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Abstract

Background—The role of methylation in pancreatic cancer (PC) risk remains unclear. We 

integrated genome and methylome data to identify CpG sites (CpGs) with the genetically 

predicted methylation to be associated with PC risk. We also studied gene expression to 

understand the identified associations.
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Methods—Using genetic data and white blood cell methylation data from 1,595 subjects of 

European descent, we built genetic models to predict DNA methylation levels. After internal and 

external validation, we applied prediction models with satisfactory performance to the genetic 

data of 8,280 PC cases and 6,728 controls of European ancestry to investigate the associations of 

predicted methylation with PC risk. For associated CpGs, we compared their measured levels in 

pancreatic tumor vs benign tissue.

Results—We identified 45 CpGs at nine loci showing an association with PC risk, including 15 

CpGs showing an association independent from identified risk variants. We observed significant 

correlations between predicted methylation of 16 of the 45 CpGs and predicted expression of eight 

adjacent genes, of which six genes showed associations with PC risk. Of the 45 CpGs, we were 

able to compare measured methylation of 16 in pancreatic tumor versus benign pancreatic tissue. 

Of them, six showed differentiated methylation.

Conclusions—We identified methylation biomarker candidates associated with PC using 

genetic instruments and added additional insights into the role of methylation in regulating gene 

expression in PC development.

Impact: A comprehensive study using genetic instruments identifies 45 CpG sites at nine 

genomic loci for PC risk.
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Introduction

As the most fatal malignancy of all major cancers, pancreatic cancer is the third leading 

cause of cancer death in the United States (US) with an overall 5-year survival rate of only 

9% [1]. Furthermore, distinct from other common cancers, the mortality from pancreatic 

cancer is expected to continue to increase and may develop into the second leading cause 

of cancer death before 2030 [2]. One of the major reasons for the lethality of this disease 

is that most pancreatic cancer patients are diagnosed late due to nonspecific symptoms in 

earlier stages. Unfortunately, up till now, there are no effective screening tests available for 

pancreatic cancer. Serum CA 19–9 is the only validated biomarker that is clinically used 

for pancreatic cancer diagnosis in symptomatic patients or for prognostic surveillance in 

predicting tumor stage or overall survival. However, this biomarker alone cannot serve as an 

effective screening tool given its unsatisfactory sensitivity (75.5%) and specificity (77.6%), 

as well as the inferior positive predictive value (0.5%−0.9%) [3]. There are urgent needs to 

identify additional biomarkers for improved risk assessment of pancreatic cancer.

DNA methylation, an important epigenetic modification that regulates gene expression, has 

been shown to be potentially related to pancreatic cancer. A number of studies evaluating 

DNA methylation levels in blood or pancreas tissue have identified multiple candidate 

DNA methylation markers for pancreatic cancer, including methylation at VHL, MYF3, 
TMS, GPC3, SRBC, HYAL2, ADAMTS1, BNC1, SERPINB5, and B3GALT5 [4–8]. 

However, many of these earlier studies involved a small sample size and only investigated 

a few CpG sites (CpGs), resulting in insufficient statistical power and limited scope for 
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identifying discriminant DNA methylation markers. More importantly, previous studies 

using a conventional study design would be difficult to establish causality.

It has been increasingly recognized that one potential strategy for reducing several of 

these limitations is to evaluate the associations of interest using genetic instruments. The 

genetically determined proportion of DNA methylation levels should be less susceptible to 

these biases, given the random assortment of alleles from parents to offspring during the 

production of gametes. Studies have suggested there is high heritability for a large portion 

of CpGs, and multiple associations have been identified between genetic variants and DNA 

methylation levels of CpGs [9–12]. In a large study with sufficient power, many of the DNA 

methylation associated genetic variants are likely to serve as strong instrument variables 

for assessing the association between DNA methylation and pancreatic cancer risk. In the 

current study, we employed such a novel strategy to identify DNA methylation biomarker 

candidates associated with pancreatic cancer risk.

Besides identifying promising biomarkers, the findings of such a study may also help 

better understand the etiology of pancreatic cancer. So far, genome-wide association studies 

(GWAS) have identified 20 independent common susceptibility loci for pancreatic cancer in 

individuals of European ancestry, however, together these variants can only explain a small 

proportion of the total risk [13–18]. Recent work estimated the heritability of pancreatic 

cancer to be 21.2% [19]. A large proportion of the pancreatic cancer heritability remains 

unexplained [20]. Recently, two large transcriptome-wide association studies (TWAS) of 

pancreatic cancer were conducted. In these studies 31 candidate susceptibility genes, of 

which the genetically-predicted expression was associated with pancreatic cancer risk, were 

identified [21]. The current study represents another endeavor focusing on studying DNA 

methylation, the findings of which may contribute to additional understanding of pancreatic 

cancer genetics. These CpGs may influence pancreatic cancer risk either through regulating 

expression of pancreatic cancer susceptibility genes or through other mechanisms. In the 

current work we also studied gene expression aiming to characterize whether some of 

the identified associated CpGs may influence pancreatic cancer risk through regulating 

expression of their target genes.

As far as we know, this study is the first large study to evaluate the association between 

genetically-predicted DNA methylation and pancreatic cancer risk, using data of 8,280 cases 

and 6,728 controls of European descendants from Pancreatic Cancer Cohort Consortium 

(PanScan) and Pancreatic Cancer Case-Control Consortium (PanC4). For the identified 

associated DNA methylation biomarker candidates, we further compared their directly 

measured levels in pancreatic tumor tissue specimens (n=18) versus benign pancreatic tissue 

specimens (n=18).

Methods

The overall study design is shown in Figure 1. Firstly, we developed genetic prediction 

models for DNA methylation levels by leveraging data of the Framingham Heart Study 

(FHS). After external validation, we selected DNA methylation models with satisfactory 

prediction performance for assessing associations of genetically predicted methylation levels 
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with pancreatic cancer risk, by using data of the PanScan/PanC4 consortia which involves 

8,280 cases and 6,728 controls. For CpGs showing an association with pancreatic cancer 

risk, we assessed correlations between their predicted methylation and predicted expression 

of adjacent genes (PanScan/PanC4), to identify potential target genes of these CpGs. For 

the identified candidate target genes, we further evaluated associations of their genetically 

predicted expression with pancreatic cancer risk. For the associated CpGs, we also compared 

their directly measured levels in pancreatic tumor tissue versus benign pancreatic tissue. 

Additional description of relevant studies was included in the Supplementary Material.

DNA methylation prediction models

Genetic data and white blood cell DNA methylation data of a total of 1,595 unrelated 

subjects from the FHS Offspring Cohort were used for methylation genetic prediction model 

building. The detailed information for the datasets and data quality control (QC), has been 

described elsewhere [22–24]. The genetic data were imputed to the Haplotype Reference 

Consortium reference panel. Single nucleotide polymorphisms (SNPs) with high imputation 

quality (R2 ≥ 0.8), minor allele frequency (MAF) ≥ 5%, and those included in the HapMap 

Phase 2 version and not strand ambiguous were retained. The R package “minfi” was used 

for the quality control (QC) and normalization of the DNA methylation data [25]. For 

the methylation level at each CpG site, a prediction model was built following the elastic 

net method (α = 0.50) using in-cis SNPs (flanking a 2 Mb window) with adjustment for 

age, sex, six cell type composition variables, and top ten genetic principal components 

(PCs). Ten-fold cross-validation was used to choose the penalty parameter lambda and 

validate the models internally [26]. Performance of established prediction models were also 

examined externally by using data from Women’s Health Initiative (WHI) (N=883), which 

were downloaded from dbGaP (accession numbers phs001335, phs000675 and phs000315). 

Identical methods were used for the imputation and QC as it was described for FHS data. 

DNA methylation data was processed following a similar procedure as for FHS data. We 

calculated the predicted DNA methylation for each CpG site using the models that were 

established using FHS data, and then compared the predicted methylation with the measured 

levels using Spearman’s correlation. DNA methylation prediction models with both internal 

and external performance R2 ≥ 0.01 (correlation between predicted and measured DNA 

methylation level > 0.1) were used for downstream association analyses. This is one of 

the standard criteria used in TWAS for gene expression [27–29], heritability of which is in 

similar range to that of DNA methylation in blood [30, 31]. Importantly, in our work we 

aimed to capture the genetically regulated component of DNA methylation levels, and thus it 

is expected that the model performance R2 will not necessarily always be high for different 

CpGs. Indeed, the upper limit for such R2 should be the heritability of each CpG. We further 

excluded CpGs with SNPs within their probes in the Illumina 450K Beadchip because of 

potential bias for the measurement of DNA methylation levels of such CpGs [32].

Evaluation of the association between genetically predicted DNA methylation levels and 
pancreatic cancer risk

For evaluating associations of predicted DNA methylation levels with pancreatic cancer 

risk, we used data of GWAS conducted in PanScan and PanC4. Detailed information on 

these consortia has been described elsewhere [13–18]. For the current analyses, the genetic 
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and covariate data were accessed from dbGaP (dbGaP Study Accession: phs000206.v5.p3 

and phs000648.v1.p1). We performed subject and SNP level QC based on guidelines 

recommended by the consortia [33]. Briefly, in PanC4 dataset, we excluded subjects who 

were related to each other, with missing call rate ≥ 2%, or with missing information on 

covariates age and sex; we excluded SNPs with missing call rate ≥ 2%, positional duplicates, 

more than two discordant calls in study duplicates, more than one mendelian error in 

HapMap control trios, Hardy-Weinberg equilibrium (HWE) P < 1 × 10−4, sex difference 

in allele frequency > 0.2 for autosomes/XY in subjects of European ancestry, and/or sex 

difference in heterozygosity > 0.3 for autosomes/XY for European ancestry subjects, or with 

MAF < 0.005. In PanScan datasets, we excluded subjects with sex discordance, related with 

each other, or with a call rate < 94%; we further excluded SNPs with a call rate < 94% 

or HWE P < 1 × 10−7. In our analyses we only retained subjects with genetic ancestry 

of Europeans evaluated using principal component analysis. The genotype data from all 

sources were imputed together to the Haplotype Reference Consortium reference panel 

(r1.1 2016) [34] using Minimac3 for imputation and SHAPEIT for prephasing [35, 36], 

by using the Michigan Imputation Server (https://imputationserver.sph.umich.edu). Only 

imputed data with an imputation quality of at least 0.3 were retained in the association 

analyses. The final dataset included 8,280 cases and 6,728 controls.

The S-PrediXcan method [37] was used to evaluate the associations between genetically 

predicted DNA methylation levels and pancreatic cancer risk, using summary statistics of 

SNP-pancreatic cancer associations generated with adjustments of age, sex, and top PCs. 

The Z-score for the association between predicted DNA methylation levels at each CpG and 

pancreatic cancer risk was estimated based on the formula of:

Zm ≈ ∑
s ∈ Modelm

wsm
σs
σm

βs
se(βs)

.

Here wsm represents the weight of SNP s on the methylation levels of the CpG m. βs and 

se(βs) refer to the GWAS-estimated effect size and standard error of SNP s on pancreatic 

cancer risk, respectively. σs and σm are the estimated variances of SNP s and the predicted 

methylation level at CpGs m, respectively. For the present study, the correlations between 

predicting SNPs were estimated based on the data of European descendants from 1000 

Genomes Project Phase 3. Considering that a large number of CpGs may have correlated 

DNA methylation and predicted methylation levels, a false discovery rate (FDR)-adjusted P 
value < 0.05 was used to determine significant associations. For identified associated CpGs, 

GCTA-COJO analyses were conducted to examine whether the observed associations were 

independent of previously identified risk variants of pancreatic cancer [38]. Briefly, for each 

SNP that was included in the prediction models of the identified CpGs, we used GCTA­

COJO to estimate the modified βs and se(βs) conditioning on nearby GWAS-identified 

pancreatic cancer risk SNPs. Then we re-performed the S-PrediXcan analysis using the 

modified values of βs and se(βs) to assess the associations between genetically predicted 

DNA methylation levels and pancreatic cancer risk after adjusting for previously reported 

GWAS risk SNPs. Only associated CpGs with a large proportion of predicting SNPs (>50%) 
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in the corresponding models used in association analyses were reported here, to decrease 

possibility of false positive findings. We further performed analyses using individual level 

genetic data for these CpGs, and conducted analyses to examine whether the identified 

significant associations were consistent cross study phases (PanScan I, II, III; PanScan I, II; 

PanC4 and PanScan I, II; and PanC4), especially for PanScan III which included only cases.

Potential target genes of associated CpGs

The identified CpGs associated with pancreatic cancer risk were annotated with ANNOVAR 

(29). To determine potential target genes of these CpGs, we assessed whether genetically 

predicted DNA methylation levels of these CpGs were significantly correlated with 

genetically predicted expression of their adjacent genes in 8,280 cases and 6,728 controls 

of European ancestry included in PanScan I-III and PanC4. We estimated genetically 

predicted gene expression using prediction models built with data from the Genotype­

Tissue Expression (GTEx) project focusing on blood tissue (N=338). Only gene expression 

prediction models with R2 ≥ 0.01 were used for the analyses. For genes showing a 

correlation (P < 0.05), we further assessed whether their genetically predicted expression 

was significantly associated with pancreatic cancer risk. Finally, we assessed the consistency 

of the direction of identified associations in the DNA methylation-gene expression­

pancreatic cancer risk pathway.

Directly measured levels of associated CpGs in pancreatic tumor tissue specimens versus 
benign pancreatic tissue specimens

RRBS was performed on DNA extracted from 18 pancreatic tumor tissue specimens and 18 

benign pancreatic tissue specimens, as described previously [39]. Sequencing was performed 

using the Illumina HiSeq 2000 in the Mayo Clinic Medical Genome Facility. SAAP-RRBS 

was used for sequence alignment and methylation extraction [40]. We compared the DNA 

methylation levels of identified associated CpGs in pancreatic tumor tissue specimens versus 

benign pancreatic tissue specimens. For this exploratory analysis, P<0.05 was used to 

determine significant differences.

Results

DNA methylation prediction models

Using data from the FHS, we were able to establish DNA methylation prediction models 

for a total of 223,959 CpGs, of which 70,269 showed a prediction performance (R2) ≥ 0.01 

in both internal and external validation. Among them, 62,994 CpGs have no SNPs within 

their probes. The prediction models for these 62,994 CpGs showed similar performance 

in external and internal validation (Supplementary Figure 1). The correlation coefficient 

between R2 in FHS and WHI was 0.95.

Associations between genetically predicted DNA methylation and pancreatic cancer risk

Of the 62,994 CpGs examined, 45 at nine genomic loci showed significant associations 

with pancreatic cancer risk for their genetically predicted methylation levels after FDR 

adjustment (Supplementary Figure 2). Fifteen of the 45 CpGs were located > 500 

kb away from any risk variant reported in previous GWAS of pancreatic cancer. 
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Positive associations between predicted DNA methylation level and pancreatic cancer 

risk were observed for cg02871659, cg18279742, cg01554064, cg04520704, cg19586165, 

cg16557858, cg02944084, and cg20930114; in contrast, inverse associations were identified 

for cg24483576, cg24520381, cg22833065, cg17288560, cg19439043, cg03013999, and 

cg15445000. After conditioning on previously identified pancreatic cancer risk variants, 

associations for all of these 15 CpGs at five novel loci remained largely unchanged (Table 

1), suggesting that the identified associations represent novel associations independent of 

previously identified risk SNPs. On the other hand, for the other 30 identified CpGs located 

at four known pancreatic cancer risk loci, their associations with pancreatic cancer risk were 

all significantly attenuated after conditioning on adjacent risk SNPs (Table 2), suggesting 

that the identified associations may be influenced by the risk SNPs. Based on subgroup 

analyses, the associations of the identified 45 CpGs tended to be robust across different 

subsets ((PanScan I, II, and III; PanScan I and II; PanC4 and PanScan I, II; and PanC4) 

(Supplementary Table 1).

Candidate target genes of associated CpGs

For the 45 CpGs associated with pancreatic cancer risk, ANNOVAR annotation suggested 

32 adjacent genes. Of them, we were able to build blood tissue gene expression prediction 

models with R2 ≥ 0.01 for nine (RPS2, STARD3, GBGT1, ABO, SURF6, ERBB2, 
ORMDL3, SNHG9, SOWAHC). We further assessed Spearman’s rank correlations for 17 

pairs of CpG site-gene for their genetically predicted levels of DNA methylation and gene 

expression, respectively (Supplementary Table 2). For all genes except for STARD3, we 

observed significant (P < 0.001) correlations (Supplementary Table 2).

Associations of predicted expression of candidate target genes with pancreatic cancer 
risk

Of these eight genes showing significant correlations, six further showed a significant 

association with pancreatic cancer risk for their genetically predicted expression levels, 

namely, ABO (P = 6.72 × 10−12), RPS2 (P = 3.48 × 10−5), SURF6 (P = 8.47 × 10−3), 

ORMDL3 (P = 2.58 × 10−4), SNHG9 (P = 1.15 × 10−2), and SOWAHC (P = 8.30 × 

10−4). Overall, a total of 12 CpGs with 6 genes showed significant associations in each 

pair of the relationships in the DNA methylation-gene expression-pancreatic cancer risk 

pathway. Encouragingly, all these associations showed consistent directions. Taken the CpG 

site cg24267699 located upstream of ABO as an example, its genetically predicted DNA 

methylation showed a positive association with pancreatic cancer risk (odds ratio (OR) 

= 2.50; P = 1.33 × 10−21). Meanwhile, we observed an inverse correlation between the 

genetically predicted DNA methylation level of cg24267699 and predicted expression of 

ABO (correlation coefficient = −0.62; P < 0.001), as well as an inverse association between 

predicted expression of ABO and pancreatic cancer risk (OR = 0.89, P = 6.72 × 10−12) 

(Tables 3, Supplementary Tables 2–3 and Supplementary Figure 3). Consistent three-way 

associations were also observed for CpGs and five other genes (RPS2, SURF6, ORMDL3, 

SNHG9, and SOWAHC), which have not been previously reported as pancreatic cancer 

susceptibility genes in GWAS or TWAS.
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Directly measured levels of associated CpGs in pancreatic tumor tissue versus benign 
pancreatic tissue

Of the 45 CpGs, 16 were directly captured in the Reduced representation bisulfite 

sequencing (RRBS) of 18 pancreatic tumor tissue specimens and 18 benign pancreatic tissue 

specimens. Of them, significances of levels of two CpGs (cg04520704 and cg04633225) in 

tumor versus benign tissues could not be determined. Among the others, six demonstrated 

significant different levels in pancreatic tumor tissue versus benign pancreatic tissue (Table 

4). Encouragingly, the effect directions for all of them are consistent with findings from 

analyses using genetic instruments (Table 4).

Discussion

The current study is by far the first large-scale study that evaluated the relationship between 

genetically predicted DNA methylation levels and pancreatic cancer risk. We identified 45 

CpGs of which the predicted DNA methylation levels showed significant associations with 

pancreatic cancer risk at FDR < 0.05, including 15 CpGs located at five novel loci that 

have not been reported in previous GWAS. For the remaining 30 CpGs located at four 

known pancreatic cancer risk loci, the observed associations were substantially attenuated 

after adjusting for GWAS-identified risk SNPs, implying that the associations may be at 

least partly due to the reported risk SNPs. We found consistent direction of associations 

in the DNA methylation-gene expression-pancreatic cancer risk pathway for 12 CpGs 

with six genes. Our findings were further supported with the evidence from differentiated 

DNA methylation at six CpGs for their directly measured levels observed in pancreatic 

tumor versus benign tissue. Our study identified novel methylation biomarker candidates 

for pancreatic cancer, as well as provided new information in understanding etiology of 

pancreatic cancer, a highly lethal malignancy.

Of the 45 identified associated CpGs, we were able to assess correlations between 

genetically predicted DNA methylation and gene expression levels for 17 CpGs with 9 

adjacent genes. Among the examined correlations, except for the one between cg19586165 

and STARD3, all others were statistically significant. The possible speculation for the 

insignificant correlation suggested that the most proximal gene of cg19586165, STARD3, 
might not be the actual target gene. Additional strategies beyond the scope of simple 

statistical correlations are needed to verify its actual target gene. Of the eight linked 

genes correlated with predicted DNA methylation of the identified CpGs, six (ABO, RPS2, 
SURF6, ORMDL3, SNHG9 and SOWAHC) demonstrated significant associations with 

pancreatic cancer risk for their predicted expression. Among them, The ABO blood group 

gene located at 9q34.2 has already been implicated as a potential target gene of pancreatic 

cancer risk SNPs from previous GWAS and TWAS [17, 21]. Genotype-inferred non-O blood 

type was consistently suggested to be associated with an increased risk of pancreatic cancer 

compared to other blood types, which may be partly explained by differentiated expression 

of blood group antigens, or alterations in the systemic inflammatory state [41]. SURF6 has 

been previously suggested as a potential pancreatic cancer biomarker, as indicated by a study 

comparing its expression level in malignant pancreatic cells to that in normal pancreatic duct 

cells or human papillomavirus-immortalized pancreatic duct epithelial cells [42]. A higher 
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expression level of SNHG9, a non-coding RNA, has been identified as a novel prognostic 

markers for pancreatic cancer [43]. To the best of our knowledge, our study is the first one 

implicating potential link between this gene and pancreatic cancer risk. Further functional 

studies are needed to better understand potential regulatory effects of the identified CpGs on 

expression of the genes, and link between expression of the genes and pancreatic cancer.

In this study we systematically assessed relationships between genetically predicted DNA 

methylation in blood, genetically predicted expression for putatively target genes in blood, 

and pancreatic cancer risk. For our analyses using genetic instruments we used data 

generated from white blood cells rather than pancreatic tissue for several reasons. First, 

it is very challenging to acquire a large sample of pancreatic tissue from healthy subjects 

without pancreatic cancer. Information from pancreatic tumor-adjacent normal tissue would 

be less desirable, due to potential influence of somatic alterations on DNA methylation. 

Furthermore, findings of biomarkers identified in a study design using data from white blood 

cell samples may confer more translational and practical utilities for future risk assessment 

of pancreatic cancer, compared with biomarkers in pancreas tissue as it is impractical to 

obtain pancreas tissue from healthy subjects. We also acknowledge that compared with 

pancreas specimens, a study focusing on blood samples may not be ideal for pinpointing 

the underlying etiology of pancreatic cancer development given possible tissue-specific 

DNA methylation patterns. However, it is also worth noting that, high concordance for the 

genetically regulated component of DNA methylation cross several tissue types has been 

reported for a large number of CpGs [44, 45]. In this study, we have compared the directly 

measured levels of a proportion of identified associated CpGs in pancreatic tumor tissue 

versus benign pancreatic tissue. It is worth noting that for this comparison, the overall 

DNA methylation levels influenced by both genetic and non-genetic factors were assessed, 

which is different from the analyses focusing on genetic instruments, in which case only 

genetically regulated components of DNA methylation levels were evaluated. Although the 

involved sample size is relatively small (18 vs 18), we were still able to observe significant 

differences for six of the CpGs among the limited associated CpGs that were captured in our 

measurement using RRBS. Unlike The Cancer Genome Atlas (TCGA) study, in which only 

methylation of pancreatic tumor and tumor-adjacent normal tissue from pancreatic cancer 

patients are available, in our comparison the control group focuses on histologically normal 

pancreas tissue from subjects without pancreatic cancer, thus representing a better design 

compared with other datasets such as TCGA.

Our study has several strengths. First, we used datasets with relatively large sample sizes 

for both methylation prediction model building (N=1,595) and main association analyses for 

pancreatic cancer risk (8,280 cases and 6,728 controls), which enabled us to conduct a well 

powered assessment of the DNA methylation-pancreatic cancer risk associations. Second, 

our innovative study design of using genetic instruments to predict DNA methylation 

decreased several biases that are commonly embedded in traditional epidemiological 

studies, such as residual confounding and reverse causality. In addition, by integrating 

multi-omics data of DNA methylation and gene expression from various resources, we 

were able to further verify our findings by examining the consistency of the associations 

in the DNA methylation-gene expression-pancreatic cancer risk pathway for the identified 

significant CpGs, which may further contribute to potential etiologic understanding of 
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pancreatic cancer. The performance of our developed models were externally validated 

in an independent WHI dataset, which uses different genotyping platforms (Illumina vs 

Affymatrix used in FHS dataset), supporting the utility of our prediction models across 

platforms. Finally, besides evidence from analyses using genetic instruments, we found 

additional evidence for some of the identified CpGs using their directly measured levels in 

pancreatic tissue, further supporting relevance of the identified CpGs with pancreatic cancer. 

Although the sample size for this analysis is relatively small, it is worth noting that our 

study comparing tissue samples of PC cases and non-PC controls could well overcome the 

potential limitation of many other studies (e.g., The Cancer Genome Atlas) comparing tumor 

samples of cases and tumor-adjacent normal tissue samples of cases.

Several potential limitations need to be acknowledged for appropriate interpretation of our 

findings. First, the associated CpGs identified in this study do not necessarily imply their 

causal role in pancreatic cancer. Similar to TWAS, although our findings will be useful for 

prioritizing candidate DNA methylation biomarkers, false positive findings could exist for 

some of the identified associations [46]. There are several potential reasons for this, such 

as correlated DNA methylation across individuals, correlated predicted DNA methylation, 

as well as shared variants [46]. In our study, multiple identified CpGs locate at the same 

loci. Future functional investigation will better characterize whether the identified CpGs 

play a causal role in pancreatic tumorigenesis. Second, during the DNA methylation genetic 

prediction model building, due to a lack of data, we were not able to incorporate additional 

variables, including established pancreatic cancer risk factors, such as smoking, alcohol 

drinking, body mass index, diabetes status, etc for adjustments. Future work for developing 

DNA methylation genetic prediction models after adjusting for these additional variables are 

warranted to validate our findings. Third, although we were able to show that a proportion 

of the pancreatic cancer associated CpGs we identified demonstrated differential levels in 

pancreatic tumor versus benign tissue, further work directly comparing DNA methylation 

levels of these CpGs in pre-diagnosed blood of pancreatic cancer cases and controls are 

warranted to further validate our findings. Fourth, it is worth noting that the PanScan III 

data on dbGaP only contained data for cases but not for controls. In the current analysis for 

improving statistical power we included cases of PanScan III in the analyses. Previous work 

suggested that imputation of datasets genotyped by different platforms before merging could 

generate slightly more SNPs than imputations after combining the datasets together [47]. In 

the current study, we merged genotyped data across cases and controls of PanScan I, II, III 

along with PanC4 and then imputed the data together. Although the design of incorporating 

data of cases only in PanScan III could be of potentially concerning, we carefully compared 

the association results in different subgroups (Supplementary Table 1), and the estimates 

are quite robust, suggesting that this is a less concerning issue and our design should be 

appropriate. Lastly, in this study we evaluated ANNOVAR annotated genes as candidate 

target genes of associated CpG sites for correlation analysis. With the recognized chromatin 

interaction and long-range regulation of gene expression in the human genome, it is possible 

that for some CpGs the target genes may not necessarily the nearest genes. Further work 

is warranted to better characterize potential target genes of our identified CpGs using other 

approaches beyond simply statistical correlation analyses.
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In summary, in a large-scale study, we identified 45 CpGs showing significant associations 

with pancreatic cancer risk for their genetically predicted DNA methylation, including 15 

at five novel loci showing an association independent from known risk variants. We further 

observed consistent directions of associations in the DNA methylation-gene expression­

pancreatic cancer risk pathway. We found differentiated DNA methylation at six of the 

identified CpGs for their measured levels in pancreatic tumor versus benign tissue. The 

pancreatic cancer risk associated CpGs identified in this study could be investigated in 

future studies with direct measurement of circulating DNA methylation levels for examining 

potential utility in pancreatic cancer risk assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design flow chart. PanScan, Pancreatic Cancer Cohort Consortium (PanScan); PanC4, 

Pancreatic Cancer Case-Control Consortium.

Zhu et al. Page 15

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 16

Ta
b

le
 1

.

C
pG

 s
ite

s 
w

ith
 g

en
et

ic
al

ly
 p

re
di

ct
ed

 D
N

A
 m

et
hy

la
tio

n 
to

 b
e 

in
de

pe
nd

en
tly

 a
ss

oc
ia

te
d 

w
ith

 p
an

cr
ea

tic
 c

an
ce

r 
ri

sk
 a

ft
er

 a
dj

us
tm

en
t f

or
 p

re
vi

ou
sl

y 

id
en

tif
ie

d 
ri

sk
 S

N
Ps

C
pG

 s
it

e
C

hr
P

os
it

io
n 

(b
ui

ld
37

)
N

um
be

r 
of

 S
N

P
s 

us
ed

 fo
r 

pr
ed

ic
ti

on

C
la

ss
if

ic
at

io
n

R
2a

O
R

 (
95

%
 C

I)
b

P
 v

al
ue

c
P

 v
al

ue
 

af
te

r 
F

D
R

R
is

k 
SN

P
 

ad
ju

st
ed

 fo
r

P
 v

al
ue

 a
ft

er
 a

dj
us

ti
ng

 fo
r 

ri
sk

 S
N

P

cg
20

93
01

14
2

11
03

72
28

5
15

ex
on

ic
0.

02
1.

94
 (

1.
44

–2
.6

1)
1.

28
 ×

 1
0−

5
0.

01
9

rs
14

86
13

4
1.

28
 ×

 1
0−

5

cg
01

55
40

64
9

10
68

55
17

1
27

up
st

re
am

0.
20

1.
22

 (
1.

12
–1

.3
2)

1.
75

 ×
 1

0−
6

0.
00

3
rs

50
59

22
1.

77
 ×

 1
0−

6

cg
02

87
16

59
16

20
14

06
3

7
in

tr
on

ic
0.

32
1.

18
 (

1.
09

–1
.2

8)
3.

34
 ×

 1
0−

5
0.

04
5

rs
71

90
45

8
3.

41
 ×

 1
0−

5

cg
18

27
97

42
16

20
15

70
3

46
up

st
re

am
/

do
w

ns
tr

ea
m

0.
21

1.
20

 (
1.

10
–1

.3
0)

2.
89

 ×
 1

0−
5

0.
04

0
rs

71
90

45
8

2.
94

 ×
 1

0−
5

cg
15

44
50

00
17

37
60

80
96

50
up

st
re

am
0.

28
0.

85
 (

0.
80

–0
.9

1)
2.

42
 ×

 1
0−

6
0.

00
5

rs
47

95
21

8
1.

16
 ×

 1
0−

6

cg
03

01
39

99
17

37
60

82
04

21
up

st
re

am
0.

18
0.

81
 (

0.
74

–0
.8

9)
4.

02
 ×

 1
0−

6
0.

00
7

rs
47

95
21

8
1.

63
 ×

 1
0−

6

cg
19

43
90

43
17

37
71

99
13

27
in

te
rg

en
ic

0.
04

0.
64

 (
0.

53
–0

.7
6)

6.
76

 ×
 1

0−
7

0.
00

2
rs

47
95

21
8

2.
51

 ×
 1

0−
7

cg
17

28
85

60
17

37
72

00
09

18
in

te
rg

en
ic

0.
05

0.
62

 (
0.

52
–0

.7
5)

3.
41

 ×
 1

0−
7

0.
00

1
rs

47
95

21
8

1.
35

 ×
 1

0−
7

cg
24

52
03

81
17

37
78

46
94

20
in

tr
on

ic
0.

02
0.

54
 (

0.
43

–0
.6

9)
3.

71
 ×

 1
0−

7
0.

00
1

rs
47

95
21

8
1.

10
 ×

 1
0−

7

cg
24

48
35

76
17

37
79

27
70

13
U

T
R

3
0.

03
0.

51
 (

0.
38

–0
.6

8)
7.

31
 ×

 1
0−

6
0.

01
2

rs
47

95
21

8
4.

23
 ×

 1
0−

6

cg
19

58
61

65
17

37
81

40
72

10
ex

on
ic

0.
08

1.
38

 (
1.

19
–1

.5
9)

1.
26

 ×
 1

0−
5

0.
01

9
rs

47
95

21
8

2.
86

 ×
 1

0−
6

cg
02

94
40

84
17

37
82

70
57

22
do

w
ns

tr
ea

m
0.

03
1.

81
 (

1.
44

–2
.2

9)
5.

82
 ×

 1
0−

7
0.

00
1

rs
47

95
21

8
1.

47
 ×

 1
0−

7

cg
16

55
78

58
17

37
87

97
40

23
in

tr
on

ic
0.

06
1.

47
 (

1.
25

–1
.7

4)
4.

98
 ×

 1
0−

6
0.

00
9

rs
47

95
21

8
1.

23
 ×

 1
0−

6

cg
22

83
30

65
17

38
09

56
91

14
in

te
rg

en
ic

0.
03

0.
59

 (
0.

46
–0

.7
6)

3.
14

 ×
 1

0−
5

0.
04

3
rs

47
95

21
8

1.
86

 ×
 1

0−
5

cg
04

52
07

04
22

18
32

51
60

18
in

tr
on

ic
0.

08
1.

36
 (

1.
18

–1
.5

7)
2.

63
 ×

 1
0−

5
0.

03
8

rs
16

98
68

25
2.

65
 ×

 1
0−

5

a R
2 :

 m
od

el
 p

re
di

ct
io

n 
pe

rf
or

m
an

ce
 (

R
2 )

 d
er

iv
ed

 u
si

ng
 F

H
S 

da
ta

b O
R

 (
od

ds
 r

at
io

) 
an

d 
C

I 
(c

on
fi

de
nc

e 
in

te
rv

al
) 

pe
r 

on
e 

st
an

da
rd

 d
ev

ia
tio

n 
in

cr
ea

se
 in

 g
en

et
ic

al
ly

 p
re

di
ct

ed
 D

N
A

 m
et

hy
la

tio
n

c P 
va

lu
e:

 d
er

iv
ed

 f
ro

m
 a

ss
oc

ia
tio

n 
an

al
ys

es
 o

f 
8,

28
2 

ca
se

s 
an

d 
6,

72
8 

co
nt

ro
ls

; F
D

R
-a

dj
us

t p
≤0

.0
5 

co
ns

id
er

ed
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 17

Ta
b

le
 2

.

C
pG

 s
ite

s 
w

ith
 g

en
et

ic
al

ly
 p

re
di

ct
ed

 D
N

A
 m

et
hy

la
tio

n 
to

 b
e 

as
so

ci
at

ed
 w

ith
 p

an
cr

ea
tic

 c
an

ce
r 

ri
sk

 th
at

 a
re

 p
ot

en
tia

lly
 in

fl
ue

nc
ed

 b
y 

pr
ev

io
us

ly
 id

en
tif

ie
d 

ri
sk

 S
N

Ps

C
pG

 s
it

e
C

hr
P

os
it

io
n 

(b
ui

ld
37

)

N
um

be
r 

of
 S

N
P

s 
us

ed
 fo

r 
pr

ed
ic

ti
on

C
la

ss
if

ic
at

io
n

R
2b

O
R

 (
95

%
 C

I)
c

P
 v

al
ue

d
P

 v
al

ue
 a

ft
er

 F
D

R
R

is
k 

SN
P

 a
dj

us
te

d 
fo

r

P
 v

al
ue

 a
ft

er
 

ad
ju

st
in

g 
fo

r 
ri

sk
 

SN
P

cg
10

01
59

74
1

19
98

27
58

0
87

in
te

rg
en

ic
0.

13
0.

80
 (

0.
73

–0
.8

7)
1.

28
 ×

 1
0−

7
3.

84
 ×

 1
0−

4
rs

16
98

68
25

;
rs

37
90

84
4

0.
02

cg
10

09
85

23
1

20
00

02
34

3
40

in
tr

on
ic

0.
22

0.
83

 (
0.

78
–0

.9
0)

1.
29

 ×
 1

0−
6

2.
73

 ×
 1

0−
3

rs
16

98
68

25
;

rs
37

90
84

4
0.

52

cg
07

92
68

95
1

20
00

05
83

3
24

in
tr

on
ic

0.
03

0.
61

 (
0.

49
–0

.7
7)

1.
89

 ×
 1

0−
5

2.
77

 ×
 1

0−
2

rs
16

98
68

25
;

rs
37

90
84

4
0.

32

cg
17

80
43

56
1

20
00

09
92

7
3

in
tr

on
ic

0.
01

3.
38

 (
2.

12
–5

.3
9)

2.
81

 ×
 1

0−
7

8.
05

 ×
 1

0−
4

rs
16

98
68

25
;

rs
37

90
84

4
0.

32

cg
07

50
78

01
5

12
91

23
5

5
in

tr
on

ic
0.

03
2.

29
 (

1.
66

–3
.1

6)
5.

14
 ×

 1
0−

7
1.

30
 ×

 1
0−

3
rs

27
36

09
8;

rs
35

22
61

31
;

rs
40

16
81

0.
13

cg
07

38
00

26
5

12
96

00
7

14
up

st
re

am
0.

01
4.

52
 (

2.
97

–6
.9

0)
2.

39
 ×

 1
0−

12
1.

67
 ×

 1
0−

8
rs

27
36

09
8;

rs
35

22
61

31
;

rs
40

16
81

4.
55

 ×
 1

0−
3

cg
26

60
32

75
5

12
98

96
5

10
in

te
rg

en
ic

0.
04

2.
24

 (
1.

75
–2

.8
7)

1.
11

 ×
 1

0−
10

6.
36

 ×
 1

0−
7

rs
27

36
09

8;
rs

35
22

61
31

;
rs

40
16

81
0.

05

cg
11

62
40

60
5

13
16

03
8

25
in

te
rg

en
ic

0.
18

1.
28

 (
1.

17
–1

.4
0)

2.
49

 ×
 1

0−
8

9.
23

 ×
 1

0−
5

rs
27

36
09

8;
rs

35
22

61
31

;
rs

40
16

81
0.

93

cg
26

20
91

69
5

13
16

26
4

22
in

te
rg

en
ic

0.
24

1.
24

 (
1.

15
–1

.3
4)

2.
19

 ×
 1

0−
8

8.
62

 ×
 1

0−
5

rs
27

36
09

8;
rs

35
22

61
31

;
rs

40
16

81
0.

83

cg
10

44
14

24
5

13
16

63
6

16
in

te
rg

en
ic

0.
01

2.
08

 (
1.

52
–2

.8
6)

5.
82

 ×
 1

0−
6

1.
02

 ×
 1

0−
2

rs
27

36
09

8;
rs

35
22

61
31

;
rs

40
16

81
0.

65

cg
07

49
38

74
5

13
42

17
2

11
in

tr
on

ic
0.

15
0.

69
 (

0.
61

–0
.7

7)
8.

91
 ×

 1
0−

11
5.

61
 ×

 1
0−

7
rs

27
36

09
8;

rs
35

22
61

31
;

rs
40

16
81

0.
93

cg
19

91
52

56
5

13
45

67
7

11
up

st
re

am
0.

02
2.

85
 (

2.
00

–4
.0

4)
5.

16
 ×

 1
0−

9
2.

32
 ×

 1
0−

5
rs

27
36

09
8;

rs
35

22
61

31
;

rs
40

16
81

0.
52

cg
27

02
87

50
5

13
49

42
2

20
in

te
rg

en
ic

0.
25

0.
79

 (
0.

74
–0

.8
5)

6.
59

 ×
 1

0−
10

3.
46

 ×
 1

0−
6

rs
27

36
09

8;
rs

35
22

61
31

;
rs

40
16

81
0.

43

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 18

C
pG

 s
it

e
C

hr
P

os
it

io
n 

(b
ui

ld
37

)

N
um

be
r 

of
 S

N
P

s 
us

ed
 fo

r 
pr

ed
ic

ti
on

C
la

ss
if

ic
at

io
n

R
2b

O
R

 (
95

%
 C

I)
c

P
 v

al
ue

d
P

 v
al

ue
 a

ft
er

 F
D

R
R

is
k 

SN
P

 a
dj

us
te

d 
fo

r

P
 v

al
ue

 a
ft

er
 

ad
ju

st
in

g 
fo

r 
ri

sk
 

SN
P

cg
03

47
49

26
9

13
60

23
40

7
24

in
tr

on
ic

0.
01

2.
72

 (
1.

90
–3

.8
9)

5.
18

 ×
 1

0−
8

1.
72

 ×
 1

0−
4

rs
50

59
22

0.
36

cg
01

16
97

78
9

13
60

38
69

0
14

in
tr

on
ic

0.
04

1.
98

 (
1.

46
–2

.6
8)

1.
04

 ×
 1

0−
5

1.
62

 ×
 1

0−
2

rs
50

59
22

0.
13

cg
14

65
39

77
9

13
60

38
69

2
20

in
tr

on
ic

0.
03

4.
27

 (
3.

09
–5

.8
9)

1.
12

 ×
 1

0−
18

3.
53

 ×
 1

0−
14

rs
50

59
22

0.
08

cg
13

53
13

87
9

13
60

78
65

7
13

in
te

rg
en

ic
0.

11
0.

34
 (

0.
25

–0
.4

5)
3.

16
 ×

 1
0−

13
2.

49
 ×

 1
0−

9
rs

50
59

22
0.

75

cg
00

87
89

53
9

13
61

29
87

5
36

do
w

ns
tr

ea
m

0.
15

0.
65

 (
0.

54
–0

.7
9)

6.
83

 ×
 1

0−
6

1.
16

 ×
 1

0−
2

rs
50

59
22

0.
42

cg
11

87
91

88
9

13
61

49
90

8
36

in
tr

on
ic

0.
5

2.
28

 (
1.

84
–2

.8
3)

4.
84

 ×
 1

0−
14

4.
36

 ×
 1

0−
10

rs
50

59
22

0.
89

cg
21

16
02

90
9

13
61

49
94

1
43

in
tr

on
ic

0.
71

1.
99

 (
1.

69
–2

.3
4)

8.
87

 ×
 1

0−
17

1.
12

 ×
 1

0−
12

rs
50

59
22

0.
76

cg
22

53
54

03
9

13
61

50
03

2
44

in
tr

on
ic

0.
69

2.
29

 (
1.

89
–2

.7
7)

4.
63

 ×
 1

0−
17

7.
29

 ×
 1

0−
13

rs
50

59
22

0.
59

cg
24

26
76

99
9

13
61

51
35

9
13

up
st

re
am

0.
59

2.
50

 (
2.

07
–3

.0
2)

1.
33

 ×
 1

0−
21

8.
38

 ×
 1

0−
17

rs
50

59
22

0.
01

cg
06

81
88

65
9

13
61

51
95

8
10

in
te

rg
en

ic
0.

3
1.

84
 (

1.
52

–2
.2

4)
8.

47
 ×

 1
0−

10
4.

10
 ×

 1
0−

6
rs

50
59

22
0.

16

cg
13

66
01

74
9

13
62

38
39

2
19

in
tr

on
ic

0.
07

1.
64

 (
1.

34
–2

.0
0)

1.
30

 ×
 1

0−
6

2.
73

 ×
 1

0−
3

rs
50

59
22

0.
29

cg
13

56
82

13
9

13
63

87
23

5
16

in
tr

on
ic

0.
03

7.
05

 (
3.

43
–1

4.
48

)
1.

08
 ×

 1
0−

7
3.

40
 ×

 1
0−

4
rs

50
59

22
0.

17

cg
21

10
14

65
13

28
49

34
04

20
up

st
re

am
0.

04
0.

61
 (

0.
49

–0
.7

6)
9.

94
 ×

 1
0−

6
1.

.6
1 

×
 1

0−
2

rs
95

81
94

3
0.

06

cg
11

85
33

20
13

28
49

39
13

52
up

st
re

am
0.

08
0.

69
 (

0.
61

–0
.7

9)
3.

88
 ×

 1
0−

8
1.

36
 ×

 1
0−

4
rs

95
81

94
3

0.
46

cg
26

79
32

56
13

28
49

40
04

55
up

st
re

am
0.

06
0.

72
 (

0.
62

–0
.8

2)
1.

56
 ×

 1
0−

6
3.

17
 ×

 1
0−

3
rs

95
81

94
3

0.
16

cg
04

63
32

25
13

28
49

41
61

22
up

st
re

am
0.

02
0.

45
 (

0.
34

–0
.5

9)
1.

09
 ×

 1
0−

8
4.

58
 ×

 1
0−

5
rs

95
81

94
3

0.
06

cg
11

21
32

48
13

28
53

46
48

7
in

te
rg

en
ic

0.
22

0.
81

 (
0.

75
–0

.8
8)

1.
16

 ×
 1

0−
6

2.
61

 ×
 1

0−
3

rs
95

81
94

3
2.

00
 ×

 1
0−

4

a R
2 :

 m
od

el
 p

re
di

ct
io

n 
pe

rf
or

m
an

ce
 (

R
2 )

 d
er

iv
ed

 u
si

ng
 F

H
S 

da
ta

b O
R

 (
od

ds
 r

at
io

) 
an

d 
C

I 
(c

on
fi

de
nc

e 
in

te
rv

al
) 

pe
r 

on
e 

st
an

da
rd

 d
ev

ia
tio

n 
in

cr
ea

se
 in

 g
en

et
ic

al
ly

 p
re

di
ct

ed
 D

N
A

 m
et

hy
la

tio
n

c P 
va

lu
e:

 d
er

iv
ed

 f
ro

m
 a

ss
oc

ia
tio

n 
an

al
ys

es
 o

f 
8,

28
2 

ca
se

s 
an

d 
6,

72
8 

co
nt

ro
ls

; F
D

R
-a

dj
us

t p
≤0

.0
5 

co
ns

id
er

ed
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 19

Ta
b

le
 3

.

A
ss

oc
ia

tio
ns

 s
ho

w
in

g 
co

ns
is

te
nt

 d
ir

ec
tio

n 
of

 e
ff

ec
t f

or
 p

re
di

ct
ed

 D
N

A
 m

et
hy

la
tio

n-
pr

ed
ic

te
d 

ge
ne

 e
xp

re
ss

io
n-

pa
nc

re
at

ic
 c

an
ce

r 
ri

sk
 p

at
hw

ay

C
pG

 s
it

e
C

hr
P

os
it

io
n

A
ss

oc
ia

te
d 

G
en

e
C

la
ss

if
ic

at
io

n

D
N

A
 m

et
hy

la
ti

on
 a

nd
 p

an
cr

ea
ti

c 
ca

nc
er

 r
is

k
D

N
A

 m
et

hy
la

ti
on

 a
nd

 g
en

e 
ex

pr
es

si
on

G
en

e 
ex

pr
es

si
on

 a
nd

 p
an

cr
ea

ti
c 

ca
nc

er
 r

is
k

O
R

P
 v

al
ue

C
or

re
la

ti
on

 
co

ef
fi

ci
en

t
C

or
re

la
ti

on
 P

 
va

lu
e

O
R

P
 v

al
ue

cg
20

93
01

14
2

11
03

72
28

5
SO

W
A

H
C

ex
on

ic
1.

94
1.

28
 ×

 1
0−

5
−

0.
51

6
<

.0
01

0.
64

8.
30

 ×
 1

0−
4

cg
00

87
89

53
9

13
61

29
87

5

A
B

O

do
w

ns
tr

ea
m

0.
65

6.
83

 ×
 1

0−
6

0.
42

0
<

.0
01

0.
49

6.
72

 ×
 1

0−
12

cg
11

87
91

88
9

13
61

49
90

8
in

tr
on

ic
2.

28
4.

84
 ×

 1
0−

14
−

0.
35

0
<

.0
01

cg
21

16
02

90
9

13
61

49
94

1
in

tr
on

ic
1.

99
8.

87
 ×

 1
0−

17
−

0.
34

4
<

.0
01

cg
22

53
54

03
9

13
61

50
03

2
in

tr
on

ic
2.

29
4.

63
 ×

 1
0−

17
−

0.
36

9
<

.0
01

cg
24

26
76

99
9

13
61

51
35

9
up

st
re

am
2.

50
1.

33
 ×

 1
0−

21
−

0.
62

0
<

.0
01

cg
06

81
88

65
a

9
13

61
51

95
8

in
te

rg
en

ic
1.

84
8.

47
 ×

 1
0−

10
−

0.
42

3
<

.0
01

cg
06

81
88

65
a

9
13

61
51

95
8

SU
R

F6
in

te
rg

en
ic

1.
84

8.
47

 ×
 1

0−
10

−
0.

32
3

<
.0

01
0.

91
8.

47
 ×

 1
0−

3

cg
02

87
16

59
16

20
14

06
3

R
PS

2
in

tr
on

ic
1.

18
3.

34
 ×

 1
0−

5
−

0.
74

2
<

.0
01

0.
64

3.
48

 ×
 1

0−
5

cg
18

27
97

42
16

20
15

70
3

up
st

re
am

1.
20

2.
89

 ×
 1

0−
5

−
0.

73
9

<
.0

01

cg
18

27
97

42
16

20
15

70
3

SN
H

G
9

do
w

ns
tr

ea
m

1.
20

2.
89

 ×
 1

0−
5

0.
30

5
<

.0
01

1.
10

1.
15

 ×
 1

0−
2

cg
22

83
30

65
17

38
09

56
91

O
R

M
D

L
3

do
w

ns
tr

ea
m

0.
59

3.
14

 ×
 1

0−
5

−
0.

83
1

<
.0

01
1.

15
2.

58
 ×

 1
0−

4

a T
he

 s
am

e 
C

pG
 s

ite
 w

as
 a

nn
ot

at
ed

 to
 tw

o 
di

ff
er

en
t g

en
es

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 20

Ta
b

le
 4

.

C
pG

s 
sh

ow
in

g 
co

ns
is

te
nt

 d
ir

ec
tio

n 
of

 e
ff

ec
t f

or
 d

ir
ec

tly
 m

ea
su

re
d 

le
ve

ls
 in

 p
an

cr
ea

s 
tu

m
or

 v
er

su
s 

be
ni

gn
 ti

ss
ue

s 
an

d 
ge

ne
tic

al
ly

 p
re

di
ct

ed
 le

ve
ls

 in
 b

lo
od

 

of
 p

an
cr

ea
tic

 c
an

ce
r 

ca
se

s 
ve

rs
us

 c
on

tr
ol

s

C
pG

 s
it

e
C

hr
P

os
it

io
n

D
ir

ec
ti

on
 o

f 
as

so
ci

at
io

n 
be

tw
ee

n 
ge

ne
ti

ca
lly

 
pr

ed
ic

te
d 

le
ve

ls
 a

nd
 

pa
nc

re
at

ic
 c

an
ce

r 
ri

sk

A
ve

ra
ge

 le
ve

ls
 in

 
be

ni
gn

 p
an

cr
ea

ti
c 

ti
ss

ue

St
an

da
rd

 d
ev

ia
ti

on
 

of
 le

ve
ls

 in
 b

en
ig

n 
pa

nc
re

at
ic

 t
is

su
e

A
ve

ra
ge

 le
ve

ls
 in

 
pa

nc
re

at
ic

 t
um

or
 

ti
ss

ue

St
an

da
rd

 d
ev

ia
ti

on
 o

f 
le

ve
ls

 in
 p

an
cr

ea
ti

c 
tu

m
or

 t
is

su
e

P
 v

al
ue

 c
om

pa
ri

ng
 

le
ve

ls
 in

 p
an

cr
ea

s 
tu

m
or

 
ve

rs
us

 b
en

ig
n 

ti
ss

ue

cg
17

80
43

56
1

20
00

09
92

7
+

0.
02

0.
04

0.
12

0.
15

<
0.

00
04

cg
20

93
01

14
2

11
03

72
28

5
+

0.
00

5
0.

02
0.

04
0.

05
0.

00
04

cg
07

38
00

26
5

12
96

00
7

+
0.

24
0.

18
0.

54
0.

20
<

0.
00

04

cg
01

16
97

78
9

13
60

38
69

0
+

0.
23

0.
11

0.
46

0.
29

0.
01

cg
22

53
54

03
9

13
61

50
03

2
+

0.
35

0.
21

0.
48

0.
28

0.
05

cg
21

10
14

65
13

28
49

34
04

−
0.

36
0.

19
0.

27
0.

22
0.

02

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 May 01.


	Abstract
	Introduction
	Methods
	DNA methylation prediction models
	Evaluation of the association between genetically predicted DNA methylation levels and pancreatic cancer risk
	Potential target genes of associated CpGs
	Directly measured levels of associated CpGs in pancreatic tumor tissue specimens versus benign pancreatic tissue specimens

	Results
	DNA methylation prediction models
	Associations between genetically predicted DNA methylation and pancreatic cancer risk
	Candidate target genes of associated CpGs
	Associations of predicted expression of candidate target genes with pancreatic cancer risk
	Directly measured levels of associated CpGs in pancreatic tumor tissue versus benign pancreatic tissue

	Discussion
	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

