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Abstract: SARS-CoV-2 exploits the host cellular machinery for virus replication leading to the acute syndrome of 
coronavirus disease 2019 (COVID-19). Growing evidence suggests SARS-CoV-2 also exacerbates many chronic dis-
eases, including cancers. As mutations on the spike protein (S) emerged as dominant variants that reduce vaccine 
efficacy, little is known about the relation between SARS-CoV-2 virus variants and cancers. Compared to the SARS-
CoV-2 wild-type, the Gamma variant contains two additional NXT/S glycosylation motifs on the S protein. The hy-
perglycosylated S of Gamma variant is more stable, resulting in more significant epithelial-mesenchymal transition 
(EMT) potential. SARS-CoV-2 infection promoted NF-κB signaling activation and p65 nuclear translocation, inducing 
Snail expression. Pharmacologic inhibition of NF-κB activity by nature food compound, I3C suppressed viral replica-
tion and Gamma variant-mediated breast cancer metastasis, indicating that NF-κB inhibition can reduce chronic 
disease in COVID-19 patients. Our study revealed that the Gamma variant of SARS-CoV-2 activates NF-κB and, in 
turn, triggers the pro-survival function for cancer progression.
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Introduction

Severe acute respiratory syndrome coronavi-
rus-2 (SARS-CoV-2) is the pathogen of the coro-
navirus disease 2019 (COVID-19), which leads 
to a total of 160,074,267 confirmed cases and 
3,325,260 deaths globally (WHO situation 
report, 05/14/2021). SARS-CoV-2 is a single-
stranded RNA virus that encodes 15 non-struc-
tural proteins (nsp1-10 and nsp12-16) as well 
as four structural proteins, nucleocapsid (N), 
membrane protein (M), envelope (E), and spike 
(S), for virus replication [1]. The viral spike (S) 
glycoprotein binds to the angiotensin-convert-
ing enzyme 2 (ACE2) receptor on the host cells, 
cleaved by serine protease TMPRSS2, resulting 
in SARS-CoV-2 virus entry [2]. Thus far, over a 
thousand SARS-CoV-2 variants were found 
worldwide, including SARS-CoV-2 Alpha (UK, 

B.1.1.7), SARS-CoV-2 Beta (South Africa, 
B.1.351), and SARS-CoV-2 Gamma (Brazil, P.1) 
variants. These variants have multiple changes 
in the S protein that influence virus entry. 
Mutations in the receptor recognition site on 
the S are of great concern for escaping immune 
surveillance [3]. S protein of Alpha variant con-
tained eight amino acid changes, resulted in 
decreasing efficacy of the BNT162b2 vaccine 
[4]. Sera from 19 individuals received twice 
with Pfizer/BioNTech vaccine was less effica-
cious against Beta variant [5]. S protein of Beta 
variant appeared with mutations in K417N, 
E484K, N501Y, and D614G [6]. In those who 
received two standard doses of the ChAdOx1 
nCoV-19 vaccine, the efficacy was 60% in the 
Alpha and 64% in Gamma strain against prima-
ry symptomatic COVID-19 [7].
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Nuclear factor-kappaB (NF-κB) is a key regula-
tor of inflammatory responses. The downstr- 
eam targets of NF-κB include interleukin (IL)-
1β, IL-6, and tumor necrosis factor-alpha 
(TNFα), which induce an innate immune re- 
sponse [8, 9]. Excessive NF-κB activation con-
tributes to inflammation and autoimmunity [10] 
and is a hallmark of SARS-CoV infection. 
Inhibition of NF-κB activity may suppress virus-
mediated inflammation and reduce lung pathol-
ogy [11]. Currently, NF-κB antagonists derived 
from natural food compounds are widely used 
in the treatment of various diseases, such as 
indole-3-carbinol (I3C) in cancers [12] and fla-
vonoids in cardiovascular diseases [13]. I3C is 
an active natural anticancer compound found 
in cruciferous vegetables. It stabilizes IκBα and 
retains NF-κB in the cytoplasm [14]. Whether 
manipulation of NF-κB could be utilized as a 
strategy to combat the COVID-19 pandemic has 
not previously been explored in detail. 

The role of SARS-CoV-2 in cancer progression 
remains largely unknown. Cancer patients are 
generally much more vulnerable to COVID-19 
as the immune deficiency increases the SARS-
CoV-2 infection rate [15]. The expression of 
viral receptor ACE2 or TMPRSS2 is positively 
correlated with EMT signature in lung cancer 
[16] and breast cancer [17] patient samples. 
The S of SARS-CoV-2 increases breast cancer 
metastasis through upregulation of Snail [17]. 
This study aimed to dissect the oncogenic 
potentials of SARS-CoV-2 variants in the EMT 
progression. While the 22 NXT/S motifs are 
highly conserved in SARS-CoV-2 variants, the S 
of Gamma variant contains two additional 
NXT/S motifs, resulting in S stabilization and 
NF-κB activation. We discovered that the extra 
glycosylation motifs in Gamma variant incre- 
ase breast cancer metastatic potentials. Under- 
standing the relation between SARS-CoV-2 and 
breast cancer metastasis may help reduce 
COVID-19-mediated chronic disease progre- 
ssion.

Materials and methods

Cell cultures and treatments

MCF7, MCF10A, Caco-2, and HEK293 cells 
were obtained from American Type Culture 
Collection. MCF10A cells were cultured in 
DMEM/F12 medium supplemented with 5% 
horse serum, 500 ng/ml hydrocortisone, 10 
μg/ml insulin, and 20 ng/ml EGF.

Plasmids

The gene encoding amino acids 1-1273 and 
1-218 of the SARS-CoV-2 S protein (Gene ID: 
MN908947) was subcloned into the pLAS2w-
pPuro (RNAi core, Academia Sinica, Taiwan). 
The S variants of SARS-CoV-2 Alpha (Gene ID: 
VG40771-UT), Beta (Gene ID: VG40772-UT), 
and Gamma (Gene ID: VG40773-UT) were pur-
chased from Sino Biological. All construct 
sequences were confirmed by enzyme diges-
tion and DNA sequencing.

Antibodies

The following antibodies were used: N protein 
(a gift from Dr. An-Suei Yang, Genomics Re- 
search Center, Academia Sinica, Taiwan), 
β-Tubulin (66240-1-Ig; Proteintech, Chicago, IL, 
USA), and IκBα (ab32518; Abcam, Cambridge, 
MA, USA). Antibodies for EMT markers, rabbit 
IgG-HRP, and mouse IgG-HRP were used as pre-
viously described [18].

Virus isolation and infection

The SARS-CoV-2 strain was isolated from a 
COVID-19 patient in Taiwan (TCDC#4) as 
described earlier [18]. Briefly, the virus was 
passaged on Vero E6 cells in MEM supple- 
mented with 2% FBS. Target cells were infected 
with SARS-CoV-2 (MOI of 0.1) for 24 h. The 
infected cells were then fixed with 10% formal-
dehyde and permeabilized by 0.5% Triton 
X-100. All procedures were performed in the P3 
lab in the IBMS, Academia Sinica. The experi-
ments were strictly followed the Taiwan Centers 
for Disease Control’s laboratory biosafety 
guidelines. MCF10A-ACE2, Caco-2, and Vero E6 
cells were treated with 10 μM I3C or JSH-23 
(S2313; S7351, Selleckchem, Houston, TX, 
USA) at 37°C for 2 h and then infected with 
SARS-CoV-2 for 24 h.

Immunofluorescence staining

After infection, MCF10A-ACE2 and Vero E6  
cells were fixed with 10% formaldehyde for 1  
h, and then incubated with a primary antibody, 
anti-p65, or anti-N protein antibodies at 4°C 
overnight. The secondary antibody used was 
anti-rabbit 594 (1:1000, Z25307, Invitrogen, 
Waltham, MA) or anti-human 488 (1:1000, 
A-11013, Invitrogen, Waltham, MA) at RT for 1 
h. Nuclei were stained with 4’,6-diamidino-
2-phenylindole (DAPI) for 15 mins in the dark. 
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Images were collected using a Zeiss confocal 
microscope (LSM 700 Stage, Carl-Zeiss-Stras- 
se 22, Oberkochen) and a high content analy- 
sis system (ImageXpress Micro XL, Molecular 
Devices, San Jose, CA).

Luciferase assay

Cells were collected after treating with pseudo-
virus (MOI of 1) or SARS-CoV-2 for two days. 
According to the manufacturer’s protocol, lucif-
erase activities were measured by the lucifer-
ase reporter assay system (Promega, Madison, 
WI, USA). Luminescence measurement was 
detected via GloMax 96 Microplate Lumino- 
meter.

Real-time quantitative PCR (RT-qPCR)

Total RNA was isolated using Quick-RNA 
Miniprep Kit (R1055; ZYMO Research, Irvine, 
CA, USA) as described earlier [18]. 1 μg RNA 
were transcribed to cDNA using ToolsQuant II 
Fast RT Kit (KRT-BA06-2; Biotools, Taipei, 
Taiwan) according to the manufacture’s proto-
col. qPCR reactions were performed using 
SYBR® Green supermix (1708880; Bio-Rad, 
Hercules, CA, USA). Primers used are as fol-
lows: E-cadherin_F: 5’-TGCCCAGAAAATGAAA- 
AAG-3’, E-cadherin_R: 5’-GTGTATGTGGCAATGC- 
GTT-3’, N-cadherin_F: 5’-ACAGTGGCCACCTAC- 
AAAG-3’, N-cadherin_R: 5’-CCGAGATGGGGTT- 
GATAAT-3’, SNAIL_F: 5’-CCTCCCTGTCAGATG- 
AGG3’, SNAIL_R: 5’-CCAGGCTGAGGTATTCCT- 
3’, FOXC2_F: 5’-TCACCTTGAACGGCATCTACC- 
AG-3’, FOXC2_R: 5’-TGACGAAGCACTCGTTGAG- 
CGA-3’, REL_F: 5’-AGTTGCGGAGACCTTCTGAC- 
CA-3’, REL_R: 5’-CGTGATCCTGGCACAGTTTC- 
TG-3’, NFKB1_F: 5’-GCAGCACTACTTCTTGACC- 
ACC-3’, NFKB1_R: 5’-TCTGCTCCTGAGCATTGA- 
CGTC-3’, IRF7_F: 5’-CCACGCTATACCATCTACCT- 
GG-3’, IRF7_R: 5’-GCTGCTATCCAGGGAAGAC- 
ACA-3’, IL-6_F: 5’-AGACAGCCACTCACCTCTTC- 
AG-3’, IL-6_R: 5’-TTCTGCCAGTGCCTCTTTGCT- 
G3’, IFITM1_F: 5’-TCAACATCCACAGCGAGACC- 
3’, IFITM1_R: 5’-TGTCACAGAGCCGAATACCAG- 
3’, E protein_F: 5’-ACAGGTACGTTAATAGTTAAT- 
AGCGT-3’, E protein_R: 5’-ATATTGCAGCAGTAC- 
GCACACA-3’.

Promoter assay

We used X-tremeGENE DNA Transfection Rea- 
gent (XTGHP-RO, Roche, Mannheim, Germany) 
for transient transfection according to the man-
ufacture’s protocol. E-cadherin promoter [19] 
or NF-κB-Luc plasmid was co-transfected with 

S variants in MCF7 cells. Luciferase activity 
was assayed using a Dual-Luciferase Reporter 
Assay System.

Sphere formation assay

Cells were seeded in an ultra-low adherent 
plate and grown in serum-free conditions as 
described earlier [18]. Briefly, MCF7 cells 
expressing S variants were suspended in com-
plete MammoCultTM Medium at the concentra-
tion of 1,000 cells/ml. The cell suspension  
was cultured in a 6-well plate for five days. 
Mammospheres over 100 µm were counted 
manually.

In vitro cell migration and invasion assays

We used transwell permeable supports 
(Corning-Costar, Cambridge, MA) to perform 
cell invasion assay as earlier described [18]. 
Briefly, MCF7 cells expressing S variants were 
serum-starved overnight before the experi-
ment. Then, five thousand cells were seeded 
onto the upper chamber supplemented in 
serum-free DMEM. Two days later, cells that 
migrated to the bottom of the chamber were 
stained with crystal violet, and counted by 
ImageJ. 

A mouse model for lung metastasis

Six-week-old female BALB/c mice were pur-
chased from the National Laboratory Animal 
Center (Taipei, Taiwan). The animals were 
housed at the Institute of Biomedical Sciences 
Animal Care Facility. The tumor metastasis 
assays were performed using a breast cancer 
mouse model through i.v. injection. 4T1 cells 
expressing S variants were injected into the lat-
eral tail vein of mice (5 mice per group). Mice 
were treated with I3C 20 mg/kg via oral gavage. 
At the experimental endpoint, mice lungs were 
excised and stained with India ink. All animal 
procedures complied with the protocols app- 
roved by the Institutional Animal Care and 
Utilization Committee of Academia Sinica.

Statistical analysis 

All data were analyzed and presented as mean 
± SD (standard deviation). The data from indi-
vidual experiments are examined by one-way or 
two-way ANOVA with Tukey’s post hoc test for 
multiple comparisons (GraphPad Prism Soft- 
ware Inc., San Diego, CA, USA). A probability 
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value of P < 0.05 was considered to be statisti-
cally significant.

Results

Glycosylation of SARS-CoV-2 Gamma variant 
contains two additional NXT/S motifs

Glycosylation reduces immunogenicity that 
helps pathogens escape immune surveillance. 
To dissect the oncogenic function of COVID-19 
variants, we focused on glycosylation-mediated 
cancer aggressiveness. To this end, PNGase F 
was used to remove all N-linked oligosaccha-
rides from polypeptides. A glycostaining was 
employed to demonstrate that S protein was 
extensively modified by complex typed N-linked 
glycosylation (Figure 1A). The molecular weight 
of S protein was significantly reduced in 
Western blot analysis after treating N-linked 
but not O-linked glycosylation inhibitors (Figure 
1B). Protein sequence alignment further  
demonstrated that the NXT/S motifs in the S 
protein are evolutionally conserved. Interes- 
tingly, SARS-CoV-2 Gamma variant contains 
two additional NXT/S motifs at N20 (give rise to 
an NRT motif) and N188 (give rise to an NLS 
motif), which are not present in the S of SARS-
CoV-2 wild-type (WT), Alpha, or Beta (Figure 1C, 
1D). To examine if N20 and N188 in Gamma 
variant are really modified by N-linked glycosyl-
ation, we subcloned S protein (1-218 amino 
acids) of WT, Alpha, Beta, and Gamma variants 
and then expressed in HEK293T cells. We 
noticed that the S of Gamma variant displayed 
a molecular weight shift compared to S of WT  
or other variants (Figure 1E). To better under-
stand the function of the two NXT/S motifs on 
the Gamma variant, we analyzed protein stabil-
ity using cycloheximide-chase assays (Figure 
1F). The S of Gamma variant is more stable 
than that of WT, Alpha, or Beta variants, indicat-
ing glycosylation stabilizes S expression in host 
cells (Figure 1G). Similarly, the Gamma variant 
possessed stronger infectivity in HEK293-
hACE2 cells in pseudovirus infection (Figure 
1H). These results suggest hyper-glycosylated 
S of Gamma variant induces an aggressive 
phenotype than that of WT.

SARS-CoV-2 Gamma variant induces a stron-
ger EMT in breast epithelial cells

NF-κB activation is critical for SARS-CoV-2 
infection. To further validate if SARS-CoV-2 

transduction activates the NF-κB pathway, we 
performed an immunofluorescence assay (IFA) 
to examine the subcellular localization of p65, 
one of five components of the NF-κB pathway 
[20]. We observed p65 translocation from the 
cytoplasm into the nucleus upon SARS-CoV-2 
infection in both Vero E6 and MCF10A-ACE2 
cells (Figure 2A). As shown in Figure 2B, 2C, 
transient expression of IKKβ (another NF-κB 
pathway protein) increased viral N protein lev-
els, whereas expression of dominant-negative 
IκBα super repressor (IκBα-SR) and IKKβ 
knockdown (IKKβ-KD) diminished them, indica- 
tive of alleviated SARS-CoV-2 infection. Con- 
sistent with the Western blot analysis, the 
CyTOF analysis indicated that SARS-CoV-2  
significantly induced the expression levels of 
viral N protein, and the N protein levels were 
negatively correlated with levels of IκB (Figure 
2D). Our earlier results showed that an S of 
SARS-CoV-2 induces EMT through NF-κB signal-
ing [17]. To investigate the S-induced EMT of 
each virus strain, we transiently expressed the 
S proteins of SARS-CoV-2 WT, Alpha, Beta, or 
Gamma variants in MCF7 cells. Results from 
qPCR revealed that Gamma variant induces a 
stronger downregulation of E-cadherin and 
upregulation of N-cadherin and SNAIL (Figure 
2E) than that of WT, Alpha, or Beta variants. 
Similarly, the Gamma variant exhibits more 
E-cadherin promoter repression (Figure 2F) 
and NF-κB activation (Figure 2G). These results 
suggest that the Gamma variant has more 
potential to induce breast cancer metastasis 
through NF-κB activation. 

NF-κB inhibitors limit SARS-CoV-2 infection 
and reduce IL-6 levels

To investigate the role of NF-κB in SARS-CoV-2 
infection, we utilized MCF10A-ACE2 and Vero 
E6 as models to examine if the NF-κB inhibi- 
tors I3C and JSH-23 could reduce SARS-CoV-2 
infection. As shown in Figure 3A, IFA revealed 
that both I3C and JSH-23 (data not shown)  
dramatically reduced viral infection in both  
cell types. I3C presented a half-maximal in- 
hibitory concentration (IC50) of 0.427 μM in 
Vero E6 and 2.562 μM in MCF10A-ACE2 cells 
upon four-fold serial dilution (Figure 3B, 3C), 
whereas the corresponding IC50 values for JSH-
23 were 1.353 μM in Vero E6 cells (Figure 3D) 
and 2.189 μM in MCF10A-ACE2 cells (Figure 
3E). We also found that mRNA expression lev-
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els of viral E protein, REL, NF-κB, and IL-6 were 
significantly reduced in SARS-CoV-2-infected 
MCF10A-ACE2 cells upon I3C treatment, but 

not interferon signaling, IRF7 and IFITM1 
(Figure 3F), indicating that I3C specifically 
reduces NF-κB signaling without affecting the 

Figure 1. Hyperglycosylated S of SARS-CoV-2 Gamma variant is more stable in cells. A. The glycosylation pattern 
of the S protein. S protein was treated with PNGase F or Endo H and analyzed by glycoprotein staining (left panel) 
and Coomassie blue staining (right panel). Black circle, glycosylated S; arrowhead, non-glycosylated S. B. Western 
blot analysis of S protein expression pattern treated with N-linked and O-linked glycosyltransferase inhibitors. Circle, 
glycosylated S; arrow, non-glycosylated S. C. Amino acid sequences alignment of SARS-CoV-2 WT, Alpha, Beta, and 
Gamma variants for evolutionarily conserved NXT/S motifs. D. Diagram of NXT/S motifs in S protein of SARS-CoV-2. 
Conserved glycosylation sites on the S of Gamma variant are labeled in black. Two additional NTX motifs on the S 
of Gamma variant are marked in blue. Arrowhead indicates the PCR primers used to amplify the S of WT, Alpha, 
Beta, and Gamma variants. E. Western blot analysis of S protein (1-218 amino acids) of WT, Alpha, Beta, and 
Gamma variants. Circle, hyper-glycosylated Gamma variant. F. Western blot analysis of S protein expression in the 
cycloheximide-chase assay. G. The intensity of S protein in SARS-CoV-2 WT, Alpha, Beta, and Gamma variants was 
quantified using a densitometer. H. Luciferase activity was measured in HEK293T-ACE2 cells infected with SARS-
CoV-2 pseudovirus generated from wild-type and mutant spike SARS-CoV-2.
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Figure 2. S of SARS-CoV-2 Gamma variant induces a stronger EMT in breast cancer cells. A. Representative confocal microscopic images of p65 translocation in 
Vero E6 and MCF10A-ACE2 cells after SARS-CoV-2 infection (left panel). Scale bar, 20 μm. The plot of relative intensity through the white arrow in the left panel. B. 
Western blot analysis of N protein, IKKβ, and IκBα after SARS-CoV-2 infection. 293T-ACE2 cells were transiently transfected with pcDNA3 plasmid encoding p65 
and IκBα-SR before SARS-CoV-2 infection. C. Western blot analysis of N protein and IKKβ after SARS-CoV-2 infection. 293T-ACE2 cells were transiently transfected 
with pcDNA3 plasmid encoding IKKβ-KD before SARS-CoV-2 infection. D. Immunophenotypic and signaling pathway analysis of the SARS-CoV-2 infected cell lines 
by CyTOF. ViSNE analysis showed non-infected (orange dots) and infected (green dots) cells (bottom left). The dashed lines indicated the ViSNE spaces for infected 
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or non-infected cells, respectively. The expression levels of N-protein (bottom middle) and IκB (bottom right) for all analyzed cells. Red is high. Blue is low. E. qPCR 
analysis of E-cadherin, N-cadherin, SNAIL, and FOXC2 in MCF7 cells expressing S of SARS-CoV-2 WT, Alpha, Beta, or Gamma variants. Two-way ANOVA with Tukey’s 
post hoc test. *P < 0.05; ***P < 0.001. F. Luciferase reporter assay of E-cadherin. MCF7 cells were transfected with the E-cadherin reporter and S of SARS-CoV-2 WT, 
Alpha, Beta, or Gamma variants. One-way ANOVA with Tukey’s post hoc test. **P < 0.01. G. Luciferase reporter assay of NF-κB. One-way ANOVA with Tukey’s post hoc 
test. ***P < 0.001. E.V. means empty vector. 
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type I IFN response. Moreover, mRNA expres-
sion levels of IL-6 were significantly reduced in 
SARS-CoV-2-infected MCF10A-ACE2 cells upon 
JSH-23 treatment (Figure 3G). Administration 
of I3C and JSH-23 impeded SARS-CoV-2 infec-
tion by suppressing N protein and p-IκBα 
expression (Figure 3H). Thus, targeting NF-κB 
activity by administering NF-κB inhibitors such 
as I3C may protect against SARS-CoV-2 infec-
tion at the cellular level.

I3C blocks S-induced EMT and breast cancer 
metastasis

Inhibition of SARS-CoV-2 infection by I3C 
prompts us to investigate if I3C reduces SARS-
CoV-2 Gamma variant-induced EMT. To do this, 
MCF7, MCF7-S (WT), and MCF7-S (Gamma) 
cells were treated with I3C and then examined 
the functional changes in cell-based assays. 
We found that NF-κB inhibition indeed impairs 
S of Gamma variant-induced EMT (Figure 4A). 
To explore the functional significance, we ex- 
pressed the S of SARS-CoV-2 WT and Gamma 
variant in MCF7 cells. We found that downregu-
lation of NF-κB by I3C reduced cell migration 
(Figure 4B) and invasion (Figure 4C), suggest-
ing that NF-κB activation is required for S 
(Gamma)-induced EMT phenotype. Because 
EMT also increases cancer cell stemness, we 
further investigate if I3C reduces the tumor-
sphere formation ability of MCF7-S (WT) and 
MCF7-S (Gamma) cells (Figure 4D). While S pro-
tein increases tumorsphere by two-fold in S of 
WT and three-fold in S of Gamma variant, down-
regulation of NF-κB compromised S-mediated 
cancer stemness (Figure 4D). We next used a 
xenograft metastasis model to validate the 
abovementioned phenomenon. Consistently, 
I3C treatment antagonized S of Gamma vari-
ant-induced metastasis based on the number 
of lung nodules formed in mice (Figure 4E). 
Together, inhibition of NF-κB by I3C can effec-
tively reduce Gamma variant-mediated breast 
cancer metastasis (Figure 4F).

Discussion

Chronic inflammation is associated with a high-
er risk of infection and poor disease outcomes 
among COVID-19 patients. Previous studies 
have indicated that patients with inflammatory 
diseases such as cancers, chronic obstructive 
pulmonary diseases, and diabetes are more 
susceptible to SARS-CoV-2 infection and may 
develop more severe symptoms [21-23]. In this 
study, our infectious experiment has demon-
strated that SARS-CoV-2 activates the NF-κB 
pathway, leading to up-regulation of inflamma-
tory mediators such as TNFα and IL-6. Alth- 
ough NF-κB triggers both innate and adaptive 
immune reactions in response to pathogens, 
NF-κB may be hijacked by the virus for its  
propagation. Excessive activation of the NF-κB 
pathway upon MERS or SARS infection indu- 
ces a cytokine storm, causing acute lung dam-
age and acute respiratory distress syndrome, 
being a leading cause of death [24, 25]. 
Therefore, targeting NF-κB may represent a 
promising therapeutic strategy for inhibiting 
stage-specific, inflammation-associated SARS-
CoV-2 infection.

Activation of NF-κB is a hallmark of viral infec-
tions. NF-κB signaling is known to promote 
immune cell infiltration to eliminate viruses, 
and it is an important signal transduction path-
way in the inflammatory response triggered by 
host cells at the early stages of viral infection 
[26, 27]. However, viruses have evolved unique 
and sophisticated ability to modulate NF-κB  
signaling. Certain viruses, such as influenza A, 
HIV, or HSV-1, hijack the NF-κB signal to pro-
mote viral infection by enhancing viral replica-
tion [26, 28]. Moreover, some viruses harness 
the NF-κB pathway to aid viral transmission by 
inducing apoptosis [29]. Previous studies also 
showed that inhibition of NF-κB can decrease 
the viral load by blocking viral replication [30, 
31]. In fact, viral entry, replication, and egres-
sion are all mediated by NF-κB [26, 30].  

Figure 3. Blocking NF-κB prevents SARS-CoV-2 infection. (A) Representative fluorescent microscopic images of N 
protein expression in Vero E6 and MCF10A-ACE2 cells after SARS-CoV-2 infection. Scale bar, 20 μm. (B) IC50 and 
cell viability of Vero E6 and (C) MCF10A-ACE2 cells pre-treated with I3C at the indicated doses prior to SARS-CoV-2 
infection. (D) IC50 and cell viability of Vero E6 cells and (E) MCF10A-ACE2 pre-treated with JSH-23 and at the indi-
cated doses before SARS-CoV-2 infection. (F) Heatmap of representative mRNA expression of MCF10A-ACE2 cells 
pre-treated with I3C at the indicated doses prior to SARS-CoV-2 infection. (G) Cellular IL-6 expression upon JSH-23 
treatment. (H) Western blot analysis of I3C and JSH-23 on N protein and p-IκBα expression after SARS-CoV-2 in-
fected MCF10A-ACE2 and Caco-2 cells. *Non-specific.
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Figure 4. Blocking NF-κB suppresses S of Gamma variant-induced EMT. A. qPCR analysis of SNAIL expression in MCF7 expressing S of WT or Gamma variant. B. 
Quantification of migration activity of MCF7-S cells in the presence of I3C. C. Quantification of invasion activity of MCF7-S cells in the presence of I3C. D. Tumor 
initiation ability of MCF7 cells expressing S of WT or Gamma variant. E. 4T1-S cells were injected into female BALB/c mice via tail vein. Mice were treated with I3C 
by oral gavage. Lung nodules were stained with India ink at the experimental endpoint. Error bars represent the mean ± SD of five mice. F. Proposed working model 
indicating the mechanism of action of I3C. Statistic method: One-way ANOVA with Tukey’s post hoc test. *P < 0.05, **P < 0.01, ***P < 0.001.
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The hepatitis C virus, an RNA virus, can utilize 
NF-κB for viral entry [32]. NF-κB can also stabi-
lize membrane receptor expression, enabling 
continuous ACE2 expression to support viral 
entry [33]. Compared to the SARS-CoV-2 WT, 
the Gamma variant induced a stronger NF-κB 
activation, leading to a more aggressive can-
cerous phenotype. These results suggest can-
cer patients with COVID-19 Gamma variant 
infection may experience a strong potential of 
cancer metastasis or recurrence.

Our research links breast cancer metastasis to 
SARS-CoV-2 infection, and we further identify 
I3C as one of the potent antiviral agents that 
can reduce S-mediated metastasis. These 
potential therapeutic agents inhibit NF-κB  
activity by preventing its translocation into the 
nucleus [14, 34]. Many NF-κB inhibitors, both 
clinically utilized and Food and Drug Admini- 
stration (FDA)-approved, have been developed 
to block TNFR1, IKKβ, or the proteasome to 
treat diseases such as diabetes or cancers  
[35, 36]. I3C is a relatively non-toxic natural 
compound [37] and effectively prevents trans-
mission of SARS-CoV-2 by reducing NF-κB ac- 
tivity. Therefore, our results support that I3C 
may represent a promising alternative therapy 
for controlling SARS-CoV-2 infection. Given  
that NF-κB is ubiquitously expressed [20], 
administration of NF-κB inhibitors may signifi-
cantly impede SARS-CoV-2 infection-mediated 
cancer progression.
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