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CORRESPONDENCE

GOPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug 
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Gliomas are the most common primary tumors of the central 
nervous system (CNS). Among low-grade gliomas, mitogen-
activated protein kinase (MAPK) pathway alterations are 
frequent and may provide a therapeutic target. Currently, 

mechanism-of-action based therapeutic approaches outside 
the MAPK pathway are scarce. However, especially patients 
with subtotally resected, recurrent or highly malignant 
tumors may substantially benefit from the identification of 
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additional specific oncogenic drivers that not only provide 
insight into disease pathogenesis, but also offer targets for 
personalized cancer therapies. The ROS proto-oncogene 
1 (ROS1) gene encodes a receptor tyrosine kinase that is 
involved in chromosomal rearrangements in various can-
cers [6], which present an attractive therapeutic target, since 
specific inhibitors have been approved for several entities [4, 
10]. Data on ROS1 fusions in glioma are limited to single 
cases or small series [3, 5, 8, 9].

Recently, an enrichment of these fusions (about 7%) was 
found in a small number of mostly gliomas in infants [2, 7]. 
Routine diagnostic assessment of ROS1 status in gliomas, 
however, is so far restricted to a few specialized centers or 
molecularly informed trials [11]. Thus, the landscape of 
ROS1 fusions across a broad series of glial tumors of all 
age groups has not been comprehensively studied so far. 
Consequently, the distribution among the various types of 
low- to high-grade glioma is unknown. Similarly, no data 
exist to determine whether ROS1 fusion-positive gliomas, 
irrespective of histology, may share further biological fea-
tures, potentially supporting a ‘ROS1-subtype’ of gliomas. 
Here, we investigated the presence of ROS1 fusions in a 
large cohort of 20,723 patients encompassing different diag-
nostic entities within the spectrum of glioma, to elucidate 
the frequency of such fusions and the characteristics of the 
respective cases.

To identify gliomas with structural alterations affecting 
chromosome 6q (around the ROS1 locus), we systematically 

evaluated copy-number data of our DNA methylation data-
set encompassing 20,723 gliomas, irrespective of specific 
entity and WHO grade (Supplementary Fig. 1 and 2, online 
resource). As a high proportion of ROS1 fusions (in particu-
lar the most frequent GOPC:ROS1 fusion) are accompa-
nied by a segmental loss of chromosome 6q22 in the copy-
number profile, DNA methylation data were screened for a 
segmental loss covering that region (Supplementary Fig. 1, 
online resource). Automated analysis was followed by visual 
inspection and led to the identification of 14 potential cases. 
On suspicious cases, we performed RNA and targeted exome 
sequencing, and confirmed the presence of ROS1 fusions in 
all 14 tumors (Fig. 1a and Supplementary Table 1). In the 
most common (n = 11) GOPC:ROS1 fusions (Fig. 1b), exons 
1–7 or 1–4 of GOPC (NM_001017408) are fused in frame 
to exons 35–43 of ROS1 (NM_002944). Single cases of 
exons 36–43 of ROS1 fused downstream of ZCCHC8 exons 
1–2 (NM_0017612), ARCN1 exons 1–5 (NM_001655), or 
CHCHD3 exons 1–2 (NM_017812) were also observed 
(Fig. 1c). In all fusion events, the kinase domain of ROS1 
was retained (Fig. 1b and Supplementary Table 2). ROS1 
transcript levels were upregulated in all ROS1-fused gliomas 
(Supplementary Fig. 3, online resource). Interestingly, ROS1 
partners are associated with very different cellular functions, 
including, e.g., intracellular protein trafficking and RNA 
processing and degradation. In addition, two further ROS1-
fused glioma samples that were already detected as such by 
performing RNA sequencing in a diagnostic context, after 
the initial screen was performed were included into subse-
quent analyses. One of the samples harbored a GOPC:ROS1 
fusion (with exons 1–7 of GOPC fused to exons 35–43 of 
ROS1) and indeed showed segmental loss of chromosome 
6q22, while the other case harbored a CEP85L:ROS1 fusion 
(with exons 1–12 of CEP85L (NM_001042475) fused 
to exons 35–43 of ROS1) with a segmental gain of chro-
mosome 6q22. In addition, we analyzed RNA sequencing 
data from a set of > 1000 FFPE tissue samples processed in 
a diagnostic setting. Here, no further gliomas harboring a 
ROS1-fusion were detected.

A t-distributed stochastic neighbor embedding (t-SNE) 
analysis of DNA methylation profiles alongside a broad 
reference set of CNS tumors [1] revealed that the ‘ROS1 
cohort’ molecularly segregated into different glioma groups 
(Fig. 1d). Six of the samples grouped with the DNA methyl-
ation class infantile hemispheric glioma, other tumors clus-
tered with various reference classes of glioma from low- to 
high-grade (Fig. 1d). Histological re-evaluation confirmed 
the different histological entities and underline that ROS1 
fusions are not specific to any one glioma entity. Interest-
ingly, most of the patients harboring a fusion were children 
(particularly infants). Of note, however, was the finding that 
two classical adult IDH-wildtype glioblastomas in adult 
patients also harbored a GOPC:ROS1 fusion.

Fig. 1   Summary of clinico-pathological characteristics and key 
molecular findings in tumors with ROS1 gene fusion (a). Schematic 
illustration of the GOPC:ROS1 fusion detected in case #3 involving 
exons 1–7 of GOPC and exons 35–43 of ROS1 (b). Circos plot of 
gene fusions targeting ROS1 (lines link fusion gene partners accord-
ing to chromosomal location; c). t-distributed stochastic neighbor 
embedding (t-SNE) analysis of DNA methylation profiles of ROS1-
fused glioma alongside selected reference samples (d). Reference 
DNA methylation classes: posterior fossa pilocytic astrocytoma 
(LGG, PA PF), hemispheric pilocytic astrocytoma and gangli-
oglioma (LGG, PA/GG ST), midline pilocytic astrocytoma (LGG, 
PA MID), polymorphous low-grade neuroepithelial tumor of the 
young (PLNTY), diffuse leptomeningeal glioneuronal tumor sub-
group 1 (DLGNT 1), diffuse leptomeningeal glioneuronal tumor sub-
group 2 (DLGNT 2), infantile hemispheric glioma (IHG), extraven-
tricular neurocytoma (EVNCT), dysembryoplastic neuroepithelial 
tumor (DNT), rosette-forming glioneuronal tumor (RGNT), myxoid 
glioneuronal tumor of the septum pellucidum and lateral ventricle 
(MYXGNT), diffuse glioneuronal tumor with oligodendroglioma-like 
features and nuclear clusters (DGONC), anaplastic astrocytoma with 
piloid features (ANA PA), pleomorphic xanthoastrocytoma (PXA), 
glioblastoma IDH wildtype subclass RTK I (GBM, RTK I), glioblas-
toma IDH wildtype subclass RTK II (GBM, RTK II), glioblastoma 
IDH wildtype subclass mesenchymal (GBM, MES). The two ROS1-
fused glioma samples that were already detected as such by perform-
ing RNA sequencing in a diagnostic context are highlighted in blue. 
Other abbreviations: LGG/LGGNT low-grade glioma/low-grade gli-
oneuronal tumor, HGG high-grade glioma, GBM glioblastoma, PF 
posterior fossa, N/A not available

◂



1068	 Acta Neuropathologica (2021) 142:1065–1069

1 3

Our data show a high frequency of ROS1 gene fusions 
within the DNA methylation class infantile hemispheric 
glioma, which is in line with recent studies [2, 7]. This 
clinically distinct group of gliomas (that were initially often 
diagnosed as glioblastomas) carries a high prevalence of 
gene fusions with ROS1, ALK, NTRK1/2/3, or MET as a 
fusion partner. However, our finding that ROS1 fusions also 
occur in cases that were both histologically and epigeneti-
cally clearly pilocytic astrocytoma or IDH-wildtype glio-
blastoma, respectively, underscores that this event is not 
pathognomonic for infantile hemispheric glioma, nor lim-
ited to pediatric patients, so in that respect concerns a quite 
‘promiscuous’ marker.

Although relatively rare in other gliomas, identification 
of ROS1 fusions is important from a treatment perspec-
tive, as there are specific inhibitors available. Screening 
via copy-number profiling and subsequent validation using 
RNA sequencing provides an efficient approach to identify 
patients who may benefit from this targeted therapy. How-
ever, as illustrated by one of the cases that was identified by 
performing RNA sequencing in a diagnostic setting, not all 
variants of ROS1 fusion necessarily show a deletion around 
the ROS1 locus. For example, copy-neutral translocations 
can lead to ROS1 fusions as well, and such cases would be 
missed by screening for segmental 6q22 loss. RNA sequenc-
ing thus remains the ‘gold standard’ for adequate detection 
of these rare events. However, it should be noted that tumor 
heterogeneity and blood–brain barrier permeability of spe-
cific ROS1-inhibitors could be one of the major problems 
limiting the efficacy of targeted therapies.

Our findings highlight ROS1 fusions as a rare but poten-
tially highly relevant therapeutic target for a subset of 
patients with gliomas of different histological grades and 
biological classes. Even though these fusions have no strong 
diagnostic relevance, since they are not pathognomonic for 
a tumor type, they are in line with the increasing demand 
to provide predictive markers in diagnostic neuropathol-
ogy. This highlights the need for expanded testing for such 
alterations beyond infant gliomas. It will be interesting to 
see whether ROS1-inhibitors will be effective in upcoming 
clinical trials for glioma patients.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00401-​021-​02369-1.
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