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Abstract

Background—The role of methylation in pancreatic cancer (PC) risk remains unclear. We
integrated genome and methylome data to identify CpG sites (CpGs) with the genetically
predicted methylation to be associated with PC risk. We also studied gene expression to
understand the identified associations.
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Methods—Using genetic data and white blood cell methylation data from 1,595 subjects of
European descent, we built genetic models to predict DNA methylation levels. After internal and
external validation, we applied prediction models with satisfactory performance to the genetic
data of 8,280 PC cases and 6,728 controls of European ancestry to investigate the associations of
predicted methylation with PC risk. For associated CpGs, we compared their measured levels in
pancreatic tumor vs benign tissue.

Results—We identified 45 CpGs at nine loci showing an association with PC risk, including 15
CpGs showing an association independent from identified risk variants. We observed significant
correlations between predicted methylation of 16 of the 45 CpGs and predicted expression of eight
adjacent genes, of which six genes showed associations with PC risk. Of the 45 CpGs, we were
able to compare measured methylation of 16 in pancreatic tumor versus benign pancreatic tissue.
Of them, six showed differentiated methylation.

Conclusions—We identified methylation biomarker candidates associated with PC using
genetic instruments and added additional insights into the role of methylation in regulating gene
expression in PC development.

Impact: A comprehensive study using genetic instruments identifies 45 CpG sites at nine
genomic loci for PC risk.

Keywords

DNA methylation; genetic instrument; pancreatic cancer

Introduction

As the most fatal malignancy of all major cancers, pancreatic cancer is the third leading
cause of cancer death in the United States (US) with an overall 5-year survival rate of only
9% [1]. Furthermore, distinct from other common cancers, the mortality from pancreatic
cancer is expected to continue to increase and may develop into the second leading cause
of cancer death before 2030 [2]. One of the major reasons for the lethality of this disease

is that most pancreatic cancer patients are diagnosed late due to nonspecific symptoms in
earlier stages. Unfortunately, up till now, there are no effective screening tests available for
pancreatic cancer. Serum CA 19-9 is the only validated biomarker that is clinically used
for pancreatic cancer diagnosis in symptomatic patients or for prognostic surveillance in
predicting tumor stage or overall survival. However, this biomarker alone cannot serve as an
effective screening tool given its unsatisfactory sensitivity (75.5%) and specificity (77.6%),
as well as the inferior positive predictive value (0.5%-0.9%) [3]. There are urgent needs to
identify additional biomarkers for improved risk assessment of pancreatic cancer.

DNA methylation, an important epigenetic modification that regulates gene expression, has
been shown to be potentially related to pancreatic cancer. A number of studies evaluating
DNA methylation levels in blood or pancreas tissue have identified multiple candidate
DNA methylation markers for pancreatic cancer, including methylation at VHL, MYF3,
TMS, GPC3, SRBC, HYALZ, ADAMTS1, BNC1, SERPINBS5, and B3GALT5[4-8].
However, many of these earlier studies involved a small sample size and only investigated
a few CpG sites (CpGs), resulting in insufficient statistical power and limited scope for
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identifying discriminant DNA methylation markers. More importantly, previous studies
using a conventional study design would be difficult to establish causality.

It has been increasingly recognized that one potential strategy for reducing several of

these limitations is to evaluate the associations of interest using genetic instruments. The
genetically determined proportion of DNA methylation levels should be less susceptible to
these biases, given the random assortment of alleles from parents to offspring during the
production of gametes. Studies have suggested there is high heritability for a large portion
of CpGs, and multiple associations have been identified between genetic variants and DNA
methylation levels of CpGs [9-12]. In a large study with sufficient power, many of the DNA
methylation associated genetic variants are likely to serve as strong instrument variables
for assessing the association between DNA methylation and pancreatic cancer risk. In the
current study, we employed such a novel strategy to identify DNA methylation biomarker
candidates associated with pancreatic cancer risk.

Besides identifying promising biomarkers, the findings of such a study may also help

better understand the etiology of pancreatic cancer. So far, genome-wide association studies
(GWAS) have identified 20 independent common susceptibility loci for pancreatic cancer in
individuals of European ancestry, however, together these variants can only explain a small
proportion of the total risk [13—-18]. Recent work estimated the heritability of pancreatic
cancer to be 21.2% [19]. A large proportion of the pancreatic cancer heritability remains
unexplained [20]. Recently, two large transcriptome-wide association studies (TWAS) of
pancreatic cancer were conducted. In these studies 31 candidate susceptibility genes, of
which the genetically-predicted expression was associated with pancreatic cancer risk, were
identified [21]. The current study represents another endeavor focusing on studying DNA
methylation, the findings of which may contribute to additional understanding of pancreatic
cancer genetics. These CpGs may influence pancreatic cancer risk either through regulating
expression of pancreatic cancer susceptibility genes or through other mechanisms. In the
current work we also studied gene expression aiming to characterize whether some of

the identified associated CpGs may influence pancreatic cancer risk through regulating
expression of their target genes.

As far as we know, this study is the first large study to evaluate the association between
genetically-predicted DNA methylation and pancreatic cancer risk, using data of 8,280 cases
and 6,728 controls of European descendants from Pancreatic Cancer Cohort Consortium
(PanScan) and Pancreatic Cancer Case-Control Consortium (PanC4). For the identified
associated DNA methylation biomarker candidates, we further compared their directly
measured levels in pancreatic tumor tissue specimens (n=18) versus benign pancreatic tissue
specimens (n=18).

The overall study design is shown in Figure 1. Firstly, we developed genetic prediction
models for DNA methylation levels by leveraging data of the Framingham Heart Study
(FHS). After external validation, we selected DNA methylation models with satisfactory
prediction performance for assessing associations of genetically predicted methylation levels
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with pancreatic cancer risk, by using data of the PanScan/PanC4 consortia which involves
8,280 cases and 6,728 controls. For CpGs showing an association with pancreatic cancer
risk, we assessed correlations between their predicted methylation and predicted expression
of adjacent genes (PanScan/PanC4), to identify potential target genes of these CpGs. For

the identified candidate target genes, we further evaluated associations of their genetically
predicted expression with pancreatic cancer risk. For the associated CpGs, we also compared
their directly measured levels in pancreatic tumor tissue versus benign pancreatic tissue.
Additional description of relevant studies was included in the Supplementary Material.

DNA methylation prediction models

Genetic data and white blood cell DNA methylation data of a total of 1,595 unrelated
subjects from the FHS Offspring Cohort were used for methylation genetic prediction model
building. The detailed information for the datasets and data quality control (QC), has been
described elsewhere [22—24]. The genetic data were imputed to the Haplotype Reference
Consortium reference panel. Single nucleotide polymorphisms (SNPs) with high imputation
quality (R2 = 0.8), minor allele frequency (MAF) = 5%, and those included in the HapMap
Phase 2 version and not strand ambiguous were retained. The R package “minff’ was used
for the quality control (QC) and normalization of the DNA methylation data [25]. For

the methylation level at each CpG site, a prediction model was built following the elastic

net method (a = 0.50) using in-c/s SNPs (flanking a 2 Mb window) with adjustment for

age, sex, six cell type composition variables, and top ten genetic principal components
(PCs). Ten-fold cross-validation was used to choose the penalty parameter lambda and
validate the models internally [26]. Performance of established prediction models were also
examined externally by using data from Women’s Health Initiative (WHI) (A=883), which
were downloaded from dbGaP (accession numbers phs001335, phs000675 and phs000315).
Identical methods were used for the imputation and QC as it was described for FHS data.
DNA methylation data was processed following a similar procedure as for FHS data. We
calculated the predicted DNA methylation for each CpG site using the models that were
established using FHS data, and then compared the predicted methylation with the measured
levels using Spearman’s correlation. DNA methylation prediction models with both internal
and external performance R2 > 0.01 (correlation between predicted and measured DNA
methylation level > 0.1) were used for downstream association analyses. This is one of

the standard criteria used in TWAS for gene expression [27-29], heritability of which is in
similar range to that of DNA methylation in blood [30, 31]. Importantly, in our work we
aimed to capture the genetically regulated component of DNA methylation levels, and thus it
is expected that the model performance R2 will not necessarily always be high for different
CpGs. Indeed, the upper limit for such R? should be the heritability of each CpG. We further
excluded CpGs with SNPs within their probes in the Illumina 450K Beadchip because of
potential bias for the measurement of DNA methylation levels of such CpGs [32].

Evaluation of the association between genetically predicted DNA methylation levels and
pancreatic cancer risk

For evaluating associations of predicted DNA methylation levels with pancreatic cancer
risk, we used data of GWAS conducted in PanScan and PanC4. Detailed information on
these consortia has been described elsewhere [13-18]. For the current analyses, the genetic
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and covariate data were accessed from dbGaP (dbGaP Study Accession: phs000206.v5.p3
and phs000648.v1.p1). We performed subject and SNP level QC based on guidelines
recommended by the consortia [33]. Briefly, in PanC4 dataset, we excluded subjects who
were related to each other, with missing call rate = 2%, or with missing information on
covariates age and sex; we excluded SNPs with missing call rate = 2%, positional duplicates,
more than two discordant calls in study duplicates, more than one mendelian error in
HapMap control trios, Hardy-Weinberg equilibrium (HWE) P< 1 x 1074, sex difference

in allele frequency > 0.2 for autosomes/XY in subjects of European ancestry, and/or sex
difference in heterozygosity > 0.3 for autosomes/XY for European ancestry subjects, or with
MAF < 0.005. In PanScan datasets, we excluded subjects with sex discordance, related with
each other, or with a call rate < 94%; we further excluded SNPs with a call rate < 94%

or HWE P< 1 x1077. In our analyses we only retained subjects with genetic ancestry

of Europeans evaluated using principal component analysis. The genotype data from all
sources were imputed together to the Haplotype Reference Consortium reference panel

(r1.1 2016) [34] using Minimac3 for imputation and SHAPEIT for prephasing [35, 36],

by using the Michigan Imputation Server (https://imputationserver.sph.umich.edu). Only
imputed data with an imputation quality of at least 0.3 were retained in the association
analyses. The final dataset included 8,280 cases and 6,728 controls.

The S-PrediXcan method [37] was used to evaluate the associations between genetically
predicted DNA methylation levels and pancreatic cancer risk, using summary statistics of
SNP-pancreatic cancer associations generated with adjustments of age, sex, and top PCs.
The Z-score for the association between predicted DNA methylation levels at each CpG and
pancreatic cancer risk was estimated based on the formula of:

o5 PBs_

Zy = Wym=— —=—.
s € Model,, om se(fs)

Here w;, represents the weight of SNP son the methylation levels of the CpG m. 3, and
se(f,) refer to the GWAS-estimated effect size and standard error of SNP son pancreatic
cancer risk, respectively. 5 and 5,, are the estimated variances of SNP sand the predicted

methylation level at CpGs m, respectively. For the present study, the correlations between
predicting SNPs were estimated based on the data of European descendants from 1000
Genomes Project Phase 3. Considering that a large number of CpGs may have correlated
DNA methylation and predicted methylation levels, a false discovery rate (FDR)-adjusted P
value < 0.05 was used to determine significant associations. For identified associated CpGs,
GCTA-COJO analyses were conducted to examine whether the observed associations were
independent of previously identified risk variants of pancreatic cancer [38]. Briefly, for each
SNP that was included in the prediction models of the identified CpGs, we used GCTA-
COJO to estimate the modified 3, and se(3,) conditioning on nearby GWAS-identified

pancreatic cancer risk SNPs. Then we re-performed the S-PrediXcan analysis using the
modified values of 5, and se(f;) to assess the associations between genetically predicted

DNA methylation levels and pancreatic cancer risk after adjusting for previously reported
GWAS risk SNPs. Only associated CpGs with a large proportion of predicting SNPs (>50%)
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in the corresponding models used in association analyses were reported here, to decrease
possibility of false positive findings. We further performed analyses using individual level
genetic data for these CpGs, and conducted analyses to examine whether the identified
significant associations were consistent cross study phases (PanScan I, I, I11; PanScan I, II;
PanC4 and PanScan I, 11; and PanC4), especially for PanScan 111 which included only cases.

Potential target genes of associated CpGs

The identified CpGs associated with pancreatic cancer risk were annotated with ANNOVAR
(29). To determine potential target genes of these CpGs, we assessed whether genetically
predicted DNA methylation levels of these CpGs were significantly correlated with
genetically predicted expression of their adjacent genes in 8,280 cases and 6,728 controls

of European ancestry included in PanScan I-111 and PanC4. We estimated genetically
predicted gene expression using prediction models built with data from the Genotype-
Tissue Expression (GTEX) project focusing on blood tissue (A=338). Only gene expression
prediction models with RZ > 0.01 were used for the analyses. For genes showing a
correlation (P < 0.05), we further assessed whether their genetically predicted expression
was significantly associated with pancreatic cancer risk. Finally, we assessed the consistency
of the direction of identified associations in the DNA methylation-gene expression-
pancreatic cancer risk pathway.

Directly measured levels of associated CpGs in pancreatic tumor tissue specimens versus
benign pancreatic tissue specimens

RRBS was performed on DNA extracted from 18 pancreatic tumor tissue specimens and 18
benign pancreatic tissue specimens, as described previously [39]. Sequencing was performed
using the Illumina HiSeq 2000 in the Mayo Clinic Medical Genome Facility. SAAP-RRBS
was used for sequence alignment and methylation extraction [40]. We compared the DNA
methylation levels of identified associated CpGs in pancreatic tumor tissue specimens versus
benign pancreatic tissue specimens. For this exploratory analysis, A<0.05 was used to
determine significant differences.

Results

DNA methylation prediction models

Using data from the FHS, we were able to establish DNA methylation prediction models
for a total of 223,959 CpGs, of which 70,269 showed a prediction performance (R?) = 0.01
in both internal and external validation. Among them, 62,994 CpGs have no SNPs within
their probes. The prediction models for these 62,994 CpGs showed similar performance

in external and internal validation (Supplementary Figure 1). The correlation coefficient
between R2 in FHS and WHI was 0.95.

Associations between genetically predicted DNA methylation and pancreatic cancer risk

Of the 62,994 CpGs examined, 45 at nine genomic loci showed significant associations
with pancreatic cancer risk for their genetically predicted methylation levels after FDR
adjustment (Supplementary Figure 2). Fifteen of the 45 CpGs were located > 500

kb away from any risk variant reported in previous GWAS of pancreatic cancer.
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Positive associations between predicted DNA methylation level and pancreatic cancer

risk were observed for cg02871659, 918279742, cg01554064, cg04520704, cg19586165,
cg16557858, cg02944084, and cg20930114; in contrast, inverse associations were identified
for cg24483576, cg24520381, cg22833065, cg17288560, cg19439043, cg03013999, and
cg15445000. After conditioning on previously identified pancreatic cancer risk variants,
associations for all of these 15 CpGs at five novel loci remained largely unchanged (Table
1), suggesting that the identified associations represent novel associations independent of
previously identified risk SNPs. On the other hand, for the other 30 identified CpGs located
at four known pancreatic cancer risk loci, their associations with pancreatic cancer risk were
all significantly attenuated after conditioning on adjacent risk SNPs (Table 2), suggesting
that the identified associations may be influenced by the risk SNPs. Based on subgroup
analyses, the associations of the identified 45 CpGs tended to be robust across different
subsets ((PanScan I, 11, and I11; PanScan I and 11; PanC4 and PanScan I, Il; and PanC4)
(Supplementary Table 1).

Candidate target genes of associated CpGs

For the 45 CpGs associated with pancreatic cancer risk, ANNOVAR annotation suggested
32 adjacent genes. Of them, we were able to build blood tissue gene expression prediction
models with R? = 0.01 for nine (RPS2, STARD3, GBGTI1, ABO, SURF6, ERBBZ,
ORMDL3, SNHGY, SOWAHC). We further assessed Spearman’s rank correlations for 17
pairs of CpG site-gene for their genetically predicted levels of DNA methylation and gene
expression, respectively (Supplementary Table 2). For all genes except for STARD3, we
observed significant (£< 0.001) correlations (Supplementary Table 2).

Associations of predicted expression of candidate target genes with pancreatic cancer

risk

Of these eight genes showing significant correlations, six further showed a significant
association with pancreatic cancer risk for their genetically predicted expression levels,
namely, ABO (P=6.72 x 10712), RPS2 (P = 3.48 x 107°), SURF6 (P = 8.47 x 1073),
ORMDL3(P=2.58 x 107%), SNHG9 (P=1.15 x 1072), and SOWAHC (P= 8.30 x

104). Overall, a total of 12 CpGs with 6 genes showed significant associations in each

pair of the relationships in the DNA methylation-gene expression-pancreatic cancer risk
pathway. Encouragingly, all these associations showed consistent directions. Taken the CpG
site cg24267699 located upstream of ABO as an example, its genetically predicted DNA
methylation showed a positive association with pancreatic cancer risk (odds ratio (OR)
=2.50; P=1.33 x 1021). Meanwhile, we observed an inverse correlation between the
genetically predicted DNA methylation level of cg24267699 and predicted expression of
ABO (correlation coefficient = -0.62; £< 0.001), as well as an inverse association between
predicted expression of ABO and pancreatic cancer risk (OR = 0.89, A= 6.72 x 10712)
(Tables 3, Supplementary Tables 2-3 and Supplementary Figure 3). Consistent three-way
associations were also observed for CpGs and five other genes (RPS2, SURF6, ORMDLS3,
SNHGY, and SOWAHC), which have not been previously reported as pancreatic cancer
susceptibility genes in GWAS or TWAS.
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Directly measured levels of associated CpGs in pancreatic tumor tissue versus benign
pancreatic tissue

Of the 45 CpGs, 16 were directly captured in the Reduced representation bisulfite
sequencing (RRBS) of 18 pancreatic tumor tissue specimens and 18 benign pancreatic tissue
specimens. Of them, significances of levels of two CpGs (cg04520704 and cg04633225) in
tumor versus benign tissues could not be determined. Among the others, six demonstrated
significant different levels in pancreatic tumor tissue versus benign pancreatic tissue (Table
4). Encouragingly, the effect directions for all of them are consistent with findings from
analyses using genetic instruments (Table 4).

Discussion

The current study is by far the first large-scale study that evaluated the relationship between
genetically predicted DNA methylation levels and pancreatic cancer risk. We identified 45
CpGs of which the predicted DNA methylation levels showed significant associations with
pancreatic cancer risk at FDR < 0.05, including 15 CpGs located at five novel loci that
have not been reported in previous GWAS. For the remaining 30 CpGs located at four
known pancreatic cancer risk loci, the observed associations were substantially attenuated
after adjusting for GWAS-identified risk SNPs, implying that the associations may be at
least partly due to the reported risk SNPs. We found consistent direction of associations

in the DNA methylation-gene expression-pancreatic cancer risk pathway for 12 CpGs
with six genes. Our findings were further supported with the evidence from differentiated
DNA methylation at six CpGs for their directly measured levels observed in pancreatic
tumor versus benign tissue. Our study identified novel methylation biomarker candidates
for pancreatic cancer, as well as provided new information in understanding etiology of
pancreatic cancer, a highly lethal malignancy.

Of the 45 identified associated CpGs, we were able to assess correlations between
genetically predicted DNA methylation and gene expression levels for 17 CpGs with 9
adjacent genes. Among the examined correlations, except for the one between cg19586165
and STARDS3, all others were statistically significant. The possible speculation for the
insignificant correlation suggested that the most proximal gene of cg19586165, STARDS3,
might not be the actual target gene. Additional strategies beyond the scope of simple
statistical correlations are needed to verify its actual target gene. Of the eight linked

genes correlated with predicted DNA methylation of the identified CpGs, six (ABO, RPS2,
SURF6, ORMDL 3, SNHG9and SOWAHC) demonstrated significant associations with
pancreatic cancer risk for their predicted expression. Among them, The ABO blood group
gene located at 9934.2 has already been implicated as a potential target gene of pancreatic
cancer risk SNPs from previous GWAS and TWAS [17, 21]. Genotype-inferred non-O blood
type was consistently suggested to be associated with an increased risk of pancreatic cancer
compared to other blood types, which may be partly explained by differentiated expression
of blood group antigens, or alterations in the systemic inflammatory state [41]. SURF6 has
been previously suggested as a potential pancreatic cancer biomarker, as indicated by a study
comparing its expression level in malignant pancreatic cells to that in normal pancreatic duct
cells or human papillomavirus-immortalized pancreatic duct epithelial cells [42]. A higher

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Zhu et al. Page 9

expression level of SNHGY, a non-coding RNA, has been identified as a novel prognostic
markers for pancreatic cancer [43]. To the best of our knowledge, our study is the first one
implicating potential link between this gene and pancreatic cancer risk. Further functional
studies are needed to better understand potential regulatory effects of the identified CpGs on
expression of the genes, and link between expression of the genes and pancreatic cancer.

In this study we systematically assessed relationships between genetically predicted DNA
methylation in blood, genetically predicted expression for putatively target genes in blood,
and pancreatic cancer risk. For our analyses using genetic instruments we used data
generated from white blood cells rather than pancreatic tissue for several reasons. First,

it is very challenging to acquire a large sample of pancreatic tissue from healthy subjects
without pancreatic cancer. Information from pancreatic tumor-adjacent normal tissue would
be less desirable, due to potential influence of somatic alterations on DNA methylation.
Furthermore, findings of biomarkers identified in a study design using data from white blood
cell samples may confer more translational and practical utilities for future risk assessment
of pancreatic cancer, compared with biomarkers in pancreas tissue as it is impractical to
obtain pancreas tissue from healthy subjects. We also acknowledge that compared with
pancreas specimens, a study focusing on blood samples may not be ideal for pinpointing
the underlying etiology of pancreatic cancer development given possible tissue-specific
DNA methylation patterns. However, it is also worth noting that, high concordance for the
genetically regulated component of DNA methylation cross several tissue types has been
reported for a large number of CpGs [44, 45]. In this study, we have compared the directly
measured levels of a proportion of identified associated CpGs in pancreatic tumor tissue
versus benign pancreatic tissue. It is worth noting that for this comparison, the overall

DNA methylation levels influenced by both genetic and non-genetic factors were assessed,
which is different from the analyses focusing on genetic instruments, in which case only
genetically regulated components of DNA methylation levels were evaluated. Although the
involved sample size is relatively small (18 vs 18), we were still able to observe significant
differences for six of the CpGs among the limited associated CpGs that were captured in our
measurement using RRBS. Unlike The Cancer Genome Atlas (TCGA) study, in which only
methylation of pancreatic tumor and tumor-adjacent normal tissue from pancreatic cancer
patients are available, in our comparison the control group focuses on histologically normal
pancreas tissue from subjects without pancreatic cancer, thus representing a better design
compared with other datasets such as TCGA.

Our study has several strengths. First, we used datasets with relatively large sample sizes
for both methylation prediction model building (A=1,595) and main association analyses for
pancreatic cancer risk (8,280 cases and 6,728 controls), which enabled us to conduct a well
powered assessment of the DNA methylation-pancreatic cancer risk associations. Second,
our innovative study design of using genetic instruments to predict DNA methylation
decreased several biases that are commonly embedded in traditional epidemiological
studies, such as residual confounding and reverse causality. In addition, by integrating
multi-omics data of DNA methylation and gene expression from various resources, we
were able to further verify our findings by examining the consistency of the associations

in the DNA methylation-gene expression-pancreatic cancer risk pathway for the identified
significant CpGs, which may further contribute to potential etiologic understanding of
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pancreatic cancer. The performance of our developed models were externally validated

in an independent WHI dataset, which uses different genotyping platforms (Illumina vs
Affymatrix used in FHS dataset), supporting the utility of our prediction models across
platforms. Finally, besides evidence from analyses using genetic instruments, we found
additional evidence for some of the identified CpGs using their directly measured levels in
pancreatic tissue, further supporting relevance of the identified CpGs with pancreatic cancer.
Although the sample size for this analysis is relatively small, it is worth noting that our
study comparing tissue samples of PC cases and non-PC controls could well overcome the
potential limitation of many other studies (e.g., The Cancer Genome Atlas) comparing tumor
samples of cases and tumor-adjacent normal tissue samples of cases.

Several potential limitations need to be acknowledged for appropriate interpretation of our
findings. First, the associated CpGs identified in this study do not necessarily imply their
causal role in pancreatic cancer. Similar to TWAS, although our findings will be useful for
prioritizing candidate DNA methylation biomarkers, false positive findings could exist for
some of the identified associations [46]. There are several potential reasons for this, such

as correlated DNA methylation across individuals, correlated predicted DNA methylation,
as well as shared variants [46]. In our study, multiple identified CpGs locate at the same
loci. Future functional investigation will better characterize whether the identified CpGs
play a causal role in pancreatic tumorigenesis. Second, during the DNA methylation genetic
prediction model building, due to a lack of data, we were not able to incorporate additional
variables, including established pancreatic cancer risk factors, such as smoking, alcohol
drinking, body mass index, diabetes status, etc for adjustments. Future work for developing
DNA methylation genetic prediction models after adjusting for these additional variables are
warranted to validate our findings. Third, although we were able to show that a proportion
of the pancreatic cancer associated CpGs we identified demonstrated differential levels in
pancreatic tumor versus benign tissue, further work directly comparing DNA methylation
levels of these CpGs in pre-diagnosed blood of pancreatic cancer cases and controls are
warranted to further validate our findings. Fourth, it is worth noting that the PanScan 111
data on dbGaP only contained data for cases but not for controls. In the current analysis for
improving statistical power we included cases of PanScan Il in the analyses. Previous work
suggested that imputation of datasets genotyped by different platforms before merging could
generate slightly more SNPs than imputations after combining the datasets together [47]. In
the current study, we merged genotyped data across cases and controls of PanScan I, 11, 11l
along with PanC4 and then imputed the data together. Although the design of incorporating
data of cases only in PanScan Il could be of potentially concerning, we carefully compared
the association results in different subgroups (Supplementary Table 1), and the estimates
are quite robust, suggesting that this is a less concerning issue and our design should be
appropriate. Lastly, in this study we evaluated ANNOVAR annotated genes as candidate
target genes of associated CpG sites for correlation analysis. With the recognized chromatin
interaction and long-range regulation of gene expression in the human genome, it is possible
that for some CpGs the target genes may not necessarily the nearest genes. Further work

is warranted to better characterize potential target genes of our identified CpGs using other
approaches beyond simply statistical correlation analyses.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.
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In summary, in a large-scale study, we identified 45 CpGs showing significant associations
with pancreatic cancer risk for their genetically predicted DNA methylation, including 15

at five novel loci showing an association independent from known risk variants. We further
observed consistent directions of associations in the DNA methylation-gene expression-
pancreatic cancer risk pathway. We found differentiated DNA methylation at six of the
identified CpGs for their measured levels in pancreatic tumor versus benign tissue. The
pancreatic cancer risk associated CpGs identified in this study could be investigated in
future studies with direct measurement of circulating DNA methylation levels for examining
potential utility in pancreatic cancer risk assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DNA methylation genetic prediction model building with internal (FHS Offspring Cohort)
and external (Women’s Health Initiative) validation

U

Assess associations between genetically predicted methylation levels and pancreatic cancer
(PC) risk using data from GWAS of PanScan (I, Il, Ill) and PanC4

&

PC associated CpG sites

Assess correlations between predicted
DNA methylation and predicted
expression of nearby genes using data
of PanScan/PanC4

Compare directly measured
levels of associated CpG sites in
pancreatic tumor tissue versus
benign pancreatic tissue

Potential target genes: assess associations of
genetically predicted expression with PC risk

-

Figurel.

Assess the associations showing consistent
direction of effect for DNA methylation-gene
expression-PC risk pathway

Study design flow chart. PanScan, Pancreatic Cancer Cohort Consortium (PanScan); PanC4,
Pancreatic Cancer Case-Control Consortium.
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