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Abstract

Objective: Hyperuricemia is closely associated with insulin resistance syndrome (and its many 

cardiometabolic sequalae); however, whether they are causally related has long been debated. We 

used bidirectional Mendelian randomization (MR) to investigate the potential causal nature and 

direction between insulin resistance and hyperuricemia, along with gout.

Methods: We used genome-wide association data (N=288,649 for SU, N=763,813 for gout, 

N=153,525 for fasting insulin) to select genetic instruments for two-sample MR analyses, using 

multiple MR methods to address potential pleiotropic associations. We then used individual­
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level, electronic-medical-record-linked data from UK Biobank (N=360,453 persons of European 

ancestry) to replicate our analyses via single-sample MR.

Results: Genetically determined SU, whether inferred from a polygenic score or strong 

individual loci, was not associated with fasting insulin concentrations. In contrast, genetically 

determined fasting insulin concentrations were positively associated with SU (0.37 mg/dL per log­

unit increase in fasting insulin [95% CI, 0.15 to 0.58], P=0.001). This persisted in outlier-corrected 

(0.56 mg/dL [0.45 to 0.67]) and multivariable MR analyses conditioned on BMI (0.69 mg/dL 

[0.53 to 0.85]); all P<0.001. Polygenic scores for fasting insulin were also positively associated 

with SU among individuals in UK Biobank (P<0.001). Findings for gout were consistent with 

those for SU bidirectionally.

Conclusions: These findings provide evidence to clarify core questions about the close 

association between hyperuricemia and insulin resistance syndrome: hyperinsulinemia leads to 

hyperuricemia, but not the other way around. Reducing insulin resistance could lower SU and 

gout risk, whereas lowering SU (e.g., allopurinol) is unlikely to mitigate insulin resistance and its 

cardiovascular-metabolic sequalae.

INTRODUCTION

The incidence, prevalence, and disability burden of gout have risen substantially over 

the past decades, especially in the United States. (1) Gout and hyperuricemia, its causal 

precursor, frequently coexist with metabolic syndrome (2) and are associated with an 

elevated burden of cardiovascular disease and type 2 diabetes. (3) But despite the close 

association between hyperuricemia and the insulin resistance syndrome, (4,5) the nature 

and direction of any causal relations are unclear. Observational studies have identified 

hyperuricemia as an independent risk factor for insulin resistance and prediabetes, (6) but 

these findings may represent a case of reverse causality or residual confounding. Conversely, 

some human physiologic experiments (4,7) suggest that induced hyperinsulinemia can raise 

serum urate concentrations (SU), but its casual impact at the population level remains 

unknown.

Clarifying the reason and direction behind the close association between insulin resistance 

and hyperuricemia could inform the treatment and prevention of these often-overlapping 

problems. This endeavor can be accomplished using Mendelian randomization (MR), 

which employs genetic variants as instrumental variables for exposures, allowing one 

to obtain unconfounded estimates of potential causal effects. Leveraging newly released 

genome-wide association studies (GWAS), which identified substantially more variants 

associated with SU and fasting insulin than their predecessors, we performed a bidirectional 

Mendelian randomization analysis to investigate potential causal relationships between 

insulin resistance and hyperuricemia, with gout itself as a secondary outcome.

MATERIALS AND METHODS

Study Design

We performed both one- and two-sample MR analyses. First, we conducted a series of 

univariable two-sample analyses to examine the relationship between SU and fasting insulin, 
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a surrogate measure of insulin resistance. (8) We looked for causal relationships in both 

directions. We also examined gout in place of SU to ensure consistency of our findings. 

Given the known correlations between fasting insulin, SU, and body mass index (BMI), we 

then performed multivariable analyses (9) using BMI-associated genetic variants to partition 

the total effects of fasting insulin on SU from its direct effects, independent of BMI. Finally, 

we replicated our findings in a single-sample context, using individual-level data from 

the UK Biobank resource (UKBB) to assess the relationship between a polygenic score 

for fasting insulin concentrations and our two outcomes: SU and gout. The UK Biobank 

obtained ethical approval from the North West - Haydock Research Ethics Committee 

(16/NW/0274); all participants provided written informed consent.

Data Source and Study Population

Two-Sample MR—For our two-sample analyses, we used summary-level data from the 

largest available GWAS. For urate and gout, we used summary statistics from the Chronic 

Kidney Disease Genetics (CKDGen) consortium, consisting of many European-ancestry 

cohorts. (10) The summary statistics were derived from 288,649 participants for SU and 

from 13,179 cases and 750,634 controls for gout. For fasting insulin, we used the Meta­

Analysis of Glucose- and Insulin-related traits Consortium (MAGIC), (11) which provided 

summary statistics for fasting insulin, adjusted for measured BMI, based on 153,525 

European-ancestry participants without diabetes, as insulin concentrations are affected by 

diabetes or anti-diabetes medications. Finally, for our multivariable two-sample MR analysis 

conditioning on BMI, we used BMI association statistics from a recent meta-analysis of the 

Genetic Investigation of ANthropometric Traits (GIANT) consortium and the UKBB, which 

featured 681,275 European-ancestry participants in total. (12)

One-Sample MR—For our one-sample analysis, we used individual-level data from the 

UKBB (application 27892), a prospective cohort of approximately 500,000 individuals 

aged 40 to 69 years recruited across the United Kingdom. Genotypic and phenotypic data 

are available as well as biomarker measurements such as SU. Genotyping in this cohort 

was performed using either the Affymetrix UK BiLEVE Axiom array or the Affymetrix 

UK Biobank Axiom array. Quality control and imputation were performed centrally by 

researchers affiliated with the UKBB itself. We limited our analyses to people of European 

ancestry due to the fact our polygenic score for fasting insulin was based on data from 

European populations. To do so, we first used principal component analysis to identify 

genetically European individuals, and then, from this population, removed individuals who 

did not self-report as White or “do not know/prefer not to answer”, following prior UKBB 

analyses. (13) We also excluded related individuals. Relatedness was determined as per 

Bycroft et al. (14) wherein individuals were considered related if they were third-degree 

relatives or closer (kinship coefficient greater than or equal to 1/2(9/2)), using kinship 

coefficients provided by the UK Biobank. In total, our final one-sample analysis involved 

378,065 individuals.

Outcomes

Two-Sample MR—The primary outcomes for the bi-directional two-sample analyses 

were age- and sex-adjusted concentrations of SU (mg/dL), as defined by the CKDGen 
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Consortium, (10) and fasting insulin (log pmol/L), as defined by MAGIC. (11,15) SU 

concentrations averaged 5.1 mg/dL (± standard deviation (SD) 1.5) among European­

ancestry members of the Atherosclerosis Risk in Communities (ARIC) cohort, one of the 

largest European-ancestry population-based cohorts in the CKDGen Consortium. Mean 

(±SD) fasting insulin concentrations were 1.90±1.7 and 1.82±1.7 log pmol/L, in men and 

women, respectively, in one of the largest European-ancestry cohorts in MAGIC.

One-Sample MR—Since fasting insulin was not measured in the UKBB cohort, the 

one-sample, individual-level MR analysis was unidirectional, with SU (mg/dL) serving 

as the primary outcome. Gout was examined as a secondary outcome in both the one- 

and two-sample analyses. For the one-sample analysis in the UKBB, gout was defined 

based on either patient report (20% of cases) or diagnoses recorded during primary care 

encounters (39%) or inpatient hospitalizations (12%), or a combination thereof (30%). This 

case definition builds upon one concluded to have high precision for detecting association in 

genetic epidemiological studies of gout (16) and employed in other published studies of gout 

in the UKBB. (17,18)

Genetic Instruments (Two-Sample and One-Sample MR)

We identified 123 single nucleotide polymorphism (SNPs) for SU (total R2 of 7.2%), (10) 

and 55 SNPs for gout (total R2 of 1.4%), (10) combining these to produce polygenic 

instruments for each exposure. We also separately examined the effects of SNPs from 

two highly-influential SU genes, SLC2A9 (R2=2.4% alone) and ABCG2 (R2=0.7% 

alone), which are strongly associated with SU concentrations (β=0.33 mg/dL and β=0.25 

mg/dL, respectively) and gout risk (OR=1.51 [1.47 to 1.56] and OR=2.04 [1.96 to 2.12], 

respectively), with little to no evidence of pleiotropy (e.g., associations with related 

cardiometabolic traits). (19) For fasting insulin, we identified 95 SNPs (total R2 of 1%), 

(11) and for BMI, we identified 941 (total R2 of 6%). (12) We subsequently pruned these 

SNPs for linkage disequilibrium at a threshold of R2 < 0.001, leaving 121 independent SNPs 

for SU (F-statistic=182), 54 for gout (F-statistic=198), 83 for fasting insulin (F-statistic=25), 

and 925 for BMI (F-statistic=47) (Table S1). The F-statistic is a measure of the strength of 

association between these genetic instruments and the exposure; (20) values > 10 indicate 

the instrument is sufficiently strong with low potential for weak instrument bias, (21) which 

would otherwise drive a two-sample MR estimate toward the null.

Statistical Analysis

Primary Two-Sample MR—We first assessed the associations between genetically 

determined SU concentrations/gout risk and concentrations of fasting insulin using 

multiplicative random effects inverse variance weighted (IVW) meta-analysis methods; 

Wald ratios were generated for the single-SNP estimates. (22) In the opposite direction, 

we assessed the association between genetically determined fasting insulin concentrations 

on changes in SU and the odds of gout. Our primary analysis used BMI-adjusted betas as 

exclusively reported in the latest MAGIC GWAS (n=95 SNPs), (11) whereas our secondary 

analysis used unadjusted betas from an earlier MAGIC GWAS (n=12 SNPs), (15) where 

both BMI-unadjusted and BMI-adjusted summary statistics were available (Table S2).
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Multivariable Two-Sample MR—We performed multivariable MR analyses to isolate the 

direct effects of fasting insulin, independent of (or conditional on) BMI, which is known to 

impact both fasting insulin concentrations (15) and SU. (23,24) Following the procedures 

for two-sample multivariable MR published by Sanderson et al., (9) these models included 

variants significantly associated with either fasting insulin or BMI.

Sensitivity MR Analysis for Pleiotropy—We assessed the presence of horizontal 

pleiotropy using the MR-Egger intercept test, (25) wherein the intercept represents the 

average pleiotropic effect. An intercept term that is significantly different from zero 

indicates the presence of unbalanced (directional) pleiotropy, which can bias the IVW 

estimate. (25) Along with our main (IVW) effect estimates, we generated additional 

estimates shown to be robust to the presence of horizontal pleiotropy. These included 

univariable (25) and multivariable (26) MR Egger and univariable weighted median- (27) 

and mode-based estimates. (28) We conducted leave-one-out analyses, systematically re­

calculating the main IVW estimate after removing one variant at a time to visually inspect 

for influential variants, and re-generated all estimates after removing outliers identified by 

the MR-PRESSO (Pleiotropy RESidual Sum and Outlier) test. (29)

Two-Sample MR Analysis: Power Calculations—Post-hoc power calculations for 

the two-sample analysis were performed using the mRnd power calculator (30) based on 

the proportion of variance explained by the instruments, the numbers of participants in 

the CKDGen and MAGIC studies, and observed epidemiologic associations and their 95% 

confidence intervals (31) (Table S3).

One-Sample MR—Polygenic scores were constructed for the UKBB participants from the 

same fasting insulin SNPs used in the two-sample analysis. To calculate the scores, we used 

PLINK version 1.9 (www.cog-genomics.org/plink/1.9). Each SNP was weighted according 

to its effect size for fasting insulin in the latest MAGIC GWAS, as fasting insulin values 

were not measured in the UKBB cohort. The polygenic scores were normalised, setting 

the mean to zero and the standard deviation to one. Participants with urate concentrations 

four or more standard deviations from the mean were excluded. For the analysis of urate 

concentration as a function of the fasting insulin score, linear regression models were used. 

For gout, a binary outcome, we used logistic regression. Models were adjusted for age, 

sex, ten principal components to control for population stratification, and the genotyping 

platform used. We also controlled for BMI in some models.

Software—The one- and two-sample analyses were conducted using R software (R Project 

for Statistical Computing, Vienna, Austria, http://www.R-project.org); the R-packages 

TwoSampleMR, MendelianRandomization, and MVMR; and the MR-Base portal. (32)

RESULTS

Effects of genetically determined serum urate concentration and gout liability on fasting 
insulin: two-sample MR

In the main IVW analysis, neither genetically determined concentrations of SU (β: 0.0038 

log pmol/L fasting insulin per 1 mg/dL increase in SU [95% confidence interval (CI): 
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−0.0390 to 0.0466], p=0.86), nor genetically determined gout liability (β: −0.0026 log 

pmol/L [95% CI: −0.0235 to 0.0183], p=0.81) had significant effects on fasting insulin 

(Figure 1a and 1b). These findings were consistent across all MR estimates (Figure 1a 

and 1b) and did not materially change after removal of the outliers identified by the 

MR-PRESSO test (Table S4). Furthermore, while the SNPs mapping to the SLC2A9 and 

ABCG2 genes were strongly associated with SU and odds of gout, neither was associated 

with changes in fasting insulin (Figure 1a and 1b). Estimates were similar when using the 

BMI-unadjusted summary statistics for fasting insulin (Table S5). Furthermore, genetically 

determined SU was not associated with BMI, and thus, no multivariable MR analysis was 

performed.

Effects of genetically determined fasting insulin concentrations on serum urate: two­
sample MR

In the opposite direction, genetically determined concentrations of fasting insulin (adjusted 

for BMI) were positively associated with SU (Figure 2a). In the main IVW analysis, a 

one-unit (one log pmol/L) increase in fasting insulin was associated with a 0.37 mg/dL 

increase in SU ([95% CI: 0.15 to 0.58], p=0.001). This translates to a 0.63 mg/dL increase 

in SU per one SD (1.7 log pmol/L) increase in fasting insulin. No pleiotropy was detected 

(MR-Egger intercept=0.008, p=0.09). All other MR estimates were significant and were 

numerically larger than the main IVW estimate except for the MR-Egger regression estimate 

(Figure 2a).

Nine outlier SNPs were identified by the MR-PRESSO test (Table S4). As shown in the 

leave-one-out plots in Figure S2a and S2b and scatter plots in Figure S4a and S4b, the most 

influential SNP was rs1260326, mapped to the GCKR gene. Upon the removal of all nine 

outliers, the IVW estimate strengthened (β: 0.56 mg/dL, [0.45 to 0.67], p<0.001), including 

the MR-Egger regression estimate (β: 0.54 mg/dL, [0.22 to 0.87], p=0.002) (Figure 2a) and 

there remained little evidence of pleiotropy (MR-Egger intercept <0.001, p=0.90).

As displayed in Figure 2a, the multivariable IVW estimates for fasting insulin, representing 

its direct effect on SU conditioned on genetically determined BMI, were larger than their 

univariable counterparts, reaching 0.52 mg/dL ([0.35 to 0.69]) per log pmol/L of fasting 

insulin, which translates to 0.88 mg/dL per SD increase in fasting insulin, including outliers, 

and 0.69 mg/dL ([0.53 to 0.85]), or 1.18 mg/dL per SD of fasting insulin, excluding 

outliers (both p<0.001). The same pattern was observed for the univariable and multivariable 

MR-Egger estimates. The univariable and multivariable estimates of the effect of genetically 

determined BMI on SU were virtually identical, with SU increases of 0.32 and 0.31 mg/dL 

per one SD increase in BMI, respectively, (both p<0.001).

Effects of genetically determined fasting insulin concentrations on serum urate: one­
sample MR

These findings were replicated at the individual level in the UKBB using polygenic 

risk scores for fasting insulin (Figure 3). SU concentrations among all eligible UKBB 

participants (n=360,453) averaged 5.19 mg/dL with standard deviation 1.34; 26% had 

hyperuricemia (SU ≥ 6 mg/dL) (Table S6). Consistent with the two-sample MR, we found 
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a one SD increase in the polygenic risk score corresponded to a significant increase in SU 

(p=6.3×10−33, Table 1). The effect strengthened after removing the outliers identified in the 

two-sample MR and grew even larger with additional adjustment for measured BMI. When 

we excluded ULT users, our effect estimates remained the same to two decimal places.

Effects of genetically determined fasting insulin concentrations on risk of gout: one- and 
two-sample MR

The estimated effects of genetically determined fasting insulin on gout risk followed a 

similar pattern to SU. In the two-sample MR, the odds ratio (OR) for gout (per log pmol/L 

insulin) increased from 1.49 [95% CI: 0.89 to 2.51], p=0.13 in the initial analysis to 2.07 

[1.50 to 2.86], p<0.001 when four outliers were excluded (Figure 2b). As with SU, the 

multivariable OR was larger than the univariable, reaching 2.63 ([1.69 to 4.10], p<0.001). 

In the one-sample analysis (n=12,920), we observed a similar result, namely that there was 

a statistically significant positive association between the polygenic score for fasting insulin 

and odds ratio for gout (p=9.5×10−4, see Table 1) which increased when we adjusted for 

BMI and excluded outlier SNPs. Our definition of gout captured 93% of participants on 

urate-lowering therapy. Limiting our definition of gout to self-reported cases only did not 

change the significance of our results, or the direction of effect.

DISCUSSION

This first bidirectional Mendelian randomization analysis of SU and fasting insulin provides 

evidence that genetically elevated fasting insulin, a measure of insulin resistance and 

precursor to cardiometabolic diseases, is causally associated with hyperuricemia, as well as 

the clinical endpoint of gout. Effects were consistent across summary-level and individual­

level analyses and strengthened upon the removal of outliers and controlling for BMI. 

Conversely, our data do not support a causal effect of SU on fasting insulin concentrations.

Our null findings on the effects of SU are consistent with an earlier, individual-level 

MR analysis of multiple population-based cohorts (e.g., ARIC, Framingham) within the 

CHARGE consortium (33) wherein an eight-SNP genetic risk score for SU was not 

associated with fasting insulin concentrations. These findings also agree with prior MR 

analyses which similarly found no causal effects between SU and clinical cardiometabolic 

endpoints, (19) including coronary heart disease (34,35) and type 2 diabetes. (19) 

Furthermore, the two pivotal individual genes (SLC2A9 and ABCG2) accounting for 34% 

and 10%, respectively, of the total proportion of variance in SU concentration explained by 

the polygenic instrument for SU, (10) were not associated with fasting insulin concentrations 

in this MR analysis, nor the prior CHARGE consortium analysis. (33) Thus, a causal role of 

SU on insulin resistance seems highly unlikely.

Conversely, in the opposite direction, fasting insulin concentrations were positively 

associated with SU and this relationship grew larger when outliers were removed. The 

most prominent outlier was rs1260326, mapped to the GCKR gene, which affects multiple 

cardiometabolic pathways. (19,33) This SNP was significantly associated with fasting 

insulin concentrations, but is also a likely causal variant of SU, (10) making a strong case for 

its removal on the basis of horizontal pleiotropy. The unidirectional causal effects observed 
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for fasting insulin in our study are consistent with another causal indicator reported by 

the CKDGen consortium (i.e., genetic causal proportion = −0.49, p=2.80×10−2) (10) that 

suggested fasting insulin is partially genetically causal to urate concentrations. Our findings 

also corroborate previous physiologic experiments demonstrating insulin’s anti-uricosuric 

property, with exogenous insulin reducing the renal excretion of urate (7,36) in both 

healthy and hypertensive individuals. Insulin may increase renal urate reabsorption via 

stimulation of GLUT9 (encoded by SLC2A9) and other renal urate transporters involved 

in urate reabsorption. (37) Insulin resistance manifests early in the progression to type 2 

diabetes, (38) and the early pathophysiologic changes could raise SU concentrations before 

dysglycemia becomes clinically evident, a theory supported by the Whitehall II cohort study, 

(39) wherein participants who eventually developed type 2 diabetes already had lower levels 

of insulin sensitivity at baseline (up to 13 years prior to diagnosis) than those who did not 

develop diabetes.

Whilst obesity and insulin resistance are positively correlated, we provide evidence that 

a portion of fasting insulin’s effects on SU are independent of genetically determined 

BMI, with multivariable effect estimates that were larger than the univariable. At the 

same time, our results suggest there is at least some portion of the SU-raising effect of 

obesity independent of the insulin pathway. Negative confounding by BMI is consistent 

with prior reports from MAGIC investigators, (15,40) and the phenomenon of lipodystrophic 

insulin resistance, (41) wherein a lack (or dysfunction) of white adipose tissue, especially 

subcutaneous gluteofemoral fat, leads to insulin resistance and metabolic syndrome in non­

obese or lean individuals. (42) Subtle lipodystrophy is believed to be a major contributor to 

metabolic syndrome at the population level. (42)

Related to this, a potential caveat of our analysis is that the SNP-insulin association 

estimates from the MAGIC summary statistics were adjusted for age, sex, and BMI 

(as measured in study participants who underwent genotyping), while the corresponding 

estimates for SU were not adjusted for BMI. MAGIC investigators opted to adjust for BMI 

as this had increased the number of insulin-associated variants detected in their previous 

GWAS, (15) including some insulin-raising alleles associated with lower BMI. While this 

adjustment can help isolate SNPs impacting insulin resistance independently of BMI, it can 

also raise concerns about collider bias (43) (e.g., inducing a spurious association between 

the SNP and fasting insulin). However, MAGIC investigators evaluated this possibility and 

found no evidence of collider bias in the vast majority of SNPs tested. (11,41) Moreover, 

there were no meaningful differences in the effect estimates we generated using the BMI­

unadjusted and BMI-adjusted fasting insulin summary statistics from the earlier MAGIC 

GWAS (Table S2). Our examining the impact of fasting insulin on SU with a multivariable 

MR model that included BMI-associated SNPs (the potential collider) (9) should further 

alleviate these concerns.

Our novel findings explain the core reason and direction underpinning the close association 

between hyperuricemia and insulin resistance syndrome, with implications for the 

prevention and management of both conditions and their cardiometabolic sequala. Large­

scale pharmaceutical trials of drugs that substantially lowered SU have not, to date, reported 

cardiovascular-metabolic benefits, such as weight change, lipid profile, blood pressure, or 
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renal function. (44,45) Building upon this, our data suggest interventions targeting SU alone 

(e.g., urate lowering drugs) are unlikely to lower insulin concentrations and, in turn, the risk 

of insulin resistance or metabolic syndrome and its cardiovascular-metabolic consequences. 

Instead, our data suggest lifestyle modifications specifically shown to improve insulin 

concentrations and insulin resistance (e.g., a ‘green’ Mediterranean diet emphasising 

consumption of plant proteins over red/processed meats and other animal proteins, (46)) 

would lower SU, in addition to providing other cardiometabolic risk benefits. Indeed, a 

higher-protein, low-carbohydrate diet was associated with reductions in BMI (median 2.7 

kg/m2) and SU (median 1.6 mg/dL), and improvements in dyslipidemia, in a pilot open-label 

trial of gout patients, (47) while in a recent analysis of the Dietary Intervention Randomized 

Controlled Trial (DIRECT), three healthy weight-loss diets significantly reduced SU, 

particularly among those with baseline hyperuricemia (by 1.9 to 2.4 mg/dL over 6 months, 

the maximum weight-loss phase, and by 1.1 to 1.4 mg/dL over 24 months). (48) This 

reduction was independently driven by reductions in plasma insulin concentrations in 

addition to weight reduction. (48)

Our analysis has some limitations. While the genetic association data were sourced from 

large, multi-national disease consortia, they pertained mainly to European ancestry/white 

British populations. This served to minimise confounding by differences in population 

structure, (21) but our findings should be confirmed in other ancestral populations. Since 

insulin concentrations were not measured in the UKBB cohort, we could not replicate our 

analysis of the effect of genetically determined SU on fasting insulin in the single-sample 

setting. However, none of the estimates from the two-sample analysis suggested a causal 

role for these exposures. With an R2 of 1.3%, the 80-SNP instrument for fasting insulin 

explained a comparatively low proportion of the phenotypic variance (e.g., overall variance 

in measured fasting insulin concentrations) than did the instruments for SU (R2=7.1%) and 

BMI (R2=6%). This was evident in the one-sample MR, wherein the polygenic risk score 

for fasting insulin was positively correlated with measured SU concentrations (Figure 3), 

although the absolute difference between the extreme deciles of the risk score was small 

(~0.10 mg/dL). Of note, since fasting insulin concentrations were not measured in the 

UKBB cohort, different methods were required for the one- and two-sample analyses, and 

the resultant effect estimates cannot be directly compared. The estimates generated by the 

two-sample MR represent the change in concentrations of SU (and odds of gout) associated 

with a one-unit change in genetically determined concentrations of fasting insulin itself, 

while the estimates generated by the one-sample MR represent the changes associated with 

a one-SD change in the polygenic score for fasting insulin, which is less sensitive. As such, 

the findings of our one-sample analysis served to reinforce the presence of causal effects of 

fasting insulin observed in our two-sample analysis, rather than quantify the magnitude of 

these effects. (49) Importantly, the variants are a proxy for the genetic predisposition towards 

raised fasting insulin concentrations, while environmental factors (50) appear to make a 

larger contribution to the total phenotypic variance in fasting insulin. BMI, for example, 

accounted for one-third of the variance in fasting insulin concentrations in one MAGIC 

cohort. (15)

While weak instrument bias would drive the two-sample MR estimates towards the null (in 

the absence of substantial overlap between samples), we observed significant causal effects 
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for fasting insulin, but not SU, whose instrument was stronger. Indeed, we had >99% power 

to detect a causal effect of SU on fasting insulin concentrations matching that observed 

in a representative sample of US adults (Table S4). (31) We sourced data from recently 

published, mainly population-based genome-wide association studies, and the findings of 

the two-sample univariable and multivariable analyses were generally consistent for SU and 

gout, and robust to sensitivity analyses, especially after outliers were removed. Moreover, 

the positive associations between genetically instrumented fasting insulin concentrations and 

SU were replicated at the individual level, before and after adjustment for measured BMI.

In conclusion, this study provides robust evidence that insulin resistance has a positive 

causal effect on serum urate concentrations, with this relationship operating only in one 

direction. Interventions to reduce insulin resistance may lower SU concentrations and gout 

risk, conferring additional metabolic health benefits.
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Figure 1. Causal effect estimates for genetically determined concentration of serum urate (per 1 
mg/dL) (A) and odds of gout (B) on BMI-adjusted concentrations of fasting insulin (log pmol/L), 
ascertained in individuals without diabetes, two-sample analysis.
IVW=inverse probability weighted, SNP=single nucleotide polymorphism.
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Figure 2. Causal effect estimates for genetically determined concentration of fasting insulin (per 
log pmol/L) on concentrations of serum urate (mg/dL) (A) and odds of gout (B), ascertained in 
individuals without diabetes, two-sample analysis.
SNP=single nucleotide polymorphism. One of the candidate risk SNPs for fasting insulin 

was removed during harmonisation due to ambiguity in the strand direction, leaving 80 in 

the final analysis.
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Figure 3. Serum urate concentration (mean) by decile of the polygenic score for fasting insulin in 
the UK Biobank.
The 71-SNP polygenic score, which excluded outliers, was used to generate this figure.
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