering, et al. 2017b; Neitzel
et al. 2019). Functional connectivity, as measured by rsfMRI,
reflects the intrinsic correlations in the fMRI blood oxygenation
level-dependent (BOLD) signal while participants are at rest.
However, it remains unclear whether level of engagement in
social, cognitive, and physical lifestyle activities is similarly
associated with functional connectivity in large-scale networks,
after accounting for measures of educational and intellectual
achievement. It is also not known if level of engagement in
different types of lifestyle activities is associated with differen-
tial patterns of functional connectivity since prior studies have
exclusively focused on a single type of activity (i.e., physical or
social) and no study, to our knowledge, has specifically inves-
tigated cognitive lifestyle activity levels in relation to rsfMRI.
The current study was designed to address these gaps. Based
on the finding that much of the variability in functional brain
networks appears to reflect relatively stable individual char-
acteristics, rather than more transient factors, (Gratton et al.
2018), we hypothesized that individual differences in functional
connectivity among older adults would be related to the impact
of sustained lifestyle factors.

Physical fitness as well as short-term exercise interventions
have previously been linked to increased connectivity within
brain networks among older participants without dementia, par-
ticularly the default-mode network (Voss et al. 2010; Boraxbekk
et al. 2016; Voss et al. 2016; Chirles et al. 2017; McGregor et al.
2018). Additionally, one prior study reported that older individ-
uals without dementia with a greater number of social contacts
and more high-frequency social contacts had greater connec-
tivity in several large-scale networks, including the frontopari-
etal, sensorimotor, visual, and insular networks (Pillemer et al.
2017). However, systematic investigations of the relationship
between functional connectivity in large-scale brain networks
and frequency of engagement in specific lifestyle activities are
lacking. It is also not known whether different types of lifestyle
activities are associated with functional connectivity in distinct
network(s), and if their potential associations are independent
of one another. Additionally, it remains unclear whether rsfMRI
networks that are associated with measures of lifestyle activities

are, in fact, associated with reduced cognitive decline, in the
presence of AD pathology.

The overarching goal of the current study was 2-fold: 1) to
test the hypothesis that greater engagement in cognitive, social,
and physical activities (as measured via self-report) is associated
with greater functional connectivity within selective large-scale
brain networks and 2) to test whether higher connectivity levels
within those networks are associated with reduced cognitive
decline, independently of, or in interaction with, levels of brain
amyloid (one of the primary proteins that accumulates in AD)
and APOE-e4 genotype, the major genetic risk factor for late-
onset AD (Farrer et al. 1997). These associations were tested in a
cohort of 153 cognitively normal older participants who are part
of the ongoing longitudinal BIOCARD study, including 126 with
amyloid imaging.

An auxiliary goal was to determine whether lifestyle activity
engagement was related to the level of connectivity between
functional networks. Whereas connectivity within networks
tends to decrease with increasing age, connectivity between
large-scale networks tends to increase with aging (Betzel et al.
2014; Chan et al. 2014; Varangis et al. 2019; Chong, Ng, et al.
2019b), suggestive of a decrease in functional specialization
with advancing age. To the extent that greater engagement
in specific lifestyle activities has beneficial effects on brain
connectivity, we hypothesized that it would also be associated
with reduced connectivity between large-scale networks, as
measured by the graph-theory-based measures of network
“segregation” and “modularity” (Rubinov and Sporns 2010;
Wig 2017). Furthermore, we hypothesized that greater network
segregation and modularity would be associated with decreased
cognitive decline.

Materials and Methods
Study Design and Participant Selection

The present study reports on data from the ongoing, longitudi-
nal BIOCARD study, which was started in 1995 at the National
Institute of Health (NIH) with the goal of identifying variables
among cognitively normal individuals that could predict the
subsequent development of symptoms of AD. Approximately
75% of the participants had a first degree relative with a history
of dementia of the Alzheimer type, by design. The study was
stopped in 2005 for administrative reasons and re-established at
Johns Hopkins University (JHU) in 2009. At the NIH, study partic-
ipants were administered an annual neuropsychological battery
and MRI scans; cerebrospinal fluid (CSF) samples and blood
specimens were collected every 2 years. Since the study has been
at JHU, participants have received annual clinical and cognitive
assessments and provided blood specimens. In 2015, the bi-
annual collection of MRI and CSF biomarkers was reinitiated,
and amyloid imaging was begun. Details regarding participant
recruitment, clinical evaluation, and cognitive assessments have
been published previously (Albert et al. 2014). The JHU Insti-
tutional Review Board approved this study and all participants
provided written informed consent.

The present report examines data from 153 cognitively nor-
mal participants with rsfMRI, cognitive, and lifestyle activity
data collected at the same study visit (i.e., within 2 days of one
another). This visit is considered as the “baseline” visit for the
purposes of this study. Among these, 126 participants also had a
Positron Emission Tomography (PET) scan using Pittsburgh com-
pound B (PiB) to image amyloid beta (Aβ) pathology (mean time
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between MRI and PET scan acquisition = 3 days, SD = 48). For
these 126 participants, up to 5 years of follow-up cognitive data
is available (mean follow-up time = 3.3 years, SD = 1.2) and was
used to examine the association between the rsfMRI measures,
amyloid PET, and cognitive change. Data from an additional 8
participants were excluded due to excessive motion artifacts
during the rsfMRI scan (see below for additional details). All data
were collected between 2015 and February 2020.

Clinical and Cognitive Assessments

The annual visits at JHU include comprehensive neuropsycho-
logical testing and a clinical evaluation consisting of a phys-
ical and neurological examination, record of medication use,
behavioral and mood assessments, family history of dementia,
history of symptom onset, and a Clinical Dementia Rating (CDR)
with the participant and a collateral source (Hughes et al. 1982;
Morris 1993). Participants included in our analyses were judged
to be cognitively normal, based on a consensus diagnostic review
by the staff of the JHU BIOCARD Clinical Core, which includes
neurologists, neuropsychologists, research nurses, and research
assistants. The diagnostic criteria followed the recommenda-
tions incorporated in the National Institute on Aging and the
Alzheimer’s Association working group reports for the diagnosis
of MCI (Albert et al. 2011) and dementia due to AD (McKhann
et al. 2011). Briefly, this entails the establishment of a syndromic
diagnosis (i.e., cognitively normal, MCI, impaired not MCI, or
dementia) based on three types of information: 1) clinical data
pertaining to the medical, neurological, and psychiatric status
of the individual; 2) reports of changes in cognition by the
individual and by collateral sources, based on the CDR interview;
and 3) decline in cognitive performance, based on review of
longitudinal testing from multiple domains (and comparison
to published norms). The diagnosis of “Impaired not MCI” was
typically given if there was contrasting information from the
CDR interview and the cognitive test scores (i.e., the subject or
collateral source reported concerns about cognitive changes in
daily life, but the cognitive testing did not show changes, or vice
versa). Because participants with a diagnosis of impaired not
MCI (N = 28) do not meet criteria for MCI, they were included
among the group of cognitively normal subjects, consistent
with prior publications (see Albert et al. 2014 for additional
details). Results were the same when these participants were
excluded from analysis (data not shown). The diagnoses were
made blinded to the MRI and PET biomarker measures.

The main cognitive outcome variable was a global cognitive
composite score based on four measures previously identified
as the best combination of cognitive predictors of the time to
progress from normal cognition to clinical symptom onset of
MCI in this cohort (Albert et al. 2014). These measures were 1)
Logical Memory delayed recall (Story A) of the Wechsler Memory
Scale–Revised (Wechsler 1987), 2) Paired Associates immediate
recall of the Wechsler Memory Scale–Revised (Wechsler 1987),
3) Boston Naming (Kaplan et al. 1983), and 4) Digit-Symbol
Substitution from the Wechsler Adult Intelligence Scale–Revised
(Wechsler 1981). The global cognitive composite score was cal-
culated by z-transforming the individual measures (based on
means and SDs from all BIOCARD participants’ first visit at JHU),
and then summing the z-scores for each visit. If one or more
scores were missing for a given visit, the cognitive composite
score was coded as missing for that visit. All participants had
global cognitive composite scores at the time of their rsfMRI and

PET scans and only 21 scores (3.6%) were missing for subsequent
visits.

Lifestyle Activities Assessment

Engagement in physical, cognitive, and social activities was
assessed using the CHAMPS activity questionnaire (Stewart et al.
2001). The CHAMPS measures self-reported frequency and dura-
tion of engagement in 40 activities “during a typical week in the
past month.” It primarily assesses physical activities (28 items)
but also includes some cognitive (N = 6) and social (N = 6) activity
items. The designated physical activity items include both high-
intensity (e.g., jog or run; aerobics; moderate or fast swimming)
and low-intensity activities (e.g., play golf; do light gardening;
walking leisurely for pleasure or exercise), as determined by the
estimated energy expenditure. These were combined into a sin-
gle physical activity measure to capture both exercise and low-
intensity physical activities related to daily life. The remaining
non-physical activities were categorized as either cognitive or
social activities based on previous literature (Aartsen et al. 2002;
Jopp and Hertzog 2010; Carlson et al. 2012; Parisi et al. 2015;
Pettigrew et al. 2019); see Supplementary Materials for addi-
tional details). Physical, cognitive, and social activities were each
quantified based on frequency of engagement (times/week),
reflecting the sum of all relevant item frequencies within an
activity category, to result in three continuous variables. Fre-
quency rather than duration of activity engagement was used
as the primary measure because prior work by our group found
a relationship between the frequency measures and cognitive
trajectories (Pettigrew et al. 2019). Additionally, the frequency
of physical activity engagement was strongly correlated with
the estimated weekly caloric expenditure from physical activ-
ities [r(151) = 0.69, P < 0.0001], calculated as the product of self-
reported duration, intensity (using metabolic equivalent of task
values adjusted for older adults), and participant body weight,
as described in Stewart et al. (2001). This suggests that the
frequency of physical activity engagement measure also encap-
sulates information about the intensity and duration of physical
activities.

The CHAMPS has been given to participants in BIOCARD
since 2015 (Pettigrew et al. 2019). A square-root transforma-
tion was applied to the three CHAMPS variables to correct for
skewness.

Cognitive Reserve Composite Score

A cognitive reserve (CR) composite score was calculated to deter-
mine whether associations between specific lifestyle activities
and functional brain connectivity are independent of lifelong
intellectual attainment, measured by a composite proxy score.
The CR composite score was calculated based on three measures
collected at study entry (between 1995 and 2005): 1) scores from
the National Adult Reading Test (Nelson 1982); 2) scores on the
vocabulary subtest of the WAIS-R (Wechsler 1981); and 3) years of
education. These measures were z-scored and then averaged. As
previously reported, the individual measures were strongly cor-
related and loaded on a single factor in factor analysis (Soldan
et al. 2013).

Vascular Risk Summary Score

A previously validated vascular risk score (Gottesman et al.
2017) was computed by summing five dichotomous vascular
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risk factors (coded as 0 = absent or 1 = recent/remote) obtained
during a medical history interview conducted at the same visit
as the MRI scan: hypertension, hypercholesterolemia, diabetes,
current smoking (i.e., within the last 30 days), and obesity (i.e.,
measured body mass index ≥ 30 kg/m2).

Physical Function Summary Score

Three objective measures of physical function were collected
at the same visit as the MRI scan: 1) time (in s) to complete
a 5-m walk (average of two trials); 2) time (in s) to complete
five repeated chair stands; and 3) grip strength (in kg, average
of left and right hands), measured using a standard hydraulic
hand dynamometer (Baseline® 12-0240). These three measures
were each converted to z-scores and then averaged to generate
a physical function summary score. Two participants used a
walking aid to complete the gait speed test, while all others
walked unassisted.

APOE Genetic Analysis

APOE alleles were determined by restriction endonuclease
digestion of polymerase chain reaction amplified genomic DNA
(performed by Athena Diagnostics, Worcester, MA). APOE ε4
carrier status was dichotomized (1 if an individual had at least
one ε4 allele; 0 otherwise).

Magnetic Resonance Imaging Acquisition
and Preprocessing

MRI scans were obtained on a 3 T Phillips Achieva system.
Resting state BOLD data were collected using an echo-
planar imaging sequence with the following parameters:
number of slices = 48; field of view (FOV) = 212 × 212 mm2;
voxel size = 3.3 × 3.3 × 3.3 mm3; time repetition (TR)/time echo
(TE) = 3000/30 ms; flip angle = 75. The duration of each scan
session was 420 s and comprised of 140 functional volumes.
Participants were instructed not to move, to close their eyes,
and to relax while in the scanner.

The BOLD data underwent standard preprocessing steps
(using SPM and in-house MATLAB scripts), including slice timing
correction, realignment, normalization to Montreal Neurologic
Institute (MNI) 152 volumetric space via magnetization-
prepared rapid gradient echo (MPRAGE) image, spatial smooth-
ing using a Gaussian filter with a full-width half-maximum of
4 mm (Hou et al. 2019). The BOLD image series were detrended
and bandpass-filtered to 0.01–0.1 Hz to retain the low-frequency
fluctuation components.

To reduce the motion effect on functional connectivity, the
filtered BOLD data underwent a modified form of the motion
scrubbing procedure proposed by Power and colleagues (Power
et al. 2012; Power et al. 2014). Motion scrubbing was performed
after temporal filtering (Chan et al. 2014; Yeo et al. 2015; Hou et al.
2019). Specifically, temporal masks were created to flag motion-
contaminated frames so that they could be ignored during sub-
sequent correlation matrix calculations. Motion-contamination
volumes were identified by frame-by-frame displacement (FD,
calculated as the sum of absolute values of the differentials
of the 6 rigid-body head motion parameters). Volumes with
FD ≥ 0.5 mm were flagged (Power et al. 2012; Power et al. 2014).
In addition, the frames acquired immediately prior and imme-
diately after flagged frames were discarded to account for tem-
poral spread of artifactual signal resulting from the temporal

filtering during preprocessing (Chan et al. 2014). After motion
scrubbing, there were 8 participants with <70 frames of remain-
ing data, who were excluded from analysis. The mean num-
ber of volumes per subject after motion scrubbing was 126.4
(SD = 15.0). The mean FD per subject was 0.18 mm (SD = 0.07).
To further ensure that motion during scanning did not influ-
ence the results, we ran sensitivity analyses including mean
FD values (i.e., subject-level motion) as covariates in primary
analyses.

MPRAGE scans were also obtained and used for anatomical
reference, image registration, and brain volume quantification
(TR = 6.8 ms, TE = 3.1 ms, shot interval 3000 ms, flip angle = 8,
FOV = 240 × 256 mm2, 170 slices with 1 × 1 × 1.2 mm3 voxels, and
scan duration = 5 min 59 s). Brain volumes were computed using
MRICloud, an automatic processing tool (Mori et al. 2016; www.
MRICloud.org). Total cerebral cortex volume, corrected for total
intracranial volume (using the ratio method), was used as a
covariate, as described below, to account for potential atrophy.

Construction of Functional Connectivity Networks

The motion scrubbed preprocessed BOLD data were further pro-
cessed to regress out nuisance signals, including global, white
matter, and CSF signals, as well as 6 rigid-body head motion
parameters (which were not temporally filtered (Filippi et al.
2017; Chong, Ng, et al. 2019b; Millar et al. 2020). T1-weighted
MPRAGE images were segmented using SPM, yielding white
matter and CSF masks. The white matter signal and CSF signal
were averaged over the masks. Following nuisance regression,
the BOLD data were parcellated into 114 region-of-interests
(ROIs) estimated in MNI 152 volumetric space, based on the
parcellation by Yeo et al. (2011), which was derived by clustering
regions with similar connectivity profiles using data from 1000
subjects (Yeo et al. 2011). Cross-correlation coefficients were
calculated between each pair of ROIs and converted to z-scores
using a Fisher-z transform, yielding a 114 × 114 matrix of z-
transformed values. To quantify network-wise functional con-
nectivity, the connectivity matrix was reduced from 114 × 114
to 7 × 7 by averaging the z-transformed values belonging to the
same network, as described by Yeo et al. (2011), which resulted
in the following seven networks: frontoparietal control, default
mode, dorsal attention, salience/ventral attention, limbic, visual,
and somatomotor. Additionally, global connectivity within net-
works was calculated as mean connectivity across all seven
networks.

Graph-Theory Measures of Functional Connectivity:
Modularity and Segregation

Using graph theory implemented in the Brain Connectivity Tool-
box (Rubinov and Sporns 2010) and in-house MATLAB scripts,
two measures were computed reflective of the degree of net-
work distinctiveness (or network separation) for each subject:
“modularity” and “segregation.” Both measures were computed
based on the predefined subnetworks from the Yeo parcellation
(e.g., Betzel et al. 2014).

“Modularity” quantifies the degree to which a network can be
decomposed into mutually separate subnetworks (or modules)
that are internally integrated, yet segregated from one another
(Newman 2006; Betzel et al. 2014). Modularity was computed
using the algorithm by Rubinov and Sporns (2011), which is
based on both positively and negatively weighted connections

www.MRICloud.org
www.MRICloud.org
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of the unthresholded correlation matrix. In this algorithm, pos-
itively weighted connections represent similar activation pat-
terns between pairs of nodes in the same module, while neg-
atively weighted connections represent activation patterns of
nodes in distinct modules, or antiphase coupling. It has been
argued that one advantage of this algorithm over others that
are based on thresholded connection weights is that it is not
associated with loss of information that accompanies thresh-
olding or binarization of correlation matrices, which is often
done arbitrarily and may require the examination of different
thresholds. This algorithm takes into account the fact that neg-
ative correlations have a different role in network organziation
than positive correlations and incorporates neurophysiological
anticorrelations (Chang and Glover 2009; Betzel et al. 2014),
although the interpretation of negative correlations remains
controversial (Murphy et al. 2009; Chai et al. 2012). Of note, the
modularity index primarily depends on the relative difference
between weight magnitudes and secondarily on the sign of the
weights (Rubinov and Sporns 2011).

“Segregation” was computed as the difference between
within-network connections and between-network connec-
tions, relative to the within-network connections (Wig 2017).
Higher modularity and segregation values indicate greater
network separation. Preliminary analyses indicated that
network modularity and segregation were highly correlated in
this sample (r(151) = 0.98, P < 0.0001); therefore, results below
are only reported for modularity but were highly similar for
segregation.

PiB PET Image Acquisition and Processing

A subset of 126 participants underwent dynamic PET imaging
using the 11C-labeled Pittsburgh compound B (PiB) tracer on an
Advance PET scanner (GE Healthcare) to assess cortical amyloid
burden. Data were acquired immediately following the IV bolus
injection. Distribution volume ratio images were calculated in
the native space of each PET image using a simplified reference
tissue model with cerebellar gray matter as the reference region
(Zhou et al. 2003). Anatomical regions were defined on the
structural MRI of each participant using MRICloud and mapped
to the native space of each PET image. Mean cortical DVR (cDVR)
was calculated by averaging cDVR values across cortical regions,
as described previously (Bilgel et al. 2018; Walker et al. 2020).
Participants with a mean cDVR value of >1.06 were considered
as PiB positive. This threshold was derived in a previous study
using a 2-class Gaussian mixture model fitted to cDVR data
(Bilgel et al. 2016).

Statistical Analysis

Group differences in demographic variables at the time of the
MRI scan were assessed by t-test or Wilcoxon rank sum test
for continuous variables, as appropriate, or chi-square tests for
dichotomous variables.

Cross-Sectional Analyses of Baseline Lifestyle Activity Engagement
and Resting-State Functional Connectivity
Linear regressions were performed to test if frequency of
engagement in lifestyle activities was associated with 1)
functional connectivity within five of the networks most
relevant to cognitive function: default-mode, control, dorsal
attention, salience, and limbic networks, 2) global connectivity
within networks, and 3) the graph theory measure of modularity.

Separate models were run for each of the seven rsfMRI mea-
sures, which served as the outcome variables. The three activity
variables were simultaneously entered in each model to assess
their independent associations with the rsfMRI measures. The
P-values for the activity measures were corrected for multiple
comparisons using the false discovery rate (FDR, seven tests,
using a threshold of P = 0.05) (Benjamini and Hochberg 1995),
and adjusted P-values are shown, unless otherwise indicated.
All models covaried baseline age, sex, and years of education.

A series of sensitivity analyses were also run. First, to account
for the potentially confounding effect of brain atrophy on func-
tional connectivity, total cerebral cortex volume was included as
an additional covariate in each model. Second, to determine if
associations between the lifestyle activity variables and rsfMRI
measures were independent of level of CR, models were rerun
with the CR-composite score as a predictor instead of years
of education (which is part of the CR-composite score). Third,
given that functional connectivity has also been associated with
vascular risk factors (Spielberg et al. 2017; Rashid et al. 2019;
Carnevale et al. 2020; Donofry et al. 2020) and physical fitness
(Voss et al. 2016; Talukdar et al. 2018), we examined whether
associations between functional connectivity and frequency of
engagement in lifestyle activities are independent of vascular
risk factors and of physical function.

Functional Connectivity and Longitudinal Change in Cognition:
Relationship to APOE4 Genetic Status and PET Amyloid
For those rsMRI measures that showed statistically significant
associations with one or more lifestyle activity measures, we
tested if the rsfMRI measures were also associated with the
prospective rate of change in cognitive performance over time
and whether this association was independent of APOE4 geno-
type and level of brain amyloid (measured by PET). To do so,
we used general mixed regression models with linear effect of
time and a random intercept for each participant. For these
models, all continuous variables, except for time, were stan-
dardized to have a mean = 0 and SD = 1; binary variables were
not transformed. The longitudinal global cognitive composite
score was the outcome variable, using scores obtained at the
baseline MRI scan and all subsequent scores. In Longitudinal
Model 1, the predictors were age at baseline MRI, sex, years of
education, the rsfMRI measure, the APOE4 genotype indicator,
the rsfMRI × APOE4 interaction, time, and all interactions (i.e.,
elementwise products) of each predictor with time. In these
models, the rsfMRI × time interaction tests whether the rsfMRI
variable modifies the rate of change in the cognitive composite
score over time. Additionally, the three-way interaction between
the rsfMRI measure, APOE4 genotype, and time was included
to examine if the association between functional connectivity
and cognitive trajectories differs for APOE4 carriers and non-
carriers. If the three-way interaction was not significant, models
were rerun excluding this term, as well as the rsfMRI × APOE4
interaction term. Longitudinal Model 2 was identical to Model
1, except that the PiB-positive indicator was included instead of
the APOE4 indicator.

Results
Table 1 shows participants’ characteristics at baseline rsfMRI
scan, separately for all participants in the analysis and for
the subgroup with PiB PET scans. The functional connectivity
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Table 1 Participant characteristics at baseline MRI scan

Variable Participants in analysis (N = 153) Participants in analysis with PiB PET scan
(N = 126)

Age in years, mean (SD) 69.3 (8.2) 68.5 (8.5)
Sex, females (%) 63.4% 63.5%
Race, White (%) 98.4% 97.6%
APOE ε4 carriers (%) 32.0% 32.5%
Education, mean years (SD) 17.3 (2.2) 17.4 (2.3)
MMSE, mean (SD) 29.3 (0.9) 29.2 (1.0)
Cognitive Composite, mean (SD) 2.0 (2.1) 2.1 (2.4)
Paired Associates Immediate, mean (SD) 20.8 (2.4) 20.8 (2.8)
Logical Memory Delayed, mean (SD) 16.8 (3.4) 17.3 (3.5)
Boston Naming, mean (SD) 29.1 (1.2) 29.1 (1.3)
Digit Symbol Substitution, mean (SD) 57.2 (11.8) 56.8 (13.4)
CR Composite, mean (SD) 0.2 (0.7) 0.2 (0.7)
Vascular Risk Summary Score, mean (SD) 1.3 (1.1) 1.2 (1.0)
Vascular Risk Summary Score ≥ 1 (%) 72.8% 72.1%
Vascular Risk Summary Score ≥ 2 (%) 39.1% 35.2%
Physical Function Composite, mean (SD) 0.1 (0.7) 0.1 (0.7)

measures did not differ by APOE4 genetic status (all P > 0.09,
unadjusted, covarying age, sex, and education).

Cross-Sectional Results: Lifestyle Activity Engagement
and Functional Connectivity

Results from the linear regression analyses demonstrated
that the frequency of engagement in cognitive activities was
associated with greater connectivity in the dorsal attention
network (estimate = 0.017, SE = 0.005, P = 0.006) and greater
modularity (estimate = 0.007, SE = 0.003, P = 0.038). Addition-
ally, higher frequency of engagement in physical activi-
ties was associated with greater connectivity within the
default mode (estimate = 0.013, SE = 0.005, P = 0.013), limbic
(estimate = 0.038, SE = 0.014, P = 0.015), and control networks
(estimate = 0.010, SE = 0.004, P = 0.020), as well as with greater
global within-network connectivity (estimate = 0.018, SE = 0.004,
P < 0.0005), and greater modularity (estimate = 0.007, SE = 0.003,
P = 0.043). There were no significant associations between social
activity engagement for any of the functional connectivity
measures (all P > 0.18 unadjusted). In these models, older
participants had lower connectivity and modularity (all
P < 0.05 unadjusted), except for the limbic network, which
showed no age-associations (P = 0.9, data not shown). Years
of education were not associated with any connectivity
measure. The pattern of results was the same when only one
lifestyle activity variable was entered in each model (data not
shown).

Sensitivity analyses showed that the results were also the
same when total cerebral cortex volume, the CR composite
score, or APOE4 genetic status were included as additional
covariates in separate models. There were no interactions
between any of the activity variables and APOE4 genotype or the
PiB-positive indicator (all P > 0.1), suggesting that associations
between activity variables and the rsfMRI measures were not
modulated by APOE4 genetic status or amyloid positivity.
The results from fully adjusted models (i.e., simultaneously
including age, sex, the CR composite score, APOE4-status, and
total cerebral cortex volume) are shown in Table 2 and Figure 1
and were also the same. The CR composite score was not
associated with connectivity in any network (all P > 0.2). Results

were the same in the subsample with PiB PET imaging (see
Supplementary Table 1). Overall, the amount of variance in the
rsfMRI measures explained by the individual lifestyle variables
ranged from 4% to 12%, after accounting for covariates.

With the addition of the physical function and vascular risk
summary scores to the fully adjusted models (see Table 2), asso-
ciations continued to be significant between most of the activ-
ity variables and the connectivity measures. The association
between cognitive activity engagement and connectivity in the
dorsal attention network remained significant, as did the rela-
tionships between physical activity engagement and connec-
tivity in the default-mode, limbic, control networks, and global
connectivity and modularity (all P < 0.05); however, the associa-
tion between cognitive activity and modularity was attenuated
(P = 0.08 unadjusted). To further explore the potential impact of
physical function and vascular risk on the rsfMRI measures,
the fully adjusted models were rerun, including only the sig-
nificant lifestyle activity variables. Higher vascular risk scores
were associated with lower connectivity in the default-mode
network and lower modularity (both P < 0.05 unadjusted) and
higher connectivity in the limbic network (P = 0.015 unadjusted),
while greater physical function scores were associated with
greater global within-network connectivity and greater mod-
ularity (P’s < 0.05 unadjusted), see Supplementary Table 2 for
full model results. The pattern of results remained the same
when subject-level motion (mean FD values) was included as an
additional covariate (data not shown).

Longitudinal Results: Functional Connectivity, APOE4
Genetic Status, Amyloid Positivity, and Cognitive
Change

The results from Longitudinal Models 1 and 2 are shown in
Table 3. The main effect of time was not significant in any model
(all P > 0.2), suggesting that, on average, cognitive trajectories
were flat for the group as a whole, over the follow-up period of
∼3 years. However, significant rsfMRI × time interactions indi-
cated that cognitive trajectories exhibited increases over this
time period for individuals with high global connectivity and
modularity, and high connectivity in the default-mode, dorsal
attention, and limbic networks (P ≤ 0.05 for all rsfMRI × time

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab187#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab187#supplementary-data
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Table 2 Linear regression results for associations between lifestyle activity variables and functional connectivity measures in the full sample
(N = 153)

Functional connectivity variable Cognitive Activities Social Activities Physical Activities
Estimate (SE) Estimate (SE) Estimate (SE)

Default-Mode 0.010 (0.006) 0.002 (0.007) 0.016 (0.006)∗
Limbic 0.000 (0.017) −0.006 (0.018) 0.034 (0.017)∗
Dorsal Attention 0.021 (0.007)∗∗ 0.006 (0.007) 0.006 (0.007)
Salience 0.003 (0.006) −0.004 (0.006) 0.003 (0.006)
Control 0.004 (0.005) 0.012 (0.005) 0.011 (0.005)∗
Global Connectivity 0.003 (0.005) 0.004 (0.005) 0.019 (0.004)∗∗∗
Modularity 0.010 (0.004)∗ 0.002 (0.005) 0.008 (0.003) #

Note: Cognitive, social, and physical activity variables were simultaneously entered in each model, which was also adjusted for age, sex, CR-composite score, total
cerebral cortex volume, and APOE4 genotype. FDR-corrected P-values (7 tests) are reported as follows: #P < 0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.005.

Figure 1. Brain regions within the dorsal attention network (A), limbic network (B), default-mode network (C), and frontoparietal control network (D) are shown in
the left panel. The right panel shows scatterplots of the partial correlation between residual functional connectivity within each network (y-axis) and frequency of

engagement in cognitive (A) or physical (B, C, and D) activities (x-axis). A scatterplot of the partial correlation between residual global connectivity within networks and
frequency of engagement in physical activities is shown in (E). Also shown are scatterplots of the partial correlation between network modularity and frequency of
engagement in cognitive (F) and physical activities (G). All scatterplots are adjusted for age, sex, CR-composite score, APOE-e4 genetic status, and total cerebral cortex
volume.



5644 Cerebral Cortex, 2021, Vol. 31, No. 12

Table 3 Results from linear mixed regression models assessing rsfMRI connectivity metrics in relationship to longitudinal cognitive change

Longitudinal Model 1: rsfMRI connectivity
and APOE4 status

Longitudinal Model 2: rsfMRI connectivity
and PiB positive status

Estimate SE P-value Estimate SE P-value

Default-mode network
time 0.006 0.029 0.847 time −0.005 0.029 0.876
rsfMRI −0.043 0.061 0.477 rsfMRI −0.037 0.060 0.535
rsfMRI × time 0.057 0.019 0.003 rsfMRI × time 0.058 0.019 0.003
APOE4 0.121 0.168 0.475 Amyloid 0.012 0.176 0.945
APOE4 × time −0.094 0.033 0.006 Amyloid × time −0.053 0.036 0.147
Limbic network
time 0.005 0.030 0.861 time 0.002 0.030 0.957
rsfMRI −0.015 0.071 0.833 rsfMRI −0.025 0.070 0.724
rsfMRI × time 0.039 0.018 0.031 rsfMRI × time 0.042 0.018 0.019
APOE4 0.109 0.171 0.525 Amyloid 0.019 0.178 0.913
APOE4 × time −0.071 0.035 0.044 Amyloid × time −0.062 0.037 0.102
Dorsal Attention Network
time −0.002 0.030 0.949 time −0.010 0.030 0.731
rsfMRI 0.084 0.061 0.167 rsfMRI 0.098 0.060 0.103
rsfMRI × time 0.042 0.019 0.032 rsfMRI × time 0.038 0.020 0.054
APOE4 0.105 0.168 0.532 Amyloid −0.012 0.175 0.946
APOE4 × time −0.091 0.034 0.01 Amyloid × time −0.065 0.038 0.09
Control Network
time 0.002 0.030 0.952 time −0.006 0.030 0.837
rsfMRI 0.039 0.073 0.594 rsfMRI −0.006 0.066 0.930
rsfMRI × time 0.017 0.018 0.337 rsfMRI × time 0.022 0.019 0.237
APOE4 0.126 0.167 0.453 Amyloid 0.015 0.177 0.932
APOE4 × time −0.085 0.035 0.016 Amyloid × time −0.053 0.038 0.164
Network Modularity
time 0.010 0.029 0.736 time 0.003 0.029 0.910
rsfMRI 0.084 0.083 0.315 rsfMRI 0.124 0.083 0.137
rsfMRI × time 0.054 0.017 0.002 rsfMRI × time 0.056 0.017 0.002
APOE4 0.090 0.170 0.599 Amyloid −0.033 0.178 0.855
APOE4 × time −0.098 0.033 0.004 Amyloid × time −0.071 0.037 0.054
Global Network Connectivity
time −0.004 0.027 0.897 time −0.002 0.028 0.944
rsfMRI × APOE × time 0.095 0.038 0.014 — — — —
rsfMRI × APOE −0.148 0.175 0.397 rsfMRI 0.013 0.060 0.830
rsfMRI 0.015 0.064 0.819 rsfMRI 0.013 0.060 0.830
rsfMRI × time 0.041 0.023 0.075 rsfMRI × time 0.075 0.020 <0.0001
APOE4 0.115 0.169 0.499 Amyloid 0.010 0.176 0.954
APOE4 × time −0.075 0.032 0.020 Amyloid × time −0.074 0.036 0.043

Note. All models are adjusted for age, sex, education, and their interactions with time. All continuous variables, except time, are standardized with
mean = 0, SD = 1.

interactions) and decreases among those with low connectivity
values. Connectivity metrics were not related to baseline level
of performance. There was no association between connectiv-
ity in the control network and level or change in cognitive
performance.

Additionally, Longitudinal Model 1 showed that there was
a greater decline in the cognitive composite score over time
among APOE4 carriers compared with noncarriers (P < 0.05 for
all APOE4 × time interactions). APOE4 was not associated with
baseline level of cognitive performance (all P > 0.4). With the
exception of global connectivity, the three-way interactions
between the rsfMRI measures, APOE4 genotype, and time were
not significant (all P > 0.11), suggesting that APOE4 genotype
and the rsfMRI measures were independently associated with
change in the cognitive composite score. These results are
illustrated in Figure 2 (for global connectivity and modularity)

and Supplementary Figure 1 (for the individual networks). For
the global connectivity measure, the three-way interaction was
significant (estimate = 0.01, SE = 0.04, P = 0.014), suggesting that
the negative association between APOE4 genotype and cognitive
change was attenuated among individuals with greater global
connectivity (see Fig. 2).

In Longitudinal Model 2, there were no significant three-
way interactions between any rsfMRI measure, PiB-positivity,
and time (all P > 0.1), suggesting that the rsfMRI measures are
associated with cognitive change independent of amyloid bur-
den. PiB-positive status tended to be associated with greater
declines in cognitive trajectories (see Fig. 2, though the PiB ×
time interaction did not reach significance in all models, see
Table 3). Results were similar when continuous cDVR values
were used instead of the dichotomous PiB-positive indicator
(data not shown).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab187#supplementary-data
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Figure 2. Shown are estimates from linear mixed-effects models predicting longitudinal cognitive composite scores over time among individuals classified into four
groups, based on their rsfMRI connectivity at baseline and APOE-e4 genetic status (A) or PiB-positive status (B). The estimates are adjusted for baseline age, sex,
education, and their interactions with time. Individuals with high rsfMRI values (i.e., above the median, solid lines) showed practice effects over time, on average,

while individuals with low rsfMRI values (i.e., below the median, dotted lines) showed a decline in cognitive composite scores, on average. APOE-e4 carriers and PiB-
positive individuals (red lines) tended trajectories with steeper declines than APOE-e4 non-carriers and PiB-negative individuals (blue lines), respectively. See Table 3
for results.

Discussion
The current study provides the first comprehensive examina-
tion of lifestyle activity engagement and rsfMRI connectivity.
There are several notable findings. First, we found that greater
self-reported engagement in cognitive and physical activities
was associated with greater functional connectivity in distinct
large-scale brain networks. Specifically, cognitive activities were
related to the dorsal attention network, and physical activities
were related to the default-mode, limbic, and frontoparietal con-
trol networks, as well as to greater global within-network con-
nectivity. Additionally, both greater cognitive and physical activ-
ity engagement were independently associated with greater
network modularity. These associations were independent of
APOE4 genotype and amyloid burden, and were largely inde-
pendent of global brain atrophy, vascular risk, physical func-
tion, and level of CR. Second, higher connectivity in the dor-
sal attention, default-mode, and limbic networks, as well as
greater global within-network connectivity and network modu-
larity were associated with reduced cognitive decline, indepen-
dent of APOE4 genotype and brain amyloid load.

Taken together with prior evidence that older individuals
have reduced connectivity within networks and a decrease in
network modularity, these findings suggest that greater fre-
quency of engagement in cognitively and physically stimulat-
ing activities may counteract the negative impact of age on
functional connectivity within and between large-scale brain
networks. Furthermore, the beneficial effects of cognitive and
physical activity levels on brain function and cognitive perfor-
mance appeared to be largely independent of amyloid pathology
and the main genetic risk factor for late onset AD. Though future
studies are needed to confirm that greater engagement in cogni-
tive or physical activities are indeed associated with smaller lon-
gitudinal declines in within-network connectivity and network
modularity, these findings support the view that changes in
functional brain connectivity may be one mechanism by which
lifestyle activity engagement influences cognitive impairment
and decline. Studies using mediation modeling will be critical for
evaluating this hypothesis, as well as potential mechanisms that
link lifestyle activities to functional connectivity and cognitive
change.
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The view that lifestyle variables may exert their protective
effects on cognitive decline by influencing functional connec-
tivity is consistent with prior cross-sectional studies that have
linked proxy measures of CR (including years of education,
occupational attainment, and verbal intelligence) to measures
of rsfMRI connectivity among older adults. For example, among
individuals with and without dementia, more years of educa-
tion have been associated with greater functional connectivity
in frontoparietal control regions (Perry et al. 2017; Serra et al.
2017; Franzmeier, Caballero, et al. 2017a; Franzmeier,Duering,
et al. 2017b; Neitzel et al. 2019), as well as in regions that are
part of the default-mode network (Bozzali et al. 2015; Perry
et al. 2017), dorsal attention and somatomotor networks (Perry
et al. 2017), and limbic regions (Arenaza-Urquijo et al. 2013).
However, the specific regions or networks involved have varied
across studies, likely reflecting differences in the regions exam-
ined across studies, variability in analytic approaches and net-
work parcellation, and differences in levels of neuropathology
or neurodegeneration among study participants. Additionally,
the diagnostic status of participants (e.g., cognitively normal
vs. MCI vs. dementia) may influence the results, as suggested
by some studies (Bozzali et al. 2015; Serra et al. 2017). To our
knowledge, there are no longitudinal studies that have exam-
ined whether those rsfMRI variables linked to measures of CR
are also associated with cognitive decline or risk of clinical
progression.

There are several potential mechanisms by which physical
and cognitive activity engagement may influence functional
connectivity. For example, studies in both animals and humans
have shown that voluntary exercise enhances neurotrophic fac-
tors that decline with age and are important for synaptic plas-
ticity, synaptogenesis, neurogenesis, and angiogenesis, includ-
ing brain-derived neurotrophic factor (BDNF), insulin-derived
growth factor-1 (IGF-1), and vascular endothelial growth factor
(for a review, see Voss, Vivar, et al. 2013b). A few studies have
suggested links between these growth factors and measures
of functional connectivity (Voss, Erickson, et al. 2013a; Mueller
et al. 2016; Woelfer et al. 2020). Thus, physical activity may
attenuate age-related declines in neurotrophic factors, which
may strengthen synaptic connections within existing networks
and protect against disconnection and dedifferentiation. Addi-
tionally, physical activities may strengthen processes related to
neurovascular coupling that influence the BOLD response (Liu
2013), such as cerebral blood flow and cerebrovascular reactivity
(Gauthier et al. 2015; Kleinloog et al. 2019; Zlatar et al. 2019;
Kaufman et al. 2021).

Frequent engagement in cognitive activities may strengthen
connectivity within functional brain networks by increasing
synchronization of brain regions that are frequently co-engaged
during cognitive task performance via improved long-term
synapse potentiation and synaptic plasticity. In support of
this possibility and consistent with our results, a recent
systematic review concluded that cognitive training among
older adults consistently increases functional connectivity
within brain networks and appears to increase segregation
between networks (van Balkom et al. 2020). Additionally,
results from small-scale cognitive training studies suggest that
cognitive activity may enhance cerebral blood flow (Chapman
et al. 2016) and increase levels of BDNF (Pressler et al. 2015;
Rahe et al. 2015; Ledreux et al. 2019), similarly to what has been
observed for physical activities.

Interestingly, the current study did not find any relationships
between years of education or the CR composite score with

functional connectivity, as has been reported in a number of
earlier studies. This finding may be related to the fact that
many prior studies focused on connectivity between specific
regions (e.g., Arenaza-Urquijo et al. 2013; Bozzali et al. 2015;
Franzmeier,Caballero, et al. 2017a; Franzmeier,Duering, et al.
2017b; Neitzel et al. 2019) rather than examining large-scale
brain networks, as was done in this study. It is also possible that
associations with CR are more evident among participants with
cognitive impairment, as many prior studies included partici-
pants with MCI, along with cognitively normal participants, or
did not specifically screen for MCI at study entry (e.g., Bozzali
et al. 2015; Marques et al. 2016; Perry et al. 2017; Serra et al.
2017; Franzmeier, Caballero, et al. 2017a; Franzmeier,Duering,
et al. 2017b; Weiler et al. 2018; Lee et al. 2019; Neitzel et al.
2019). Notably, in this study, the associations between lifestyle
activities and rsfMRI connectivity were independent of the CR
composite score, suggesting that variables reflective of intel-
lectual achievement and engagement in lifestyle activities may
have independent, and possibly additive, effects on functional
connectivity.

We did not find any associations between the frequency
of engagement in social activities and measures of functional
brain network connectivity. Research on this topic is very sparse,
though one prior report suggested that a higher quality and
quantity of social networks (measured by number of social
contacts) was related to greater functional connectivity in left
frontoparietal and other regions (Pillemer et al. 2017). Given that
the assessment of social activity engagement in the present
study was relatively limited, it is possible that findings would
differ when using more comprehensive assessments of social
activities.

It is noteworthy, as illustrated in Figure 2, that among indi-
viduals with high within-network connectivity values and high
network modularity (i.e., above the median, as indicated by
the solid lines), cognitive performance tended to improve over
time, potentially reflecting practice effects that are commonly
observed with repeated cognitive assessments. By comparison,
among participants with low connectivity values (i.e., dotted
lines), cognitive performance tended to decline. This suggests
that these types of connectivity measures may be useful in iden-
tifying cognitively normal older individuals at risk of cognitive
decline, particularly if used in combination with measures of
amyloid or AD genetic risk.

Our results are consistent with, and expand on, the limited
number of prior studies that have examined the relationship
between rsfMRI connectivity and longitudinal clinical and cog-
nitive outcomes. For example, Buckley et al. (2017) reported that
older individuals with normal cognition and higher functional
connectivity in the default-mode, salience, and control net-
works at baseline demonstrated reduced decline of the preclin-
ical Alzheimer cognitive composite score (Buckley et al. 2017).
Similarly, higher baseline connectivity within the default-mode
network has been associated with reduced risk of progression
to MCI, independent of PET amyloid levels (Rabin et al. 2020).
Furthermore, a study with longitudinal rsfMRI demonstrated
that participants who progressed to MCI had a greater decrease
in global within-network connectivity compared with individ-
uals who remained cognitively normal over time (Wisch et al.
2020). The specific networks or network properties associated
with cognitive trajectories may be dependent on the cognitive
domains assessed. For example, exploratory analyses of the
present data using domain-specific cognitive composite scores
suggested that episodic memory performance is more strongly
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linked to the default-mode and limbic networks, whereas exec-
utive functions were related to the salience/ventral attention
network (see Supplementary Materials). These results are con-
sistent with a longitudinal study specifically linking change
in connectivity within the default-mode network to episodic
memory change, but not executive function change (Staffaroni
et al. 2018).

To our knowledge, the association between whole-brain net-
work modularity or segregation and longitudinal changes in cog-
nitive performance has not been evaluated previously. However,
a recent study reported that a greater decrease in segregation
of the frontoparietal control network was weakly associated
with a greater decrease in processing speed among older adults
without dementia over the course of 4 years (Malagurski et al.
2020). Additionally, cross-sectional studies have provided evi-
dence that higher network segregation and modularity (i.e., high
connectivity within networks and low connectivity between
networks) are associated with better cognitive performance. For
example, studies among older adults without dementia reported
associations between higher network segregation and better
episodic memory performance (Chan et al. 2014; Varangis et al.
2019). Similarly, studies across the spectrum of AD found that
higher modularity was related to lower AD symptom sever-
ity, as measured by the CDR scale (Brier et al. 2014) and to
higher global cognitive scores in the presence of amyloid and
tau pathology (Ewers et al. 2021). More broadly, results using
neural network modeling suggest that across the adult age span,
greater brain modularity is associated with better cognitive
performance across a variety of tasks because a more modular
network structure facilitates processing within local, specialized
networks that are integrated by so-called “connector hubs,”
that is, brain regions that connect specialized networks to one
another (Bertolero et al. 2018). Additional longitudinal biomarker
studies are needed to more clearly delineate how functional
connectivity both within and between networks changes in rela-
tionship to AD biomarkers and how these connectivity changes
relate to cognitive performance.

An interesting secondary finding in the current study is
the association between higher vascular risk summary scores
and lower connectivity in the default-mode network, lower net-
work modularity, and higher connectivity in the limbic network
(Supplementary Table 2). Consistent with the present results,
decreases in default-mode network connectivity have previ-
ously been reported among individuals with higher vascular
risk burden, including total cholesterol, diastolic blood pressure,
Type 2 diabetes, and obesity (Musen et al. 2012; Macpherson et al.
2017; Syan et al. 2019; Ding et al. 2020; Kobe et al. 2021), and
decreased network modularity has been linked to obesity (Chao
et al. 2018). Other studies among middle-aged and older partic-
ipants without dementia have found both positive and negative
associations between vascular risk factors and functional con-
nectivity in different brain regions (Li et al. 2015; Chao et al. 2018;
Rashid et al. 2019; Zonneveld et al. 2019; Carnevale et al. 2020;
Ding et al. 2020). The relationship between vascular risk factors
and functional connectivity can likely be attributed to the fact
that the BOLD signal reflects the hemodynamic response to
neural activity (Bright et al. 2020) and is dependent on vascular
(e.g., blood flow, blood volume, cerebrovascular reactivity) and
metabolic processes (e.g., cerebral oxygen consumption) that
are altered among individuals with a greater burden of vascular
risk (e.g., Dai et al. 2008; Hajjar et al. 2010; King et al. 2018;
Chau et al. 2020; Clark et al. 2020; Jiang et al. 2020; Kepes et al.
2021). However, it remains unclear whether specific vascular risk

factors are preferentially associated with specific networks or
network parameters and how these associations change with
age or in the presence of AD pathology (Chong, Jang, et al.
2019a).

The current findings should be considered within the context
of several limitations. First, study participants were highly edu-
cated, primarily White, and have a strong family history of AD-
dementia, which limits generalizability of the findings. Second,
the lifestyle activities were measured using self-report. There-
fore, future studies using more objective measures of activity
engagement, such as actigraphy or real-time tracking via elec-
tronic apps, are needed to replicate and extend the present find-
ing. Of note, greater lifestyle activity engagement, as measured
by the CHAMPS questionnaire, was shown to be associated with
less cognitive decline prior to the onset of MCI (Pettigrew et al.
2019), suggesting that the questionnaire is sensitive to clini-
cally meaningful individual differences. Third, many lifestyle
activities, including those assessed by the CHAMPS question-
naire, are not purely cognitive, social, or physical but tap into
at least two of these domains (e.g., dancing, or playing cards
with other people). Consequently, the impact of engagement
in these activities on measures of rsfMRI connectivity may at
least partially reflect the combined effect of two or more activ-
ity domains. Studies using other questionnaires and methods
of activity assessment are, therefore, needed to confirm the
present pattern of results. Fourth, although the associations
between functional connectivity and the rate of change in cog-
nition were very robust, the amount of variance in functional
connectivity explained by the lifestyle activity variables was
relatively small, suggesting a limited impact of lifestyle activity
engagement. As suggested by the exploratory findings in this
study, other modifiable lifestyle factors, including those related
to vascular risk and physical function, may also modify aspects
of functional connectivity, independently of activity engage-
ment. Thus, the combined effects of various modifiable lifestyle
factors may have a more substantial impact on brain functional
connectivity and ultimately on cognitive change across the adult
lifespan.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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