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Abstract

Purpose: Artificial intelligence diagnosis and triage of large vessel occlusion may quicken 

clinical response for a subset of time-sensitive acute ischemic stroke patients, improving 

outcomes. Differences in architectural elements within data-driven convolutional neural network 

(CNN) models impact performance. Foreknowledge of effective model architectural elements 

for domain-specific problems can narrow the search for candidate models and inform strategic 

model design and adaptation to optimize performance on available data. Here, we study CNN 

architectures with a range of learnable parameters and which span inclusion of architectural 

elements, such as parallel processing branches and residual connections with varying methods of 

recombining residual information.

Methods: We compare five CNNs: ResNet-50, DenseNet-121, EfficientNet-B0, PhiNet, and an 

Inception module-based network, on a computed tomography angiography large vessel occlusion 

detection task. The models were trained and preliminarily evaluated with 10-fold cross-validation 

on preprocessed scans (n=240). An ablation study was performed on PhiNet due to superior 

cross-validated test performance across accuracy, precision, recall, specificity, and F1 score. The 
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final evaluation of all models was performed on a withheld external validation set (n=60) and these 

predictions were subsequently calibrated with sigmoid curves.

Results: Uncalibrated results on the withheld external validation set show that DenseNet-121 

had the best average performance on accuracy, precision, recall, specificity, and F1 score. After 

calibration DenseNet-121 maintained superior performance on all metrics except recall.

Conclusions: The number of learnable parameters in our five models and best-ablated PhiNet 

directly related to cross-validated test performance—the smaller the model the better. However, 

this pattern did not hold when looking at generalization on the withheld external validation set. 

DenseNet-121 generalized the best; we posit this was due to its heavy use of residual connections 

utilizing concatenation, which causes feature maps from earlier layers to be used deeper in the 

network, while aiding in gradient flow and regularization.
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Introduction

Large vessel occlusion (LVO) results in 90% of deaths among patients with acute ischemic 

stroke (AIS), while only occurring in a third of AIS cases1. Endovascular thrombectomy is 

effective for treating LVO, with LVO being resistant to thrombolytic drugs, an alternative 

form of treatment2. However, endovascular thrombectomy is not ubiquitously available, 

and requires transfer of patients to Level One Stroke Centers. Time is critical with AIS, 

with quicker treatment leading to better patient outcomes. Moreover, there exists a time 

window of 24 hours in which endovascular thrombectomy can be performed2, thus rapid 

identification of patients with LVO is imperative.

Tools from the field of artificial intelligence may facilitate the expedient identification of 

LVO3. CNNs have become the de facto standard for developing image learning approaches. 

Yet, the design and implementation of CNNs does not follow a single framework; CNN 

architectures can be composed from a pool of well-known and effective building blocks 

and connection techniques. Better understanding of how different architectural elements 

influence CNN performance for LVO detection on medical images could aid in designing 

improved CNNs for faster LVO detection and improved patient outcomes.

To provide context, the CNN Inception architecture saw heavy use after being introduced in 

2014 and achieving state of the art performance with its use of the Inception module, a block 

of parallel processing branches joined through feature concatenation4. The following year, 

another CNN named ResNet came onto the scene, winning the ILSVRC classification task5. 

Designed as a response to the degradation problem, in which neural networks eventually 

decrease in performance as they get deeper, ResNet made use of skip / residual connections 

which combine residual information through addition, alleviating the degradation problem5. 

Shortly after, DenseNet was introduced and showed that high frequency of skip connections 

utilizing concatenation, rather than addition, to recombine residual information allowed 

for features produced by earlier layers to be reconsidered deeper in the network6. This 
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innovation improved gradient flow and helped with regularization, making learning on small 

datasets easier and overfitting less likely6. As parameter-efficient neural networks for mobile 

devices became increasingly desired, as well as effective techniques for scaling models, 

EfficientNet-B0 was published as a baseline efficient CNN and was used to demonstrate 

the effectiveness of compound scaling7. CNNs are often adapted for domain specific 

applications; our model overview concludes with PhiNet, a small CNN designed to classify 

MRI contrasts8.

Artificial intelligence has been applied to LVO detection in several studies. A 3D Siamese 

CNN named DeepSymNet compared hemispheres of the brain and made use of a series 

of Inception modules to perform binary classification of LVO and determine size of 

ischemic cores in computed tomography angiography (CTA)9, 10. Other work showed binary 

classification of LVO was possible on multiphase CTA, utilizing a pretrained DenseNet-121, 

which had better initial results than ResNet-50, InceptionV3, and other CNNs: Xception and 

VGG16 on a dataset of 540 images11. In the realm of commercial software, RAPID for LVO 

detection was shown to be effective on CTA in single center12 and multicenter studies13. 

Other commercial software from Viz.ai makes use of a CNN to identify LVO on CTA14, 15. 

Use in clinical settings has shown that Viz.ai software can improve triage of patients with 

LVO, including increasing speed of patient transfer16, 17. With respect to preprocessing, 

maximum intensity projections (MIPs) have been used to facilitate detection of emergent 

LVO in CTA18, 19 with one study selecting a pre-trained and adapted ResNet-50 from a 

grouping of other pre-trained networks: InceptionV3, DenseNet-121 and NASNet for use on 

a dataset of over 1200 images19.

Neural networks have also been shown useful for improving CT image quality. Low-dose 

CT uses a smaller X-ray radiation dose, but results in noisier scans than traditional 

CT. With generative adversarial network (GAN) methods, noise can be reduced while 

maintaining important structural features20. Additionally, GAN super-resolution can be used 

to reconstruct higher resolution CT from lower resolution CT scans21. For medical image 

segmentation algorithms, unsupervised methods have been developed to handle domain 

adaptation between CT and magnetic resonance (MR) images when using a multi-modality 

approach22, as well as, purely on MR images, modern segmentation with contrastive 

learning utilizing a voxel-wise technique23.

Despite previous work using CNNs in LVO detection, as well as comparisons of models in 

specific medical imaging domain tasks 24, 25, 26, to the best of our knowledge there have 

been no studies explicitly examining how CNN architectural features affect performance 

of LVO binary classification on CTA. We are solely concerned with a detailed model 

comparison for our classification task of interest and on CTA data, rather than general 

image classification, or other medical imaging domain-specific classification tasks. In this 

work, we propose an analysis of various contemporary CNN architectures: ResNet-50, 

DenseNet-121, EfficientNet-B0, the current PhiNet, and a small CNN built around a single 

Inception module. We examine the performance differences between these models on our 

small dataset with a focus on how the number of learnable parameters and the type / 

frequency of skip connections affect model performance.
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Materials and Methods

Data

Our dataset comprises 300 CTA scans of stroke-alerted patients at Vanderbilt University 

Medical Center between 2017 and 2019. These data were acquired in de-identified form 

under Institutional Review Board approval. The data are balanced with 50% of the scans 

depicting anterior circulation LVO, with all scans being selected from 677 stroke-alerted 

patients. In this paper LVO will be referring to occlusion in three locations each on both 

right and left sides, for a total of six artery groups. We include the first segment of the 

middle cerebral artery (M1), the proximal second segment of the middle cerebral artery 

(M2), and the internal carotid artery (ICA). The LVO positive scans are from subjects with 

the following characteristics: 56% male, 44% female; median age 65, interquartile range 

55 to 76; 13% Black, 82% White, and 5% Other/Unknown. The LVO negative scans come 

from: 47% male, 53% female; with median age 66 and interquartile range 54 to 76; 17% 

Black, 79% White, and 3% Other/Unknown. Preprocessing of the scans began with head 

cropping and registration to a non-contrast computed tomography scan (NCCT) selected as 

template from our data. Additionally, a skull removal technique was applied to every NCCT 

and each mask was used on its corresponding CTA27. Subsequent manual Hounsfield unit 

window width and level adjustments were performed followed by the creation of 40 mm 

axial MIPs to optimally depict anterior circulation.

Models

We compare five CNN architectures: ResNet-50, DenseNet-121, EfficientNet-B0, a current 

PhiNet, and an Inception module-based network, which consists of the first four layers of the 

Inception network4, fed into an Inception module, followed by global average pooling and 

a fully-connected layer. In terms of kernel size, blocks, etc., the architectures were left as 

default implementations, or in the case of the Inception module-based network, the utilized 

layers were from a default implementation. Note that the PhiNet architecture used is the 

current iteration from the model designer’s public code repository28. We focus on evaluating 

the performance of these models with respect to the number of learnable parameters and 

types and amount of skip connections (Figure 1).

Cross-Validation & Threshold Moving

This procedure was identical for every model. The models were trained on a computer 

running Ubuntu 18.04.5 LTS and equipped with an NVIDIA GeForce GTX 1080 Ti graphics 

card. We performed 10-fold cross-validation over 240 of our 300 images (60 were withheld 

for external validation). Within the cross-validation, the splits for each fold specified 172 

images for training, 44 images for validation, and 24 images for test. The splits did not 

specify balanced classes. To promote reproducibility, the images and splits seen by each 

model for a given fold were the same. The models trained on the entire MIP for each 

image, without using patches. Additionally, all models were trained with the same set of 

hyperparameters which were empirically chosen from an initial run of PhiNet. Each model 

used Adam as the optimizer, a learning rate of 1×10−4, batch size of eight, and was trained 

for at most 1000 epochs. Early stopping was used as regularization and was set to trigger 

after 200 epochs in which the validation accuracy did not improve by more than 1×10−8, 
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which we use as the definition of convergence in this work. The model weights from the 

epoch with the best validation accuracy during training were selected for evaluation. To 

determine a suitable threshold for each model, the train, validation and test set predictions 

were aggregated over the 10 folds from cross-validation. Thresholded metrics (accuracy, 

precision, recall, specificity, and F1 score) were computed at every threshold from zero to 

one in increments of 1×10−3. The best threshold was selected where the standard deviation 

of the five metrics was the lowest.

Ablation Study

We proceeded to perform an ablation study on the best performing model on the cross­

validation test sets. Every ablated model underwent identical training and threshold 

optimization as previously described. This study is explained further in the results section.

External Validation & Calibration

Each of the ten instances for each model were run on our balanced and withheld external 

validation set of 60 images. We call predictions from our trained models uncalibrated. To 

better calibrate the uncalibrated predictions, we use sigmoids of the form:

pi = 1
1 + e− axi + b

Here pi is the calibrated prediction, xi is a model instance’s uncalibrated prediction for an 

image and the parameters a and b are learned through gradient descent. Each instance 

of every model from cross-validation had its own sigmoid fit using its validation set 

predictions from cross-validation as input with regularization tuned on the cross-validation 

test predictions. The ith instance of each model then had its uniquely fit sigmoid used to 

calibrate its uncalibrated predictions on the withheld external validation set.

Results

Ablation Study

PhiNet was found to perform best on each of the five metrics for the cross-validation 

test sets. The base architecture consists of three main parallel processing branches. We 

examined six PhiNets in which we removed these main branches: three iterations consisted 

of each main branch isolated and three consisted of a combination of two of these main 

branches. Of these modifications, we found that a two-branch PhiNet containing the 

activated convolutional branch and pooling branch had better performance. Slight ablations 

were continuously performed on these branches. In total, 20 ablated models were created. 

The ablated PhiNet with best cross-validated performance is considered in following results.

Training and Detection Time

As previously stated, each cross-validation fold was split into a train, validation, and test 

partition. A comparison of training loss and validation accuracy during cross-validation is 

shown in Figure 2. Validation accuracy during training was used as criteria for convergence. 

Additionally, a comparison of training time and detecting time can be seen in Table 1.
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Ensemble Predictions by Artery Group

We look to results on the withheld external validation set to examine the performance of the 

models on LVO-positive images from six main artery groups and on LVO-negative images. 

Figure 3 shows accuracy of ensemble predictions using majority voting for each group. 

Using this ensemble prediction method, DenseNet-121 and EfficientNet-B0 perform equally 

and best on the withheld external validation set.

Mean Metrics and Calibration

To look more closely at average model performance, we consider mean metrics instead 

of ensemble predictions. These results are shown over the cross-validation test sets, the 

withheld external validation set, and the withheld external validation set with calibrated 

predictions (Table 2). Further, we wish to know if there are any significant differences 

among the performances for our group of models. For each model and on a given metric, 

the performance on every fold was aggregated into a vector for that model on that metric. 

This was done separately for the set of metrics: accuracy, precision, recall, specificity, and 

F1 score. The Friedman test was performed over the collection of vectors for every model 

for a given metric. This process was performed separately for the cross-validation test, 

withheld external validation, and calibrated withheld external validation sets. The Bonferroni 

correction was applied and statistically significant metric columns are denoted in Table 2. 

Additionally, assessment of model calibration was performed using the integrated calibration 

index (ICI), a weighted numeric calibration metric that considers prediction distribution29. 

The ICI is reported on the external validation set predictions before and after the sigmoid 

calibration method was applied (Table 2).

Discussion

Cross-Validation Test Performance: Five Starting Models

PhiNet outperformed every starting model on accuracy, precision, recall, specificity, and F1 

score (Table 2). We noticed a general trend over these thresholded metrics that corresponds 

to the number of learnable parameters in these models. Fewer learnable parameters in a 

model led to better average performance on the cross-validation test sets. This trend exactly 

applies to accuracy, precision, and specificity where model performance ranking from best 

to worst directly corresponds to sorting the models from smallest to largest. For recall 

and F1 score the trend approximately applies—there are slight exceptions with ResNet-50 

performing better on recall and EfficientNet-B0 performing better on the F1 score than the 

general trend.

Cross-Validation Test Performance: Ablated PhiNet

When the cross-validation test performance of the best-ablated PhiNet is included, this 

trend of smaller models performing better holds (Table 2). This ablated PhiNet has notably 

fewer learnable parameters than PhiNet, with only 475 compared to PhiNet’s 19,262. The 

ablated PhiNet performs better than all the other models across accuracy, precision, recall, 

specificity and F1 score.
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Training & Detection

When doing a rough split of the models into two groups: smaller (Inception module-based 

network, PhiNet, best-ablated PhiNet) and larger (ResNet-50, DenseNet-121, EfficientNet­

B0), we can see in Figure 2 that the smaller models were not able to achieve as great of a 

reduction in training loss as the larger models. Additionally, we can see in Table 1 that the 

smaller models were much faster for training and detection in terms of seconds/step, when 

compared with the larger models.

External Validation Performance and External Validation Calibration

For the ensemble predictions, DenseNet-121 and EfficientNet-B0 both perform equally and 

best. However, when solely looking at binary classification of LVO and choosing mean 

performance of the ten instances of each model instead of ensemble predictions by majority 

voting, we can extract more detailed performance information. The pattern of smaller 

models performing better disappears on the withheld external validation set. DenseNet-121, 

the model with the second largest number of learnable parameters comes out as definitively 

the strongest model, performing better than all other models, including EfficientNet-B0 and 

the ablated PhiNet, on the withheld external validation set. This implies that DenseNet-121 

had superior generalization.

The success of DenseNet-121 is likely due to its heavy use of skip connections that 

combine residual information using concatenation. While other models in our grouping 

utilize concatenation to combine parallel processing branches, DenseNet-121 is the only 

model to use concatenation to rejoin skip connections that directly connect previous layer 

outputs as extra inputs deeper in the network. Additionally, DenseNet-121 uses notably more 

skip connections than any of our other models (Figure 1). After calibration of the external 

validation predictions, DenseNet-121 still performs best on all metrics except for recall. 

Additionally, DenseNet-121 was the best-calibrated model both before and after the sigmoid 

calibration methods, based on assessment by ICI. An important note for DenseNet-121’s 

performance is that our dataset is small (n=300), and the effectiveness of its skip connections 

may not hold true for larger datasets. In the original paper on DenseNet, it was commented 

that this type of skip connection benefits performance on smaller datasets6, which we find to 

be true on our small dataset.

Discussion of Model Differences

From our results, it is clear that with fixed LVO data, hyperparameters, and experiments, 

different CNN architectures have diverse outcomes with regards to training time, 

evaluation time, training loss convergence, calibration, performance, generalization, and 

other measurable outcomes. When selecting a CNN architecture for an LVO detection 

task, careful consideration of tradeoffs, including dataset size, training time, and evaluation 

time, should be made centered around the specific application for which a model will be 

employed.
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Conclusions

While models with fewer learnable parameters performed better during cross-validation, 

this pattern did not hold when checking performance on our external validation set. Note 

that the external validation set was not revealed during any model design, evaluation, 

or tuning. We applied the frozen models from cross-validation only once to the external 

validation set and no new model training was performed after the external validation set was 

revealed. We conclude that of the examined models, DenseNet-121 generalized the best to 

our small dataset of LVO MIPs based on its superior performance on the withheld external 

validation set. It appears that this is due to its heavy use of skip connections that recombine 

residual information using concatenation which increases consideration of feature maps 

from earlier in the network, while also improving gradient flow and regularization. This 

architectural feature may prove useful when selecting models for optimized performance 

on LVO detection when training on small datasets, as well as for considering adaptations 

to existing model architectures and constructing novel architectures in this domain. The 

differences between performance in cross-validation and external validation highlight the 

importance of single pass study designs and the possibility of information contamination 

during model design / ablation.

Acknowledgements

We would like to thank Kiersten Espaillat, Cailey Kerley, Karthik Ramadass, and Praitayini Kanakaraj. This 
material is partially supported by the National Science Foundation Graduate Research Fellowship under Grant 
No. DGE-1746891 as well as ViSE/VICTR VR3029. The image dataset was obtained in part from ImageVU, 
a research resource supported by the VICTR CTSA award (ULTR000445 from NCATS/NIH), Vanderbilt 
University Medical Center institutional funding and Patient-Centered Outcomes Research Institute (PCORI; 
contract CDRN-1306-04869). We extend gratitude to NVIDIA for their support by means of the NVIDIA hardware 
grant. This work is supported by NIH grant R01GM120484. Funds also came from NSF 1452485 (Landman). This 
work was conducted in part using the resources of the Advanced Computing Center for Research and Education 
at Vanderbilt University, Nashville, TN. The project described was supported by the National Center for Research 
Resources, Grant 1UL1RR024975-01, and is now at the National Center for Advancing Translational Sciences, 
Grant 2UL1TR000445-06.

References

1. Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute 
disproportionately to stroke-related dependence and death: A review. Front Neurol. 2017;8(NOV). 
doi:10.3389/fneur.2017.00651

2. Rennert RC, Wali AR, Steinberg JA, et al. Epidemiology, Natural History, and Clinical Presentation 
of Large Vessel Ischemic Stroke. Clin Neurosurg. 2019;85. doi:10.1093/neuros/nyz042

3. Kamal H, Lopez V, Sheth SA. Machine learning in acute ischemic stroke neuroimaging. Front 
Neurol. 2018;9(NOV). doi:10.3389/fneur.2018.00945

4. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition. Vol 07–12-June-2015.; 
2015. doi:10.1109/CVPR.2015.7298594

5. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings 
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol 
2016-December.; 2016. doi:10.1109/CVPR.2016.90

6. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. 
In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 
Vol 2017-Janua.; 2017. doi:10.1109/CVPR.2017.243

Remedios et al. Page 8

Med Phys. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Tan M, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks. In: 36th 
International Conference on Machine Learning, ICML 2019. Vol 2019-June.; 2019.

8. Remedios S, Pham DL, Butman JA, Roy S. Classifying magnetic resonance image modalities with 
convolutional neural networks. In: Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided 
Diagnosis.; 2018. doi:10.1117/12.2293943

9. Barman A, Inam ME, Lee S, Savitz S, Sheth S, Giancardo L. Determining ischemic stroke 
from ct-angiography imaging using symmetry-sensitive convolutional networks. In: Proceedings 
- International Symposium on Biomedical Imaging. Vol 2019-April.; 2019. doi:10.1109/
ISBI.2019.8759475

10. Sheth SA, Lopez-Rivera V, Barman A, et al. Machine Learning-Enabled Automated Determination 
of Acute Ischemic Core From Computed Tomography Angiography. Stroke. 2019;50(11). 
doi:10.1161/STROKEAHA.119.026189

11. Stib MT, Vasquez J, Dong MP, et al. Detecting large vessel occlusion at multiphase CT 
angiography by using a deep convolutional neural network. Radiology. 2020;297(3). doi:10.1148/
radiol.2020200334

12. Amukotuwa SA, Straka M, Smith H, et al. Automated detection of intracranial large vessel 
occlusions on computed tomography angiography a single center experience. Stroke. 2019;50(10). 
doi:10.1161/STROKEAHA.119.026259

13. Amukotuwa SA, Straka M, Dehkharghani S, Bammer R. Fast automatic detection of large vessel 
occlusions on CT angiography. Stroke. 2019;50(12). doi:10.1161/STROKEAHA.119.027076

14. Barreira C, Bouslama M, Lim J, et al. E-108 Aladin study: automated large artery 
occlusion detection in stroke imaging study – a multicenter analysis. In:; 2018. doi:10.1136/
neurintsurg-2018-snis.184

15. Chatterjee A, Somayaji NR, Kabakis IM. Abstract WMP16: Artificial Intelligence Detection of 
Cerebrovascular Large Vessel Occlusion - Nine Month, 650 Patient Evaluation of the Diagnostic 
Accuracy and Performance of the Viz.ai LVO Algorithm. In: Stroke. Vol 50.; 2019. doi:10.1161/
str.50.suppl_1.wmp16

16. Morey JR, Fiano E, Yaeger KA, Zhang X, Fifi JT. Impact of Viz LVO on Time-to-Treatment 
and Clinical Outcomes in Large Vessel Occlusion Stroke Patients Presenting to Primary Stroke 
Centers. [published online July 5, 2020]. doi:10.1101/2020.07.02.20143834

17. Hassan AE, Ringheanu VM, Rabah RR, Preston L, Tekle WG, Qureshi AI. Early experience 
utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a 
hub and spoke model. Interv Neuroradiol. 2020;26(5). doi:10.1177/1591019920953055

18. Stib MT, Dong MP, Kim YH, et al. Deep Learning in Emergent Large Vessel Occlusion Detection 
using Maximum Intensity Projections via CT Angiography. 2018;(March):1–3.

19. Dong M, Kim A, Subzwari S, et al. Deep Learning for ELVO Stroke Detection. In: Machine 
Intelligence Conference 2018.; 2018.

20. You C, Yang Q, Shan H, et al. Structurally-Sensitive Multi-Scale Deep Neural Network for 
Low-Dose CT Denoising. IEEE Access. 2018;6.

21. You C, Li G, Zhang Y, et al. CT Super-Resolution GAN Constrained by the Identical, Residual, 
and Cycle Learning Ensemble (GAN-CIRCLE). IEEE Trans Med Imaging. 2020;39(1).

22. You C, Yang J, Chapiro J, Duncan JS. Unsupervised Wasserstein Distance Guided Domain 
Adaptation for 3D Multi-domain Liver Segmentation. In: Interpretable and Annotation-Efficient 
Learning for Medical Image Computing.; 2020:155–163.

23. You C, Zhao R, Staib L, Duncan JS. Momentum Contrastive Voxel-wise Representation Learning 
for Semi-supervised Volumetric Medical Image Segmentation. Published online 2021:1–11. http://
arxiv.org/abs/2105.07059

24. Setio AAA, Traverso A, de Bel T, et al. Validation, comparison, and combination of 
algorithms for automatic detection of pulmonary nodules in computed tomography images: The 
LUNA16 challenge. Med Image Anal. 2017;42:1–13. doi:10.1016/j.media.2017.06.015 [PubMed: 
28732268] 

25. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of Deep Learning 
Approaches for Multi-Label Chest X-Ray Classification. Sci Rep. 2019;9(1). doi:10.1038/
s41598-019-42294-8

Remedios et al. Page 9

Med Phys. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/2105.07059
http://arxiv.org/abs/2105.07059


26. Huang Z, Zhu X, Ding M, Zhang X. Medical Image Classification Using a Light-Weighted 
Hybrid Neural Network Based on PCANet and DenseNet. IEEE Access. 2020;8. https://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8979430

27. Muschelli J, Ullman NL, Mould AW, Vespa P, Hanley DF, Crainiceanu CM. Validated 
Automatic Brain Extraction of Head CT Images. Neuroimage. 2015;114:379–385. doi:10.1016/
j.neuroimage.2015.03.074 [PubMed: 25862260] 

28. Remedios SW. PhiNet. https://github.com/sremedios/phinet. Accessed September 1, 2020.

29. Austin PC, Steyerberg EW. The Integrated Calibration Index (ICI) and Related Metrics for 
Quantifying the Calibration of Logistic Regression Models. Stat Med. 2019;38(21):4051–4065. 
doi:10.1002/sim.8281 [PubMed: 31270850] 

Remedios et al. Page 10

Med Phys. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8979430
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8979430
https://github.com/sremedios/phinet


Figure 1: 
A comparison of the number of learnable parameters and the types and number of skip 

connections in our five models. Note that the skip connections type column lists operations 

which show how residual information is reintegrated when the skip / residual connection or 

parallel processing branch rejoins the network.
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Figure 2: 
Mean training loss (left) and mean validation accuracy (right) for each fold are shown. 

Shaded regions represent ± the standard deviation.
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Figure 3: 
An ensemble of the ten instances of each model was used to generate binary class decisions 

through majority voting for every image in the withheld external validation set. Each table 

entry shows prediction accuracy over the images in a given artery group for a model’s 

ensemble. Artery groups and the LVO-negative group are given at the top of the columns 

along with the number of images for the group, and an example MIP. The Inception module­

based network is abbreviated to Inc-Mod and PhiNet is abbreviated to Phi.
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Table 1

The training time column lists the average seconds/step over 15 epochs, with batch size of eight. The detecting 

time column denotes the seconds/step for predicting on 60 images, with prediction batch size of one. The total 

epochs column gives the total epochs of training over the 10 folds from cross-validation.

Training Time: Average Seconds / Step Detecting Time Total Epochs

ResNet 5.372 seconds 1.015 seconds 2808

DenseNet 6.539 seconds 1.020 seconds 3315

EfficientNet 6.413 seconds 1.014 seconds 3137

Inception Module Network 1.037 seconds 0.004 seconds 2080

PhiNet 1.039 seconds 0.005 seconds 2652

Ablated PhiNet 0.087 seconds 0.004 seconds 2748
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Table 2

Accuracy (ACC), precision (PR), recall (RE), specificity (SP), and F1 Score (F1) are reported for each 

of the five original models and the best-ablated PhiNet. The 10-fold cross-validation created 10 trained 

instances of each model–the metrics reported here are mean metrics computed over each model’s 10 instances’ 

performances ± the standard deviation. “Cross-validation test” refers to the test portion of each fold. There 

are 24 distinct images in each of the 10 cross-validation test folds. 60 images are in the withheld external 

validation set, which each of the 10 instances of every model saw. Statistically significant columns are 

denoted with *, where the Bonferroni corrected p-value < 0.05 for the Friedman test for the group of metric 

vectors from which the column is derived. Additionally, the ICI is reported to show how well-calibrated each 

model is on the withheld external validation set, before and after the sigmoid calibration method is applied. 

Bolded values represent the best performance per column for the first five models. The best-ablated PhiNet is 

separated from the original five models due to its further architecture optimization. In the cross-validation test 

results we can see that the PhiNet ablation has bolded metrics, this is due to its performance surpassing that of 

the other five models.

Cross-Validation Test External Validation Calibrated External Validation

ACC PR RE SP F1 ACC PR* RE SP F1 ICI ACC* PR* RE SP* F1 ICI

ResNet
0.779 

± 
0.098

0.782 
± 

0.125

0.820 
± 

0.195

0.770 
± 

0.139

0.778 
± 

0.108

0.772 
± 

0.045

0.733 
± 

0.036

0.857 
± 

0.092

0.687 
± 

0.055

0.788 
± 

0.049
0.145

0.752 
± 

0.103

0.664 
± 

0.237

0.780 
± 

0.289

0.723 
± 

0.112

0.716 
± 

0.257
0.096

DenseNet
0.800 

± 
0.098

0.810 
± 

0.133

0.802 
± 

0.172

0.822 
± 

0.125

0.791 
± 

0.115

0.830 
± 

0.029

0.792 
± 

0.020

0.897 
± 

0.074

0.763 
± 

0.037

0.839 
± 

0.036
0.103

0.838 
± 

0.025

0.796 
± 

0.021

0.910 
± 

0.039

0.767 
± 

0.027

0.849 
± 

0.025
0.073

EfficientNet
0.812 

± 
0.088

0.824 
± 

0.147

0.816 
± 

0.133

0.829 
± 

0.141

0.808 
± 

0.096

0.803 
± 

0.034

0.767 
± 

0.026

0.873 
± 

0.084

0.733 
± 

0.047

0.815 
± 

0.040
0.130

0.768 
± 

0.099

0.688 
± 

0.242

0.777 
± 

0.283

0.760 
± 

0.091

0.728 
± 

0.258
0.087

Inception 
Module 
Network

0.825 
± 

0.087

0.846 
± 

0.133

0.832 
± 

0.233

0.838 
± 

0.144

0.805 
± 

0.150

0.783 
± 

0.100

0.752 
± 

0.061

0.823 
± 

0.280

0.743 
± 

0.097

0.759 
± 

0.213
0.104

0.825 
± 

0.018

0.770 
± 

0.012

0.927 
± 

0.041

0.723 
± 

0.022

0.841 
± 

0.019
0.087

PhiNet
0.850 

± 
0.081

0.858 
± 

0.129

0.871 
± 

0.141

0.852 
± 

0.152

0.850 
± 

0.083

0.793 
± 

0.034

0.776 
± 

0.026

0.830 
± 

0.117

0.757 
± 

0.063

0.797 
± 

0.050
0.119

0.822 
± 

0.016

0.769 
± 

0.016

0.920 
± 

0.032

0.723 
± 

0.032

0.838 
± 

0.015
0.092

Ablated 
PhiNet

0.862 
± 

0.074

0.873 
± 

0.119

0.871 
± 

0.113

0.877 
± 

0.118

0.862 
± 

0.072

0.798 
± 

0.018

0.776 
± 

0.015

0.840 
± 

0.058

0.757 
± 

0.032

0.806 
± 

0.026
0.144

0.825 
± 

0.018

0.774 
± 

0.007

0.917 
± 

0.036

0.733 
± 

0.000

0.839 
± 

0.019
0.105
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