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Abstract

Electronic Health Record (EHR) data represents a valuable resource for individualized prospective 

prediction of health conditions. Statistical methods have been developed to measure patient 

similarity using EHR data, mostly using clinical attributes. Only a handful of recent methods have 

combined clinical analytics with other forms of similarity analytics, and no unified framework 

exists yet to measure comprehensive patient similarity. Here, we developed a generic framework 

named Patient similarity based on Domain Fusion (PsDF). PsDF performs patient similarity 

assessment on each available domain data separately, and then integrate the affinity information 

over various domains into a comprehensive similarity metric. We used the integrated patient 

similarity to support outcome prediction by assigning a risk score to each patient. With extensive 

simulations, we demonstrated that PsDF outperformed existing risk prediction methods including 

a random forest classifier, a regression-based model, and a naïve similarity method, especially 

when heterogeneous signals exist across different domains. Using PsDF and EHR data extracted 

from the data warehouse of Columbia University Irving Medical Center, we developed two 

different clinical prediction tools for two different clinical outcomes: incident cases of end 

stage kidney disease (ESKD) and severe aortic stenosis (AS) requiring valve replacement. We 

demonstrated that our new prediction method is scalable to large datasets, robust to random 

missingness, and generalizable to diverse clinical outcomes.
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1. Introduction

The universal adoption of electronic health records (EHR) provides access to clinical 

data of unprecedented volume and variety. This rich information awaits utilization for 

real time clinical decision-support. Conventional approaches in predictive modeling used 

to build clinical decision-support tools start with feature selection based on domain 

knowledge, which could be biased. For example, one of the most widely used chronic 

kidney disease (CKD) progression models uses a simple linear combination of age, sex, 

estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio (UACR) 

[1]. This CKD prediction model and other similar existing prediction models were built 

on a clinically relevant set of features selected either based on clinical expertise, statistical 

significance, or both. As evidenced from recent scientific research, many human disorders 

share a complex etiologic basis and exhibit correlated disease progression. Therefore, it is 

desirable to consider a more comprehensive, agnostic approach that incorporates the entirety 

of patient data.

One frequently sought goal by using EHR data is to assess patient similarity [2–15]. The 

objective of patient similarity assessment is to quantify the similarity between any pair of 

patients according to their retrospective information under a specific clinical context. For 

example, patients who have “similar” clinical characteristics may have similar disease risk 

projections or diagnoses. Similarity-based case identification could help stratify patients, 

enable more efficient diagnoses, and facilitate more effective treatment choices. Despite 

some successes, current similarity approaches do not use comprehensive patient information, 

but rather only a fraction of available data, such as only selected clinical characteristics 

or only genomic information for patient subtyping [9]. A recent approach combined 

clinical and drug similarity analytics for personalization of drug prescribing [10]. Another 

recent research developed a disease phenotyping method with tensor factorization using 

co-occurrence information of diagnoses and medications [16]. Phenotyping algorithms use 

EHR data to identify patients with specific clinical conditions or events. These include rule

based algorithms to identify patients with chronic kidney disease (CKD) [17], supervised 

models including logistic regressions and random forest to identify patients with type 2 

diabetes [18], and dimensionality-reduction methods such as a tensor factorization approach 

to identify patients with hypertension and type 2 diabetes [16]. Several recently developed 

phenotyping methods also consider patient similarities, such as a pipeline that defines 

patient similarities using concatenated patient concepts in Unified Medical Language 

System (UMLS) which was applied to ciliopathies phenotyping [19]. However, there are 

currently few methods that use all available patient data to more comprehensively define 

“similar patients” for predictive outcome modeling in chronic complex conditions.

A simple way to use comprehensive patient data is to define patient similarity using patient 

information concatenated. However, the patient information from different domains might 
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be unbalanced. For example, the number of unique drugs, i.e., number of features, in the 

domain of drug exposures might be very different from the number of unique procedures 

in the domain of medical procedures. Thus, when using features from these unbalanced 

domains, simply concatenating all features to calculate patient similarity may be ineffective 

in capturing signals when these potentially much stronger signal features from a small 

domain might be diluted.

In this paper, we developed a unified machine learning framework for clinical outcome 

prediction called Patient similarity based on Domain Fusion (PsDF). PsDF performs patient 

similarity assessment independently on each available domain data, such as laboratory tests, 

ICD based diagnoses, drug exposures, medical procedures, and demographic information, 

and fuses affinity information from all available domains to achieve a comprehensive metric 

for quantifying patient similarity, which is further used to perform a clinical outcome 

prediction.

We conducted extensive simulation studies and demonstrated a much-improved prediction 

performance of the PsDF algorithm over several competing methods including a random 

forest classifier and a regression-based model both using all features from different domains 

simultaneously, and a naïve similarity method concatenating all features from different 

domains.

With EHR data extracted from the data warehouse of Columbia University Irving Medical 

Center (CUIMC), we demonstrated better performance of PsDF over the competing methods 

in predicting two independent clinical outcomes, incident end stage kidney disease (ESKD) 

and incident aortic stenosis (AS) requiring valve replacement. We used comprehensive 

patient information collected prior to the occurrence of the ESKD and AS outcomes, 

including 1) laboratory tests, 2) ICD based diagnosis history, 3) drug exposures, 4) medical 

procedures and 5) demographic information.

Because real-life EHR datasets often have incomplete patient records, we also explored the 

prediction robustness of PsDF when random missingness was introduced to the test set data. 

To do so, we randomly masked a percentage of EHR records by setting them to missing, 

similar to prior studies [20–22]. Our results indicate that when the percentage of randomly 

masked observations increases, the prediction performance of PsDF is stable while that of 

the competing methods decreases fast, indicating that one of the major advantages of PsDF 

is its robustness to data missingness.

2. Methods

2.1. The PsDF algorithm

There are three steps in the PsDF clinical outcome prediction. In Step 1, for each domain 

of patient data (e.g., laboratory tests, diagnosis history, etc.), a patient similarity matrix with 

pairwise similarity measures between any given pairs of patients is constructed. In Step 2, 

patient similarity matrices from different domains of patient data are fused using a nonlinear 

combination method. In Step 3, the fused patient similarity matrix is served as a clinical 

outcome prediction tool, through which a patient similarity risk score is assigned to each 
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patient in the test set using a simple logistic regression model that is pretrained on the 

training set.

Note that all features of a specific domain of patient data are first standard-normalized to 

have a zero mean and a unit of one standard deviation.

2.1.1. Step 0: EHR patient’s snapshot data—Patients’ EHR data were extracted 

from the data warehouse of CUIMC. For a specific clinical condition, such as incidence of 

ESKD between year 2006 and 2016, in order to develop a prospective prediction model, we 

used a pseudo-prospective study design, where we used a snapshot of patients’ retrospective 

EHR information from year 2006 and prior. This snapshot of EHR data includes five patient 

data domains: 1) laboratory tests, 2) ICD based diagnosis history, 3) drug exposures, 4) 

medical procedures and 5) demographic information.

We next converted EHR snapshot data (2006 and prior) into five data matrices representing 

information from these five domains. Features in the four clinical domains were coded 

as binary features with 1 indicating a patient ever had a specific condition in 2006 and 

prior. Specifically, for one patient domain, e.g., drug exposures, if we have total N patients 

and total P possible drugs, we generated a drug exposure matrix YN×P with each row 

representing a patient and each column representing a drug exposure. We then considered 

binary status of each of the P possible drugs. For example, if there is a record in EHR data 

that a patient had ever taken Aspirin in 2006 and prior, and another record of patient ever 

taking Ibuprofen in 2006 and prior, then in the drug exposure matrix YN×P, there would 

be one column indicating whether Aspirin had ever been taken (taken will be coded as 1) 

and another column indicating whether Ibuprofen had ever been taken, in 2006 and prior. 

We assume that a patient was not on a specific medication if there is no record in the 

EHR snapshot 2006 and prior. Other three patient domains, ICD based diagnosis history, 

laboratory tests, and medical procedures were similarly processed to generate corresponding 

data matrices. In the two clinical applications on incident ESKD and AS, we implemented a 

random mask procedure which randomly changes a certain percentage of observed records 

(coded as 1) to missing or unobserved (coded as 0) to explore the robustness of PsDF to 

missing data. Similar procedures have been applied to evaluate methods when outcomes 

were randomly changed to be unknown [22]. For the single patient domain, demographic 

information has two binary variables, gender and race (coded as white or non-white).

2.1.2. Step 1: Constructing a patient similarity matrix for individual patient 
domain data—Before calculating patient similarities from the data matrix YN×P, a 

normalization procedure is performed to normalize each column to have mean 0 and 

standard deviation 1. Denote XN×P as the normalized matrix, for each domain of patient 

data, we calculate the distance between patients i and j as follows:

d xi, xj = xi − xj = ∑
p = 1

P
xip − xjp

2 . (1)
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A similarity matrix of a patient cohort with sample size N is an N by N symmetric matrix 

SN×N, where the entry sij represents the similarity measure between patients i and j. A 

similarity measure quantifies the affinity between two patients. For example, a typical 

similarity measure can be the reciprocal of a Euclidean distance sij = −d(xi, xj). It can also be 

a more complex measure of similarity if we use other transformation such as the radial basis 

function (RBF) kernel:

sij
(RBF ) = 1

2πηij2
exp −d2 xi, xj

2ηij2

ηij = μ
3 mean d xi, Ni + mean d xj, Nj + d xi, xj

, (2)

where μ is a hyperparameter, Ni denotes the set of nearest neighbors of patient i with 

a pre-fixed size of K, mean(d(xi, Ni)) is the average distance between patient i and the 

neighbors Ni, and ηij is a scaling parameter that adapts to the density of neighbor sets so that 

a smaller ηij is used in a denser neighbor set.

The above steps can be similarly applied to each of the individual data domain such as 

laboratory tests, ICD based diagnosis history, and demographic information etc., and obtain 

multiple patient similarity matrices. Because there are different numbers of features in 

different patient domains, the scales of similarity matrices S might be different. Therefore, a 

normalization on similarity matrices is needed. For similarity measures sij between patients i 
and j, we normalize as follows:

sij =
sik

(RBF )

2∑k ≠ i
N sik

(RBF ) , j ≠ i

1
2 , j = i

sij = 1
2 (sij + sji)

(3)

The normalized similarity measures have a range (0, 1). We denote the normalized similarity 

matrix as SN×N. These similarity matrices can be considered as similarity networks for 

patients whose nodes are patients and edges are similarity measures between any given pair 

of patients.

2.1.3. Step 2: Fusing patient similarity matrices from multiple patient 
domains data—The algorithm that fuses networks was originally developed in the field of 

computer vision [23–25]. For -omics research, the Similarity Network Fusion (SNF) method 

was recently developed, where individual similarity networks from individual types of omics 

data were iteratively updated using information from other types of omics data through a 

nonlinear combination method [25]. We recently developed an annotation boosted SNF to 

further improve the clustering performance when association signals were used as weights 

on different types of omics data before fusing them into a fused similarity matrix [26]. Here 

we applied this nonlinear combination method to integrate patient similarity matrices from 

different domains of patient data.
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Specifically, for the mth domain of patient data, we first define a global similarity network 

P(m) and a local similarity network Q(m) using the patient similarity network S(m) defined 

in Step 1. The entries of the global similarity network P(m) are defined as the normalized 

entries in S(m) introduced in equation (3), and the entries of the local similarity network 

Q(m) are defined as the normalized similarities between patient i and his/her neighbors Ni as 

defined in Step 1, and 0 between patient i and subjects outside of his/her neighbors Ni. This 

local similarity network Q(m) is constructed with an assumption that local similarities might 

be more reliable than remote ones.

The global similarity networks P(m), m = 1,…, M for M domains of patient data are then 

smoothened through the parallel interchanging diffusion process [25] that updates the global 

similarity network P(m) using the local similarity networks Q(m) and the global similarity 

networks of other domains of patient data. Consider the case where there are only two 

domains of patient data. We have global similarity networks P(1), P(2) and local similarity 

networks Q(1), Q(2), respectively. To update P(1), P(2) iteratively, let initial condition P(1)(t 
= 0) = P(1) and P(2)(t = 0) = P(2) for the first iteration, the diffusion process is described as 

follows:

P (1)(t + 1) = Q(1) × P (2)(t) × Q(1) T
(4)

P (2)(t + 1) = Q(2) × P (1)(t) × Q(2) T . (5)

After t iterations, the integrated similarity network is calculated as the average of the two 

updated globe similarity networks P(fused) = (P(1)(t) + P(2)(t)) /2. When there are more than 

two domains of patient data, the diffusion process Eqs. (4) and (5) can be expressed as:

P (m) = Q(m) × ∑k ≠ mP (k)

M − 1 × Q(m) T , m = 1, ⋯, M . (6)

2.1.4. Step 3: Building a prediction tool—With a training set where samples’ 

binary outcomes of interest are known (e.g., case vs. control), our goal is to predict the 

binary outcomes for samples in a test set. To do so, we first calculate the fused patient 

similarity network P(fused) with all samples in the training and test sets together. Note that in 

calculating P(fused), neighbors for the local similarity network of a test sample are from the 

training data only. Hence similarity measures of a test sample would not be affected by other 

test samples.

Using the training set, we assign a similarity t-score to each sample in the training set using 

the leave-one-out method as follows. For a case sample in a training set with n1 cases and 

n2 controls, this case sample’s similarity t-score is the two-sample t-test statistic comparing 

its similarity with other n1 − 1 cases, and its similarity with all n2 controls. Similarly, for a 

control sample in a training set with n1 cases and n2 controls, this control sample’s similarity 

t-score is the two-sample t-test statistic comparing its similarity with all n1 cases, and its 
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similarity with other n2 − 1 controls. After all samples in the training set are assigned a 

similarity t-score, we fit a simple logistic regression of the known case-control status on 

the assigned similarity t-scores. This logistic regression model serves as a similarity-based 

prediction model, i.e., a classifier that can be used to predict test samples’ case-control 

status.

To predict case-control status of samples in the test set using the aforementioned similarity

based prediction model, we similarly assign samples in the test set a similarity t-score 

from a two-sample t-test statistic comparing similarities between a test sample and all n1 

cases in the training set, and similarities between the test sample and all n2 controls in the 

training set. After assigning similarity t-scores to the test samples, we can then calculate the 

probability of each test sample being a case using the fitted logistic regression classifier.

We evaluate our method using receiver operating characteristic (ROC) curve and area under 

the curve (AUC), as well as the F1-score, F2-score, recall and precision. The Fβ score is a 

weighted harmonic mean of recall and precision with the formula:

Fβ =
1 + β2 Precision × Recall

β2 Precision + Recall
, (7)

where β represents relative importance such that recall is considered β times as important as 

precision. F1-score considers equal weights for recall and precision while F2-score considers 

recall twice as important as precision [27]. The threshold for the probability of being a case 

is set at 0.5 for F1-score, F2-score, recall and precision.

2.2. Simulation studies

We conducted extensive simulation studies to investigate the prediction performance of 

PsDF and compared to that of the three competing methods.

2.2.1. Simulation settings—In our simulation studies, we considered three different 

simulated data domains. Domains 1 and 2 have a number of binary features and mimic 

typical domains based on medical records, e.g., indicating if a drug exposure or a medical 

procedure is recorded in EHR. Domain 3 has a single continuous feature. We considered 

a binary outcome. For each simulated binary feature, we generated measures from two 

different Binomial distributions for cases and controls with probability of success pcase and 

pcontrol, respectively. All features in Domain 1 are set to have large signals with the same 

pcase1 and pcontrol1. All features in Domain 2 are set to have small signals with the same 

pcase2 and pcontrol2. We considered two simulation scenarios.

The first scenario investigates the impact of imbalance among different domains where we 

fixed the number of features in Domain 1 at 5, and ranged number of features in Domain 2 

from 10 to 200. We set pcontrol1 = 0.1, and pcase1 = 0.4 for features of large effect sizes in 

Domain 1 and pcontrol2 = 0.1 and pcase2 = 0.12 for features of small effect sizes in Domain 2. 

For the continuous feature in Domain 3, we generated measures from a Gaussian distribution 

with means 0.1 and 0 for cases and controls, and with the standard deviation (SD) 1 for both 

groups.
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The second scenario investigates the influence of nonlinear signals, such as variance signals, 

where we ranged SD of the single feature in Domain 3 for cases from 0.2 to 1 when the 

effect sizes of all other features are the same as those in the first scenario. In addition, the 

number of features in Domain 2 is fixed at 10. In all simulation settings, we set the scaling 

parameter μ as 0.5, and the size of neighbors K as N/2 in Eq. (2), where N is the sample size 

of a training set.

The above simulation settings with pcase > pcontrol mimic data in real EHR domains 

when cases usually have more records than controls. In order to evaluate PsDF more 

comprehensively, we also considered parallel scenarios when pcase < pcontrol, i.e., when 

binary features are more frequent in controls than in cases, and we set pcontrol1 = 0.5, pcase1 

= 0.2 for features in Domain 1 and pcontrol2 = 0.5, pcase2 = 0.48 for features in Domain 2.

We simulated a population pool of 5000 cases and 5000 controls. We considered two designs 

with 1:1 case/control ratio and 1:5 case/control ratio when the latter with more controls 

is more common in EHR data. With the 1:1 case/control ratio, we randomly selected 200 

cases and 200 controls as the training set, and another 100 cases and 100 controls as the 

test set. Therefore, for the training set, Domain 1 is a data matrix Y 400 × p1, Domain 2 is a 

data matrix Y 400 × p2 and Domain 3 is a data matrix Y400×1. Data matrices of a test set are 

similar. With the 1:5 case/control ratio, we randomly selected 200 cases and 1000 controls 

as the training set, and another 100 cases and 500 controls as the test set. We repeated the 

simulation procedure 100 times and obtained average AUCs, F1-scores, F2-scores, recalls 

and precisions with their 95% confidence intervals (CIs).

2.2.2. Competing methods—We considered three competing methods, a random forest 

classifier and a logistic regression both using all features in Domains 1, 2 and 3 as predictors 

to classify case and control groups, and a naïve similarity method where the patient 

similarity matrix SN×N is calculated using concatenated features in Domains 1, 2, and 3 

with applying Eqs. (1) and (2) and the same prediction step as described in PsDF Step 3.

3. Results

3.1. Simulation studies

We show the average AUCs, F1-scores, F2-scores, recalls and precisions when the threshold 

for the probability of being a case is 0.5 and their corresponding 95% CIs on test sets for 

the two simulation scenarios, 1) increasing the number of features in Domain 2, and 2) 

increasing the effect size of the variance signal of the single feature in Domain 3. These 

two simulation scenarios were done in parallel for two different settings, when cases have 

more EHR records than controls and when cases have fewer EHR records than controls. 

Finally, all simulation studies were done for the 1:1 case/control ratio (Fig. 1) and the 1:5 

case/control ratio (Fig. 2).

For the 1:1 case/control ratio and when cases have more EHR records than controls (Fig. 

1A), when the number of signal features in Domain 2 is comparable (the number of signal 

features in Domain 2 is 10) to that in Domain 1, all four methods have similar prediction 

performance in terms of AUCs and F1-scores, with PsDF having slightly higher F1-scores. In 
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addition, PsDF has the highest F2-scores because its recalls are also the highest among four 

methods and F2-score weights more on recalls. As the number of signal features in Domain 

2 increases from 10 to 200, AUCs, F1-scores, and F2-scores of the logistic regression method 

quickly decrease as expected, while those of the other three methods are hardly affected. 

This is because regression methods often require certain ratios of sample size to a number of 

features in models in order to achieve a good model fit. When cases have fewer EHR records 

than controls (Fig. 1B), AUCs, F1-scores, and F2-scores of the naïve similarity method 

slowly decrease. This is because the effective effect sizes of signal features in Domain 2 

(pcontrol2 = 0.5 and pcase2 = 0.48) in this setting are much smaller than that in the setting of 

Fig. 1A (pcontrol2 = 0.1 and pcase2 = 0.12), thus these small signal features become “noise 

features” to some extent. Therefore, for the naïve similarity method, as Domains 1 and 2 

become more imbalanced, the contribution of 5 signal features with strong effect sizes in 

Domain 1 become weakened with the increasing number of very small effect size features in 

Domain 2 when the total number of features across all three domains are concatenated. Note 

that, PsDF and random forest are not affected.

When we increase the effect size of the single continuous feature with variance signal in 

Domain 3 while keeping the number of features in Domains 1 and 2 at 5 and 10, respectively 

(Fig. 1A and Fig. 1B), AUCs, F1-scores and F2-scores of PsDF and random forest increase 

rapidly, while those of the logistic regression and the naïve similarity methods do not change 

much. This is also expected as regression methods cannot capture variance signals and the 

single variance signal feature in Domain 3 will be similarly diluted in the concatenated pool 

of signal features across the three domains for the naïve similarity method.

For the 1:5 case/control ratio (Fig. 2), the overall patterns are similar to that of the 1:1 

case/control ratio, with two noticeable differences: 1) When increasing the number of signal 

features in Domain 2, the performance of logistic regression does not decrease too much. 

This is because the total number of training samples (200 cases and 1000 controls) are large 

enough. 2) F1-scores and F2-scores of random forest decrease quickly when the number 

of signal features with small effect sizes in Domain 2 increases as random forest tends to 

classify most samples as controls. When cases have fewer EHR records than controls (Fig. 

2B), i.e., when the effective effect sizes of signal features are even smaller, or very close to 

noises, random forest may classify very few samples or even 0 samples as cases, resulting 

in a very low recall or even 0 recall, thus and an unavailable precision. The performance of 

PsDF is not affected by the 1:5 case/control ratio.

3.2. Clinical studies

3.2.1. ESKD prediction tools—More than 47,000 Americans die from chronic kidney 

disease (CKD) annually [28], yet the disease often has no symptoms in early stages and 

frequently goes undetected until it is advanced. In fact, less than 10% of patients affected 

with early CKD (stages 1–3), and only half (52%) of those with severe CKD (stage 4) 

are aware of having a kidney problem [29]. Kidney disease usually gets worse over time, 

and although treatment has been shown to delay progression, any preventive strategies are 

only effective when implemented early. When the kidney dysfunction reaches the level of 

“failure” (i.e., end stage kidney disease, ESKD), dialysis or kidney transplant are needed 
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for survival. This state is irreversible and associated with accelerated cardiovascular disease 

and high mortality [30]. This highlights a great need for early diagnosis of CKD and 

identification of patients at risk of progression to ESKD, motivating our use of CKD as the 

first case study for PsDF.

We applied the PsDF algorithm and the three competing methods to build ESKD prediction 

tools and compared their performance. We predicted incident ESKD between 2006 and 2016 

using comprehensive EHR data collected in years 2006 and prior. We used two different 

inclusion criteria to define eligible patients, a less stringent criterion that only requires 

patients to have demographic domain; and a more stringent criterion that requires patients to 

have demographic domain as well as records across all four EHR domains (Section 3.2.1.1).

We conducted a sensitivity analysis to evaluate the robustness of PsDF and the three 

competing methods by randomly masking a percentage of observed EHR records in the 

test set by setting them to “missing”. We masked 5–50% records in the test set with the 

increment of 5% to generate new test sets with more missing data than that in the training 

set.

3.2.1.1. EHR data preprocessing for ESKD prediction.: We defined ESKD as chronic 

kidney disease (CKD) stage 5 (estimated glomerular filtration rate <15 mL/min/1.73 m2) or 

CKD requiring kidney transplant, or any form of chronic dialysis. Among all patients in the 

CUIMC EHR data warehouse as of year 2006, 386,297 patients had sufficient data to define 

their CKD status. Among those, there were a total of 11,802 cases of ESKD and 374,495 

non-ESKD patients (normal renal function or CKD stage 1–4). Among 374,495 non-ESKD 

patients, as of year 2016, 2080 developed incident ESKD between 2006 and 2016, 353,295 

remained non-ESKD, and the remaining 19,120 had status unknown. We considered those 

2080 patients who were non-ESKD in 2006 but reached ESKD before 2016 as our incident 

ESKD cases, and those 353,295 non-ESKD patients who remained non-ESKD between 

2006 and 2016 as our controls. Our data processing pipeline is summarized in Fig. 3. The 

comprehensive patient data included: 1) laboratory tests, 2) ICD based diagnosis history, 3) 

drug exposures, 4) medical procedures, and 5) demographic information with gender and 

race (white vs. non-white).

After requiring all patients to have demographic data, we had 2080 ESKD cases and 353,295 

non-ESKD controls. We then applied two different inclusion criteria on the four EHR 

domains to define eligible patients in the study: 1) the less stringent inclusion criterion 

which does not have any requirement on EHR domains; 2) the more stringent inclusion 

criterion which requires patients to have records across all four EHR domains. Fig. 3 

displays the data preprocessing pipeline and the final sample sizes with the two inclusion 

criteria.

A less stringent inclusion criterion: Patients were included if they had demographic 

information, resulting in 2080 ESKD patients and 353,295 non-ESKD controls. We then 

randomly selected 2080 patients among 353,295 non-ESKD controls to create a balanced 

case control design, as it is known that a balanced design helps to reduce variances of 

estimated parameters in logistic regression models [31]. We split 2080 ESKD cases and 
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2080 non-ESKD controls into two cohorts, one as the training set with 1400 ESKD cases 

and 1400 non-ESKD controls, the other as the test set with 680 ESKD cases and 680 

non-ESKD controls to test the prediction performance of PsDF and the three competing 

methods.

A more stringent inclusion criterion: Patients were included if they had demographic 

information as well as records in all four EHR domains, resulting in 1260 ESKD patients 

and 94,763 non-ESKD controls. We then randomly selected 1260 patients among the 94,763 

non-ESKD controls to make a balanced case control design. We similarly split 1260 ESKD 

cases and 1260 non-ESKD controls into two cohorts, one as the training set with 860 ESKD 

cases and 860 non-ESKD controls, the other as the test set with 400 ESKD cases and 400 

non-ESKD controls.

In order to investigate the model performance under an unbalanced case-control design, 

we also considered a 1:5 case/control ratio. That is, in addition to the previously selected 

controls, we randomly selected another 8320 controls (four times of 2080 cases) for the 

less stringent inclusion criterion, and another 5040 controls (four times of 1260 cases) for 

the more stringent inclusion criterion. For each criterion, we split these additional control 

samples into two groups with ratio 70% and 30%, then added them into the training set and 

test set accordingly.

3.2.1.2. Feature selection using LASSO regression and random forest.: Because of 

the large number of features in EHR domains, we included a screening step to pre-select 

potentially relevant features using LASSO regression and random forest in order to capture 

both linear and nonlinear features for prediction. We used the training set with 1:1 case/

control ratio for this step.

We applied the stability selection using LASSO regression on each domain separately. 

Specifically, we resampled a subset of size N/2 of the training set with sample size N 
without replacement. We then applied LASSO regression on the subset and obtained a set 

of selected features of non-zero regression coefficients. We repeated this subsampling 1000 

times and obtained the selection probability for each feature out of the 1000 subsampling. 

We then selected features with selection probability greater than 0.6. With the training 

set defined by the less stringent inclusion criterion, we selected 19 features out of 1123 

laboratory tests, 23 of 7980 diagnostic history features, 18 of 3936 drug exposure features, 

34 of 6324 medical procedure features, as well as gender and race out of demographic 

variables. With the training set defined by the more stringent inclusion criterion, we selected 

26 laboratory tests, 26 diagnostic history, 26 drug exposures, 23 medical procedures, as well 

as gender and race.

We then applied random forest on the training set to select features with nonlinear signals 

for each domain separately and selected features with high importance, defined as mean 

decrease accuracy. We used a threshold of greater than 0.1 for the importance measure. With 

the training set defined by the less stringent inclusion criterion, we selected 23 laboratory 

tests, 66 diagnostic history, 45 drug exposures, 42 medical procedures, and gender. With the 
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training set defined by the more stringent inclusion criterion, we selected 24 laboratory tests, 

31 diagnostic history, 31 drug exposures, 21 medical procedures, as well as gender and race.

We unionized the features selected by LASSO and random forest, which led to 204 features 

in total for the dataset of less stringent inclusion criterion and 145 features in total for the 

dataset of more stringent inclusion criterion. The detailed information of selected features is 

included in the Supplementary Material B.

3.2.1.3. Comparison of the four prediction methods.: To compare the prediction 

performance of the four methods using the test set, we applied bootstrapping 1000 times 

on the test set and obtained average AUCs, F1-scores, F2-scores, recalls and precisions 

when the threshold for the probability of being a case is set at 0.5, as well as their 95% 

CIs. In addition, we conducted a sensitivity analysis where we masked certain percentages 

of observations to investigate the robustness of PsDF and the three competing methods to 

missing data, as previously explained. Fig. 4 summarizes prediction performance of the 

developed ESKD prediction tools from two inclusion criteria for the 1:5 case/control ratio. 

The results for the 1:1 case/control ratio are included in the Supplementary Material A 

Figure S1. The results are very similar to that of the 1:5 case/control ratio.

In general, both PsDF and random forest outperform logistic regression and the naïve 

similarity method in terms of AUCs (Fig. 4). Without missingness (pmask = 0), AUCs of 

PsDF, random forest and logistic regression are comparably high, at approximately 0.85 

with overlapping 95% CIs. When the robustness of the four methods is tested against the 

variable degree of missingness, AUCs drop dramatically for the logistic regression and the 

naïve similarity methods, while F1-scores and F2-scores drop quickly for random forest, 

with increasing masking percentage (pmask). In contrast, AUCs, F1-scores and F2-scores are 

all relatively stable for the PsDF method, demonstrating a clear advantage of this method 

over the other three competing methods.

We also note that the ESKD prediction tool developed by PsDF has higher recalls and 

lower precisions than those of the other three competing methods when the threshold for 

the probability of being a case is set at 0.5. Because ESKD cases usually have more EHR 

records than non-ESKD controls, this pattern resembles the one observed in the simulation 

studies when cases were set to have more EHR records than controls (Fig. 1A). We also 

observed decrease in recalls with increasing missingness for all four methods, however, the 

recalls of PsDF decrease much slower than those of the other three methods, while the 

recalls of random forest decrease dramatically, similar as the patterns observed in simulation 

studies.

As there are only limited geocoding information available for a small portion of CUIMC 

patients, to demonstrate that PsDF is designed to fuse all available domains, we repeated 

the construction of the ESKD prediction tools adding the geocoding domain. We updated 

the samples selection for the training and test sets accordingly. There are two continuous 

variables available for the geocoding domain, median household income in dollars and 

distance to the nearest major road in meters. Other five domains are the same as described 

in Section 3.2.1. The patterns of AUCs, F1-scores, F2-scores, recalls and precisions of 
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the ESKD prediction tools are similar to those with 5 domains. Full description of the 

construction procedure and results is included in the Supplementary Material A.

3.2.2. AS prediction tools—Similar to kidney disease, the natural history of aortic 

stenosis (AS) progresses through a prolonged asymptomatic period prior to the development 

of symptomatic disease that requires valve replacement. Although there is an average rate 

of reduction of valve area quoted from epidemiologic studies, there are some patients who 

undergo rapid progression of disease and others who have minimal to no progression over 

a similar time frame. The targeted use of surveillance ultrasound to monitor progression 

of AS and to determine when valve replacement should occur could reduce unnecessary 

medical spending and help direct limited resources to patients who need them most. The 

application of PsDF to identify patients at high risk of disease progression may further 

facilitate planning of a valve replacement procedure. We therefore applied PsDF and the 

three competing methods to build AS prediction tools. The patterns of AUCs, F1-scores, 

F2-scores, recalls and precisions are similar to those observed for the prediction of ESKD. 

Full description of the methods and results is included in the Supplementary Material A.

4. Discussion and conclusions

We developed Patient similarity based on Domain Fusion (PsDF), a novel framework 

for clinical outcome prediction using comprehensive patient data. The PsDF method 

integrates similarity information from multiple data domains into a comprehensive similarity 

measurement that can be subsequently used to predict important clinical outcomes. In 

contrast to the similarity-based methods based on concatenated data, our fusion method 

allows for highly unbalanced data domains to be treated equally, and prevents any domain 

with a large number of features from dominating the prediction. Moreover, as a similarity

based method, PsDF naturally captures nonlinear signals, such as variance-based signals, 

and does not require a certain ratio of sample size to the number of features that is required 

for regression-based models. We demonstrate that PsDF is highly flexible, scalable, and 

makes use of the entirety of patient’s data (EHR-based as well as non-EHR-based) to define 

comprehensive similarity.

With extensive simulation studies, we demonstrate an improved prediction performance of 

PsDF over the competing methods, including random forest, logistic regression and naïve 

similarity methods. In the presence of nonlinear signals and when domains with unbalanced 

sizes exist, PsDF outperforms the competing methods through its ability to preserve strong 

signals, accumulate weak signals, and capture nonlinear effects.

In two clinical application studies, we also demonstrate that PsDF is more robust to random 

missingness compared to random forest, logistic regression or naïve similarity methods. This 

is an important advantage, given that missing data is a ubiquitous property of the real life 

EHR data. This advantage stems from the fact that PsDF integrates similarity information 

across different domains and performs prediction based on integrated relative similarity 

between a sample in the test set and all samples in the training set. Even though the masking 

procedure may change distributions of features in the test set, the relative similarity to the 

training set may not change much. On the other hand, random forest tends to classify almost 
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all test samples as controls, especially with an unbalanced case-control design with more 

controls than cases. Logistic regression-based methods rely heavily on parameter estimates 

for selected features using the training set. When the features’ distributions in the test set 

are different from that in the training set, it is expected that the prediction performance of 

logistic regression would rapidly decrease. The naïve similarity method is also not expected 

to be robust to missingness, because the dilution of signal features with concatenation 

becomes even more severe when some observations are masked.

We want to emphasize that features used in the two clinical studies were pre-selected by 

LASSO and random forest, which favor the two competing methods, i.e., logistic regressions 

and random forest. Close investigation of the selected features for the ESKD prediction 

tools and the AS prediction tools suggests that they are clinically reasonable (Supplementary 

Material B). For example, in the ESKD prediction tools, “disorder of kidney and/or ureter”, 

“biopsy of kidney” and “acute renal failure syndrome” were selected under both less/more 

stringent inclusion criteria. In the AS prediction tools, “aortic valve disorder”, “cardiac 

complication” and “diagnostic ultrasound of heart” were selected under both less/more 

stringent inclusion criteria.

One limitation of the current study is that we coded all features in EHR-based domains 

to be binary, indicating the presence or absence of a record. We did not use cumulative 

counts or continuous measures of certain features, which likely led to some information 

loss. Another limitation is that we did not use longitudinal information embedded in patient 

records, nor did we consider different visit types (e.g., hospital versus ambulatory). We 

are currently working on extending the PsDF framework in order to make full usage of 

such information. We want to emphasize that the prediction performance could be further 

enhanced if data from more patient domains becomes available in the future, such as genetic 

or exposome data. The success of our two clinical application studies suggests that the 

framework of PsDF is highly flexible, scalable, and generalizable, and thus this method has 

a great potential in developing new patient similarity-based clinical prediction tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
For the 1:1 case/control ratio, simulation results of prediction performance of the PsDF 

algorithm, the random forest classifier, the logistic regression and the naïve similarity 

method, under two simulation scenarios: 1) increasing number of signal features in Domain 

2, and 2) increasing effect size of the variance signal feature in Domain 3. Part A displays 

results when cases have more EHR records than controls. Part B displays results when cases 

have fewer EHR records than controls.
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Fig. 2. 
For the 1:5 case/control ratio, simulation results of prediction performance of the PsDF 

algorithm, the random forest classifier, the logistic regression and the naïve similarity 

method, under two simulation scenarios: 1) increasing number of signal features in Domain 

2, and 2) increasing effect size of the variance signal feature in Domain 3. Part A displays 

results when cases have more EHR records than controls. Part B displays results when cases 

have fewer EHR records than controls.
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Fig. 3. 
ESKD data preprocessing pipeline with two different inclusion criteria to define eligible 

patients.
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Fig. 4. 
For the 1:5 case/control ratio, prediction performance of the ESKD prediction tools built 

by the PsDF algorithm, the random forest classifier, the logistic regression and the naïve 

similarity method when the masking percentage pmask increases, under two different 

inclusion criteria: A) the less stringent criterion, and B) the more stringent criterion.
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