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Abstract

Sparse Identification of Nonlinear Dynamics (SINDy) is a method of system discovery that has

been shown to successfully recover governing dynamical systems from data [6, 39]. Recently,

several groups have independently discovered that the weak formulation provides orders of

magnitude better robustness to noise. Here we extend our Weak SINDy (WSINDy) framework

introduced in [28] to the setting of partial differential equations (PDEs). The elimination of

pointwise derivative approximations via the weak form enables effective machine-precision

recovery of model coefficients from noise-free data (i.e. below the tolerance of the simulation

scheme) as well as robust identification of PDEs in the large noise regime (with signal-to-noise

ratio approaching one in many well-known cases). This is accomplished by discretizing a

convolutional weak form of the PDE and exploiting separability of test functions for efficient

model identification using the Fast Fourier Transform. The resulting WSINDy algorithm for PDEs

has a worst-case computational complexity of 𝒪 ND + 1log(N)  for datasets with N points in each of

D + 1 dimensions. Furthermore, our Fourier-based implementation reveals a connection between

robustness to noise and the spectra of test functions, which we utilize in an a priori selection

algorithm for test functions. Finally, we introduce a learning algorithm for the threshold in

sequential-thresholding least-squares (STLS) that enables model identification from large libraries,

and we utilize scale invariance at the continuum level to identify PDEs from poorly-scaled

datasets. We demonstrate WSINDy’s robustness, speed and accuracy on several challenging PDEs.

Code is publicly available on GitHub at https://github.com/MathBioCU/WSINDy_PDE.
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1. Introduction

Stemming from Akaike’s seminal work in the 1970’s [1, 2], research into the automatic

creation of accurate mathematical models from data has progressed dramatically. In the last

20 years, substantial developments have been made at the interface of applied mathematics

and statistics to design data-driven model selection algorithms that are both statistically

rigorous and computationally efficient (see [5, 22, 23, 48, 55, 56] for both theory and

applications). An important achievement in this field was the formulation and subsequent

discretization of the system discovery problem in terms of a candidate basis of nonlinear

functions evaluated at the given dataset, together with a sparsification measure to avoid

overfitting [9]. In [50] the authors extended this framework to the context of catastrophe

prediction and used compressed sensing techniques to enforce sparsity. More recently, this

approach has been generalized as the SINDy algorithm (Sparse Identification of Nonlinear

Dynamics) [6] and successfully used to identify a variety of discrete and continuous

dynamical systems.

The wide applicability, computational efficiency, and interpretability of the SINDy algorithm

has spurred an explosion of interest in the problem of identifying nonlinear dynamical

systems from data [8, 34, 10, 11, 15, 49, 27]. In addition to the sparse regression approach

adopted in SINDy, some of the primary techniques include Gaussian process regression [31,

36], deep neural networks [26, 25, 24, 40, 51, 22], Bayesian inference [61, 62, 54] and

classical methods from numerical analysis [16, 19, 57]. The variety of approaches for model

discovery from data qualitatively differ in the interpretability of the resulting data-driven

dynamical system, the computational efficiency of the algorithm, and the robustness to

noise, scale separation, etc. For instance, a neural-network based data-driven dynamical

system does not easily lend itself to physical interpretation1. The SINDy algorithm allows

for direct interpretations of the dynamics from identified differential equations and uses

sequential-thresholding least-squares (STLS) to enforce a sparse solution x ∈ ℝn to a linear

system Ax = b. STLS has been proven to converge to a local minimizer of the non-convex

functional F(x) = ∥ Ax − b ∥2
2 + λ2 ∥ x ∥0 in at-most n iterations [60].

The aim of the present article is to extend the Weak SINDy method (WSINDy) for

recovering ordinary differential equations (ODEs) from data to the context of partial

differential equations (PDEs) [28]. WSINDy is a Galerkin-based data-driven model selection

algorithm that utilizes the weak form of the dynamics in a sparse regression framework. By

integrating in time against compactly-supported test functions, WSINDy avoids

approximation of pointwise derivatives which are known to result in low robustness to noise

[39]. In [28] we showed that by integrating against a suitable choice of test functions, correct

ODE model terms can be identified together with machine-precision recovery of coefficients

(i.e. below the tolerance of the data simulation scheme) from noise-free synthetic data, and

for datasets with large noise, WSINDy successfully recovers the correct model terms

without explicit data denoising. The use of integral equations for system identification was

proposed as early as the 1980’s [9] and was carried out in a sparse regression framework in

1There have been efforts to address the interpretability of neural networks, see e.g. [29, 47, 38].
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[42] in the context of ODEs, however neither works utilized the full generality of the weak

form.

Sparse regression approaches for learning PDEs from data have seen a tremendous spike in

activity in the years since 2016. Pioneering works include [41], [39], and [43], where the

Douglas-Rachford algorithm, sequential-thresholding least squares (STLS), and basis

pursuit with denoising, respectively, are used to regularize the NP-hard problem of finding

an optimal sparse solution. Many other predominant approaches for learning dynamical

systems (Gaussian processes, deep learning, Bayesian inference, etc.) have since been

extended to the discovery of PDEs [7, 30, 21, 22, 52, 53, 59, 58, 45, 55]. A significant

disadvantage for the vast majority of PDE discovery methods is the requirement of

pointwise derivative approximations. Steps to alleviate this are taken by the authors of [35]

and [58], where neural network-based recovery schemes are combined with integral and

abstract evolution equations to recover PDEs, and in [53], where the finite element-based

method Variational System Identification (VSI) is introduced to identify reaction-diffusion

systems and uses backward Euler to approximate the time derivative.

WSINDy is a method for discovering PDEs without the use of any pointwise derivative

approximations, black-box routines or conventional noise filtering. Through integration by

parts in both space and time against smooth compactly-supported test functions, WSINDy is

able to recover PDEs from datasets with much higher noise levels, and from truly weak

solutions (see Figure 3 in Section 5). This works suprisingly well even as the signal-to-noise

ratio approaches one. Furthermore, as in the ODE setting, WSINDy achieves high-accuracy

recovery in the low-noise regime. These overwhelming improvements resulting from a fully

weak2 identification method have also been discovered independently by other groups [37,

13]. WSINDy offers several advantages over these alternative frameworks. Firstly, we use a

convolutional weak form which enables efficient model identification using the Fast Fourier

Transform (FFT). For measurement data with N points in each of the D + 1 space-time

dimensions (ND + 1 total data points), the resulting algorithmic complexity of WSINDy in

the PDE setting is at worst 𝒪 ND + 1log(N) , in other words 𝒪(log(N)) floating point

operations per data-point. Subsampling further reduces the cost. Furthermore, our FFT-based

approach reveals a key mechanism behind the observed robustness to noise, namely that

spectral decay properties of test functions can be tuned to damp noise-dominated modes in

the data, and we develop a learning algorithm for test function hyperparameters based on

this mechanism. WSINDy also utilizes scale invariance of the PDE and a modified STLS

algorithm with automatic threshold selection to recover models from (i) poorly-scaled data

and (ii) large candidate model libraries.

The outline of the article is as follows. In Section 2 we define the system discovery problem

that we aim to solve and the notation to be used throughout. We then introduce the

convolutional weak formulation along with our FFT-based discretization in Section 3. Key

ingredients of the WSINDy algorithm for PDEs (Algorithm 4.2) are covered in Section 4,

including a discussion of spectral properties of test functions and robustness to noise (4.1),

2The underlying true solution need only have bounded variation and the only derivatives approximated are weak derivatives.
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our modified sequential thresholding scheme (4.2), and regularization using scale invariance

of the underlying PDE (4.3). Section 5 contains numerical model discovery results for a

range of nonlinear PDEs, including several vast improvements on existing results in the

literature. We conclude the main text in Section 6 which summarizes the exposition and

includes natural next directions for this line of research. Lastly, additional numerical details

are included in the Appendix.

2. Problem Statement and Notation

Let U be a spatiotemporal dataset given on the spatial grid X ⊂ Ω over timepoints t ⊂ [0, T]

where Ω is an open, bounded subset in ℝD, D ≥ 1. In the cases we consider here, Ω is

rectangular and the spatial grid is given by a tensor product of one-dimensional grids X = X1

⊗⋯⊗XD, where each Xd ∈ ℝ
Nd for 1 ≤ d ≤ D has equal spacing Δx, and the time grid

t ∈ ℝ
ND + 1 has equal spacing Δt. The dataset U is then a (D + 1)-dimensional array with

dimensions N1 × ⋯ × ND + 1. We write h(X, t) to denote the (D + 1)-dimensional array

obtained by evaluating the function h:ℝD × ℝ ℂ at each of the points in the computational

grid (X, t). Individual points in (X, t) will often be denoted by (xk, tk) ∈ (X, t) where

xk, tk = Xk1, …, kD
, tkD + 1

= xk1
, …, xkD

, tkD + 1
∈ ℝD × ℝ .

In a mild abuse of notation, for a collection of points {(xk, tk)}k∈[K] ⊂ (X, t), the index k
plays a double role as a single index in the range [K] := {1, …, K} referencing the point (xk,

tk) ∈ {(xk, tk)}k∈[K] and as a multi-index on xk, tk = Xk1, …, kD
, tkD + 1

, where kd references

the dth coordinate. This is particularly useful for defining a matrix G ∈ ℂK × J of the form

Gk, j = h j xk, tk

(as in equation (3.6) below) where (hj)j∈[J] is a collection of J functions h j:ℝD × ℝ ℂ

evaluated at the set of K points {(xk, tk)}k∈[K] ⊂ (X, t).

We assume that the data satisfies U = u(X, t) + ϵ for i.i.d. noise3 ϵ and weak solution u of

the PDE

Dα0
u(x, t) = Dα1

g1(u(x, t)) + Dα2
g2(u(x, t)) + ⋯ + DαS

gs(u(x, t)), x ∈ Ω, t ∈

(0, T) .
(2.1)

3Here ϵ is used to denote a multi-dimensional array of i.i.d. random variables and has the same dimensions as U.
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The problem we aim to solve is the identification of functions (gs)s∈[S] and corresponding

differential operators Dαs

s ∈ [S]
 that govern the evolution4 of u according to Dα0

u given the

dataset U and computational grid (X, t). Here and throughout we use the multi-index

notation αs = α1
s , …, αD

s , αD + 1
s ∈ ℕD + 1 to denote partial differentiation5 with respect to x =

(x1, … , xD) and t, so that

Dαs
u(x, t) = ∂

α1
s + ⋯ + αD

s + αD + 1
s

∂x1
α1

s
…∂xD

αD
s

∂t
αD + 1

s u(x, t) .

We emphasize that a wide variety of PDEs can be written in the form (2.1). In particular, in

this paper we demonstrate our method of system identification on inviscid Burgers,

Korteweg-de Vries, Kuramoto-Sivashinsky, nonlinear Schrödinger’s, Sine-Gordon, a

reaction-diffusion system and Navier-Stokes. The list of admissable PDEs that can be

transformed into a weak form without any derivatives on the state variables includes many

other well-known PDEs (Allen-Cahn, Cahn-Hilliard, Boussinesq,…).

3. Weak Formulation

To arrive at a computatonally tractable model recovery problem, we assume that the set of

multi-indices (αs)s∈[S] together with α0 enumerates the set of possible true differential

operators that govern the evolution of u and that (gs)s∈[S] ⊂ span(fj)j∈[J] where the family of

functions (fj)j∈[J] (referred to as the trial functions) is known beforehand. This enables us to

rewrite (2.1) as

Dα0
u = ∑

s = 1

S
∑
j = 1

J
w(s − 1)J + j

⋆ Dαs
f j(u), (3.1)

so that discovery of the correct PDE is reduced to a finite-dimensional problem of

recovering the true vector of coefficients w⋆ ∈ ℝSJ, which is assumed to be sparse.

To convert the PDE into its weak form, we multiply equation (3.1) by a smooth test function
ψ(x, t), compactly-supported in Ω × (0, T), and integrate over the spacetime domain,

ψ , Dα0
u = ∑

s = 1

S
∑

j = 1

J
w(s − 1)J + j

⋆ ψ , Dαs
f j(u) ,

4Commonly Dα0
 is a time derivative ∂t or ∂tt, although this is not required.

5We will avoid using subscript notation such as ux to denote partial derivatives, instead using Dαu or ∂xu. For functions f(x) of one
variable, f(n)(x) denotes the nth derivative of f.
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where the L2-inner product is defined ψ , f ≔ ∫ 0
T ∫ Ωψ∗(x, t) f (x, t)dxdt and ψ* denotes the

complex conjugate of ψ, although in what follows we integrate against only real-valued test

functions and will omit the complex conjugation. Using the compact support of ψ and

Fubini’s theorem, we then integrate by parts as many times as necessary to arrive at the

following weak form of the dynamics:

( − 1)|α0|Dα0
ψ , u = ∑

s = 1

S
∑
j = 1

J
w(s − 1)J + j

⋆ ( − 1)|αs|Dαs
ψ , f j(u) , (3.2)

where |αs| ≔ ∑d = 1
D + 1αd

s  is the order of the multi-index6. Using an ensemble of test functions

(ψk)k∈[K], we then discretize the integrals in (3.2) with fj(u) replaced by fj(U) (i.e. evaluated

at the observed data U) to arrive at the linear system

b = Gw⋆

defined by

bk = ( − 1)|α0|Dα0
ψk, U ,

Gk, (s − 1)J + j = ( − 1)|αs|Dαs
ψk, f j(U) ,

(3.3)

where b ∈ ℝK, G ∈ ℝK × SJ and w⋆ ∈ ℝSJ are referred to throughout as the left-hand side,

Gram matrix and model coefficients, respectively. In a mild abuse of notation, we use the

inner product both in the sense of a continuous and exact integral in (3.2) and a numerical

approximation in (3.3) which depends on a chosen quadrature rule. Building off of its

success in the ODE setting, we use the trapezoidal rule throughout, as it has been shown to

yield nearly negligible quadrature error with the test functions employed below (see Section

4.1 and [28]). In this way, solving b = Gw★ for the model coefficients w★ allows for

recovery of the PDE (3.1) without pointwise derivative approximations. The Gram matrix

G ∈ ℝK × SJ and left-hand side b ∈ ℝK defined in (3.3) conveniently take the same form

regardless of the spatial dimension D, as their dimensions only depend on the number of test

functions K and the size SJ of the model library, composed of J trial functions (fj)j∈[J] and S
candidate differential operators enumerated by the multi-index set α := (αs)1≤s≤S.

3.1. Convolutional Weak Form and Discretization.

We now restrict to the case of each test function ψk being a translation of a reference test

function ψ, i.e. ψk(x, t) = ψ(xk − x, tk − t) for some collection of points {(xk, tk)}k∈[K] ⊂

6For example, with Dαs
= ∂2 + 1

∂x2∂y
, integration by parts occurs twice with respect to the x-coordinate and once with respect to y, so

that |αs| = 3 and ( − 1)|α
s| = − 1.
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(X, t) (referred to as the query points). The weak form of the dynamics (3.2) over the test

function basis (ψk)k∈[K] then takes the form of a convolution:

Dα0
ψ ∗ u xk, tk = ∑

s = 1

S
∑
i = 1

J
w(s − 1)J + j

⋆ Dαs
ψ ∗ f j(u) xk, tk . (3.4)

The sign factor ( − 1)|α
s| appearing in (3.2) after integrating by parts is eliminated in (3.4) due

to the sign convention in the integrand of the space-time convolution, which is defined by

ψ ∗ u(x, t) ≔ ∫0
T∫Ω

ψ(x − y, t − s)u(y, s)dyds = ψ(x − ⋅ , t − ⋅ ), u( ⋅ , ⋅ ) .

Construction of the linear system b = Gw★ as a discretization of the convolutional weak

form (3.4) over the query points (xk, tk)k∈[K] can then be carried out efficiently using the

FFT as we describe below.

To relate the continuous and discrete convolutions, we assume that the support of ψ is

contained within some rectangular domain

ΩR ≔ −b1, b1 × ⋯ × −bD, bD × −bD + 1, bD + 1 ⊂ ℝD × ℝ

where bd = mdΔx for d ∈ [D] and bD + 1 = mD + 1Δt. We then define a reference

computational grid (Y, 𝔱) ⊂ ℝD × ℝ for ψ centered at the origin and having the same

sampling rates (Δx, Δt) as the data U, where Y = Y1 ⊗·⋯·⊗YD for Yd = (nΔx)−md ≤ n ≤ md

and 𝔱 = (nΔt)−mD + 1 ≤ n ≤ mD + 1
. In this way Y contains 2md + 1 points along each

dimension d ∈ [D], with equal spacing Δx, and t contains 2mD + 1 + 1 points with equal

spacing Δt. As with (X, t), points in (yk, tk) ∈ (Y, t) take the form

yk, 𝔱k = Yk1, …, kD
, 𝔱kD + 1

where each index kd for d ∈ [D + 1] takes values in the range {−md, … , 0, … , md}, and for

valid indices k − j, the two grids (X, t) and (Y, t) are related by

xk − x j, tk − t j = yk − j, 𝔱k − j . (3.5)

We stress that (Y, t) is completely defined by the integers m = (md)d∈[D + 1], specified by the

user, and that the values of m have a significant impact on the algorithm. For this reason we

develop an automatic selection algorithm for m using spectral properties of the data U (see

Appendix A).

The linear system (3.3) can now be rewritten
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bk = Ψ0 ∗ U xk, tk ,

Gk, (s − 1)J + j = Ψ s ∗ f j(U) xk, tk ,
(3.6)

where Ψ s ≔ Dαs
ψ(Y, 𝔱)ΔxDΔt and the factor ΔxDΔt characterizes the trapezoidal rule. We

define the discrete (D + 1)-dimensional convolution between Ψs and fj(U) at a point

xk, tk = Xk1, …, kD
, tkD + 1

∈ (X, t) by

Ψs ∗ f j(U) xk, tk ≔ ∑
ℓ1 = 1

N1
⋯ ∑

ℓD + 1 = 1

ND + 1
Ψk1 − ℓ1, …, kD + 1 − ℓD + 1

s f j Uℓ1, …, ℓD + 1
,

which, substituting the definition of Ψs,

≔ ∑
ℓ1 = 1

N1
⋯ ∑

ℓD + 1 = 1

ND + 1
Dαs

ψ Yk1 − ℓ1, …, kD − ℓD
, 𝔱kD + 1 − ℓD + 1

f j Uℓ1, …, ℓD + 1

ΔxDΔt

(3.7)

truncating indices appropriately and using (3.5),

= ∑
ℓ1 = k1 − m1

k1 + m1
⋯ ∑

ℓD + 1 = kD + 1 − mD + 1

kD + 1 + mD + 1
Dαs

ψ Yk1 − ℓ1, …, kD − ℓD
, 𝔱kD + 1 − ℓD + 1

f j Uℓ1, …, ℓD + 1
ΔxDΔt

(3.8)

= ∑
ℓ1 = k1 − m1

k1 + m1
⋯ ∑

ℓD + 1 = kD + 1 − mD + 1

kD + 1 + mD + 1
Dαs

ψ xk − xℓ, tk − tℓ f j Uℓ1, …, ℓD + 1

ΔxDΔt

(3.9)

≈ ∫
0

T∫
Ω

Dαs
ψ xk − x, tk − t f j(u(x, t))dxdt . (3.10)

3.2. FFT-based Implementation and Computational Complexity for Separable ψ.

Convolutions in the linear system (3.6) may be computed rapidly if the reference test

function ψ is separable over the given coordinates, i.e.
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ψ(x, t) = ϕ1 x1 ⋯ϕ2 xD ϕD + 1(t)

for univariate functions (ϕd)d∈[D + 1]. In this case,

Dαs
ψ(Y, 𝔱) = ϕ1

α1
s

Y1 ⊗ ⋯ ⊗ ϕD
αD

s
YD ⊗ ϕD + 1

αD + 1
s

(𝔱),

so that only the vectors

ϕd
αd

s
Yd ∈ ℝ

2md + 1
, d ∈ [D]  and  ϕD + 1

αD + 1
s

(𝔱) ∈ ℝ
2mD + 1 + 1

,

need to be computed for each 0 ≤ s ≤ S and the multi-dimensional arrays (Ψs)s=0, …, S are

never directly constructed. Convolutions can be carried out sequentially in each coordinate7,

so that the overall cost of computing each column Ψs * fj (U) of G is

T I(N, n, D) ≔ CN log(N) ∑
d = 1

D + 1
ND + 1 − d(N − n + 1)d − 1, (3.11)

if the computational grid (X, t) and reference grid (Y, t) have N and n ≤ N points along each

of the D + 1 dimensions, respectively. Here CN log(N) is the cost of computing the 1D

convolution between vectors vectors x = x1, …, xn ∈ ℝn and y = y1, …, yN ∈ ℝN using the

FFT,

x ∗ y = 𝒫ℱ−1 ℱ x0 ⊙ ℱ(y) , (3.12)

where x0 = 0, …, 0, x1, …, xn ∈ ℝN, ⊙ denotes element-wise multiplication and 𝒫 projects

onto the first N − n + 1 components. The discrete Fourier transform ℱ is defined

ℱk(y) = ∑
j = 1

N
y je

−2πi( j − 1)(k − 1)

with inverse

ℱk
−1(z) = 1

N ∑
j = 1

N
z je

2πi( j − 1)(k − 1) .

The projection 𝒫 ensures that the convolution only includes points that correspond to

integrating over test functions ψ that are compactly supported in (X, t), which is necessary

7The technique of exploiting separability in high-dimensional integration is not new (see [33] for an early introduction) and is
frequently utilized in scientific computing (see [4, 14] for examples in computational chemistry).
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for integration by parts to hold in the weak form. The spectra of the test functions ϕd
αd

s
Yd

can be precomputed and in principle each convolution Ψs * fj(U) can be carried out in

parallel8, making the total cost of the WSINDy Algorithm (4.2) in the PDE setting equal to

(3.11) (ignoring the cost of the least-squares solves which are negligible in comparison to

computing (G, b)). In addition, subsampling reduces the term (N − n + 1) in (3.11) to (N − n
+ 1)/s where s ≥ 1 is the subsampling rate such that (N − n + 1)/s points are kept along each

dimension.

For most practical combinations of n and N, (say n > N/10 and N > 150) using the FFT and

separability provides a considerable reduction in computational cost. See Figure 1 for a

comparison between TI and the naive cost TII of an (N + 1)-dimensional convolution:

T II(N, n, D) ≔ 2nD + 1 − 1 (N − n + 1)D + 1 . (3.13)

For example, with n = N/4 (a typical value) we have TII = 𝒪 N2D + 2  and

TI = 𝒪 ND + 1log(N) , hence exploiting separability reduces the computational complexity by

a factor of ND + 1/log(N).

4. WSINDy Algorithm for PDEs and Hyperparameter Selection

WSINDy for PDE discovery is given in Algorithm 4.2, where the user must specify each of

the hyperparameters in Table 1. The key pieces of the algorithm are (i) the choice of

reference test function ψ, (ii) the method of a sparsification, (iii) the method of

regularization, (iv) selection of convolution query points {(xk, tk)}k∈K, and (v) the model

library. At first glance, the number of hyperparameters is quite large. We now discuss several

simplifications that either reduce the number of hyperparameters or provide methods of

choosing them automatically. In Section 4.1 we discuss connections between the

convolutional weak form and spectral properties of ψ that determine the scheme’s

robustness to noise and inform the selection of test function hyperparameters. In Section 4.2

we introduce a modified sequential-thresholding least-squares algorithm (MSTLS) which

includes automatic selection of the threshold λ and allows for PDE discovery from large

libraries. In Section 4.3 we describe how scale invariance of the PDE is used to rescale the

data and coordinates in order to regularize the model recovery problem in the case of poorly-

scaled data. In Sections 4.4 and 4.5 we briefly discuss selection of query points and an

appropriate model library, however these components of the algorithm will be investigated

more thoroughly in future research.

4.1. Selecting a Reference Test Function ψ.

4.1.1. Convolutional Weak Form and Fourier Analysis.—Computation of G and b
in (3.6) with ψ separable requires the selection of appropriate 1D coordinate test functions

(ϕd)d∈[D + 1]. Computing convolutions using the FFT (3.12) suggests a mechanism for

8For the examples in Section 5 the walltimes are reported for serial computation of (G, b).
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choosing appropriate test functions. Define the Fourier coefficients of a function u ∈ L2([0,

T]) by

u(k) = 1
T ∫0

T
u(t)e

− 2πik
T t

dt, k ∈ ℤ .

Consider data U = u(t) + ϵ ∈ ℝN for a T-periodic function u, tk = k T
N = kΔt, and i.i.d. noise

ϵ 𝒩 0, σ2I . The discrete Fourier transform of the noise ℱ(ϵ) ≔ ϵR + iϵI is then distributed

ϵR, ϵI 𝒩 0, Nσ2/2 I . In addition, there exist constants C > 0 and ℓ > 1/2 such that

|uk| ≤ C |k|−ℓ for each k ∈ ℤ. There then exists a noise-dominated region of the spectrum

ℱ(U) determined by the noise-to-signal ratio

NSRk ≔ 𝔼
|ℱk(ϵ)|2

|ℱk(u(t))|2
= Nσ2

|ℱk(u(t))|2
≈ Tσ2

N |u(k)|2
≥ 1

C2 Δtσ2k2ℓ,

where ‘≈’ corresponds to omitting the aliasing error. For NSRk ≥ 1 the kth Fourier mode is

by definition noise-dominated, which corresponds to wavenumbers

|k | ≥ k∗ ≈ C
σ Δt

1/ℓ
. (4.1)

If the critical wavenumber k* between the noise dominated (NSRk ≥ 1) and signal-

dominated (NSRk ≤ 1) modes can be estimated from the dataset U, then it is possible to

design test functions ψ such that the noise-dominated region of ℱ(U) lies in the tail of ψ .

The convolutional weak form (3.6) can then be interpreted as an approximate low-pass filter

on the noisy dataset, offering robustness to noise without altering the frequency content of

the data9.

In summary, spectral decay properties of the reference test function ψ serve to damp high-

frequency noise in the convolutional weak form, which acts together with the natural

variance-reducing effect of integration, as described in [13], to allow for quantification and

control of the scheme’s robustness to noise. Specifically, coordinate test functions ϕd with

wide support in real space (larger md) will reduce more variance, but will have a faster-

decaying spectrum ϕd, so that signal-dominated modes may not be resolved, leading to

model misidentification. On the other hand, if ϕd decays too swiftly in real space (smaller

md), then the spectrum ϕd will decay more slowly and may put too much weight on noise-

dominated frequencies. In addition, smaller md may not sufficiently reduce variance. A

balance must be struck between (a) effectively reducing variance, which is ultimately

9This is in contrast to explicit data-denoising, where a filter is applied to the dataset prior to system identification and may
fundamentally alter the underlying clean data. The implicit filtering of the convolutional weak form is made explicit by the FFT-based
implementation (3.12).

MESSENGER and BORTZ Page 11

J Comput Phys. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determined by the decay of ψ in physical space, and (b) resolving the underlying dynamics,

determined by the decay of ψ  in Fourier space.

4.1.2. Piecewise-Polynomial Test Functions.—Many test functions achieve the

necessary balance between decay in real space and decay in Fourier space in order to offer

both variance reduction and resolution of signal-dominated modes (defined by (4.1)). For

simplicity, in this article we use the same test function space used in the ODE setting [28]

and leave an investigation of the performance of different test functions to future work.

Define 𝒮 to be the space of functions

ϕ(v) = C(v − a)p(b − v)q a < v < b,
0 otherwise,

(4.2)

where p, q ≥ 1 and v is a variable in time or space. The normalization

C = 1
ppqq

p + q
b − a

p + q

ensures that ‖ϕ‖∞ = 1. Functions ϕ ∈ 𝒮 are non-negative, unimodal, compactly-supported in

[a, b], and have ⌊min{p, q}⌋ weak derivatives10. Larger p and q imply faster decay towards

the endpoints (a, b) and for p = q we refer to p as the degree of ϕ. See Figure 2 for a

visualization of ψ and partial derivatives Dαs
ψ  constructed from tensor products of functions

from 𝒮. In addition to having nice integration properties combined with the trapezoidal rule

(see Lemma 1 of [28]), (a, b, p, q) can be chosen to localize ϕ around signal-dominated

frequencies in ℱ(U) using the fact that for any reference domain length L ≥ |b − a|,

|ϕ(k) | = o |b − a|
L |k|

− min p, q − 1/2
.

To assemble the reference test function ψ from one-dimensional test functions

ϕd d ∈ [D + 1] ⊂ 𝒮 along each coordinate, we must determine the parameters (ad, bd, pd, qd)

in the formula (4.2) for each ϕd. For convenience we center (Y, t) at the origin so that each

ϕd is supported on a centered interval [ad, bd] = [−bd, bd], where bd = mdΔx for d ∈ [D] and

bD + 1 = mD + 1Δt, and set pd = qd so that ψ is symmetric11. In this way only m ≔
(md)d∈[D + 1] and degrees p ≔ (pd)d∈[D + 1] need to be specified, hence the vectors

ϕd
αd

s
Yd

0 ≤ s ≤ S
 can be computed from an analogous function ϕpd

 with support [−1, 1],

10𝒮 can also be seen as a scaled subset of the Bernstein polynomials, which, among other considerations, are used in the construction
of B-Splines [12].
11Test function asymmetry may provide an advantage in some cases, for instance along the time axis, however we do not investigate
this here.
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ϕpd
(v) ≔ 1 − v2 pd, −1 < v < 1

0, otherwise,

using

ϕd
αd

s
Yd = 1

bd
αd

s ϕpd

αd
s Yd

bd
= 1

mdΔ
αd

s ϕpd

αd
s

nd ,

where nd ≔ −1 + n
md

:n ∈ 0, …, 2md  is an associated scaled grid and Δ ∈ {Δx, Δt}.

The discrete support lengths m and degrees p determine the smoothness of ψ, as well as its

decay in real and in Fourier space, hence are critical to the method’s performance. The

degrees p can be chosen from m to ensure necessary smoothness and decay in real space

using

pd = min  p ≥ αd + 1:ϕp 1 − 1
md

≤ τ , (4.3)

where αd ≔ max0 ≤ s ≤ S αd
s  is the maximum derivative along the dth coordinate and τ is a

chosen (real-space) decay tolerance. By enforcing that ϕd decays to τ at the first interior

gridpoint of its support, (4.3) controls the integration error (specifically, τ ≤
2md − 1

md
2

q

ensures 𝒪 Δxq + 1  integration error for noise-free data), while p ≥ αd + 1 ensures that

ϕd ∈ C
αd(ℝ), which is necessary to integrate by parts as many times as required by the multi-

index set α. The steps for arriving at the test function values on the reference grid

ϕd
αd

s
Yd

0 ≤ s ≤ S
 are contained in Algorithm 4.1.

In the examples below, we set τ = 10−10 throughout12 and we use the method introduced in

Appendix A to choose m, which involves estimating the critical wavenumber k* (defined in

(4.1)) between noise-dominated and signal-dominated modes of ℱ(U). We also simplify

things by choosing a single test function for all spatial coordinates, ϕx = ϕ1 = ϕ2 = ⋯ = ϕD

where ϕx has degree px and support mx, and a (possibly different) test function ϕt = ϕD + 1

for the time axis with degree pt and support mt (recall that subscripts x and t are indices, not

partial derivatives). This convention is used in the following sections.

12WSINDy appears not to be particularly sensitive to τ, similar results were obtained for τ = 10−6, 10−10, 10−16.
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4.2. Sparsification.

To enforce a sparse solution we present a modified sequential-thresholding least-squares
algorithm MSTLS(G, b; λ), defined in (4.6), which accounts for terms that are outside of

the dominant balance physics of the data, as determined by the left-hand side b, as well as

terms with small coefficients. We then utilize the loss function

ℒ(λ) =
‖G wλ − wLS ‖2

‖GwLS‖2
+

# ℐλ

SJ (4.4)

to select an optimal threshold λ , where wλ is the output of MSTLS(G, b; λ) defined in

equation (4.6), #{·} denotes cardinality, ℐλ ≔ 1 ≤ i ≤ SJ :wi
λ ≠ 0  is the index set of non-

zero coefficients of wλ, wLS ≔ (GTG)−1GTb is the least squares solution, and SJ is the total

number of terms in the library (S differential operators and J functions of the data). The first

term in ℒ penalize the distance between GwLS (the projection of b onto the range of G) and

Gwλ (the projection of b onto the columns of G restricted to ℐλ), while the second term

penalizes the number of nonzero terms in the resulting model. The normalization simply

enforces ℒ(0) = ℒ(∞) = 1.

The MSTLS(G, b; λ) iteration is as follows. For a given λ ≥ 0, define the set of lower

bounds Lλ and upper bound Uλ by

Li
λ = λmax 1, ∥ b ∥

Gi

Ui
λ = 1

λ min 1, ∥ b ∥
Gi

, 1 ≤ i ≤ SJ . (4.5)

Then with w0 = wLS, define the iterates

MSTLS(G, b; λ)
ℐℓ = 1 ≤ i ≤ SJ :Li

λ ≤ |wi
ℓ| ≤ Ui

λ

wℓ + 1 = argmin
supp(w) ⊂ ℐℓ ∥ Gw − b ∥2

2 .
(4.6)

The constraint Li
λ ≤ |wi

ℓ| ≤ Ui
λ is clearly more restrictive than standard sequential

thresholding, but it enforces two desired qualities of the model: (i) that the coefficients wλ

do not differ too much from 1, since 1 is the coefficient of the “evolution” term Dα0
u

(assumed known), and (ii) that the ratio ‖wiGi‖2/‖b‖2 lies in [λ, λ−1], enforcing an empirical
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dominant balance rule (e.g. λ = 0.01 allows terms in the model to be at most two orders of

magnitude from Dα0
u. Using previous results on the convergence of STLS [60], for

MSTLS(G, b; λ) we employ the stopping criteria ℐℓ\ℐℓ + 1 = 0, which must occur for

some ℓ ≤ SJ. The overall sparsification algorithm MSTLS(G, b; ℒ, λ) is

MSTLS(G, b; ℒ, λ)
λ = min  λ ∈ λ:ℒ(λ) = min 

λ ∈ λ
ℒ(λ)

w = MSTLS(G, b; λ ),
(4.7)

where λ is a finite set of candidate thresholds13. The learned threshold λ  is the smallest

minimizer of ℒ over the range λ and hence marks the boundary between identification and

misidentification of the minimum-cost model, such that λ ∈ λ : λ < λ  results in overfitting.

A similar learning method for λ  combining STLS and Tikhonov regularization (or ridge
regression) was developed in [39]. We have found that our approach of combining

MSTLS(G, b; ℒ, λ) with rescaling, as introduced in the next section, regularizes the sparse

regression problem in the case of large model libraries without adding hyperparameters14

and definitely deserves further study.

4.3. Regularization through Rescaling.

Construction of the linear system b = Gw involves taking nonlinear transformations of the

data fj(U) and then integrating against Dαs
ψ , which oscillates for large |αs|. This can lead to a

large condition number κ(G) and prevent accurate inference of the true model coefficients

w★, especially when the underlying data is poorly scaled15. In particular, identification of

polynomial terms such as ∂x(u2) from a large library of polynomial terms is ill-conditioned

for large (or small) amplitude data. Naively rescaling the data can easily lead to unreliable

inference of model coefficients, since characteristic scales often effect the dynamics in

nontrivial ways. For example, solution amplitude determines the wavespeed in the inviscid

Burgers and Korteweg-de Vries equations, hence the solution and space-time coordinates

must be rescaled in a principled manner in order to preserve the dynamics. To overcome this

problem we propose to rescale the data using scale invariance of the PDE and choose scales

that achieve a lower condition number, as described below. This approach allows for reliable

identification of the Burgers and KdV equations from highly-corrupted large-amplitude data

U 𝒪 103 , see Section 5.4).

First, we note that the true model is scale invariant in the following way. If u solves (3.1),

then for any scales γx, γt, γu > 0, the rescaled function

13Other methods of minimizing ℒ can be used, however minimizers are not unique (there exists a set of minimizers - see Figure 5).

Our approach is efficient and returns the minimizer λ  which has the useful characterization of defining the thresholds λ that result in
overfitting.

14Tikhonov regularization involves solving w = argminw Gw − b 2
2 + γ2 w 2

2

15A common remedy for this is to scale G to have columns of unit 2-norm, however this has no connection with the underlying
physics.
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u(x, t ) ≔ γuu x
γx

, t
γt

≔ γuu(x, t)

solves

Dα0
u = ∑

s = 1

S
∑

j = 1

J
w(s − 1)J + jD

αs
f j(u)

where Dαs
 denotes differentiation with respect to (x, t ) = γxx, γtt . For homogeneous

functions fj with power βj, we have f j(u) = f j(u) = γu
β j f j(u), otherwise f j(u) = f j

u
γu

= f j(u)

(in which case we set βj = 0). The linear system in the rescaled coordinates b = Gw is

constructed by discretizing the convolutional weak form as before but with a reference test

function ψ  on the rescaled grid ΩR. We recover the coefficients16 w at the original scales by

setting w = Mw, where M = diag(μ) is the diagonal matrix with entries

μ(s − 1)J + j ≔ γu
− β j − 1

γx
∑d = 1

D αd
s − αd

0
γt

αD + 1
s − αD + 1

0
. (4.8)

There is flexibility in choosing the scales γu, γx, γt, and a natural choice is to enforce that

the columns of G are similar in norm. Motivated by this, we find that for polynomial and

trigonometric libraries, the scales17

γu =
U 2′

Uβ
2′

1/β

, γx = 1
mxΔx

px
αx
2 αx!

1/αx

, γt = 1
mtΔt

pt
αt
2 αt!

1/αt

(4.9)

are sufficient to regularize ill-conditioning due to poor scaling. Here αx and αt are the

maximum spatial and temporal derivatives appearing in the library and β = max jβ j is the

highest monomial power of the functions (fj)j∈[J]. From (4.9) we get that

‖Uβ‖2′ = ‖U‖2′

and

16Note that thresholding in equation (4.6) occurs on w and the terms 
b
Gi

 in the bounds (4.5) become 
b

μi Gi
.

17Here ‖U‖2′ is the 2-norm of U stretched into a column vector (and similarly for ‖·‖1′).
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maxs Ψs
1′ ≤ max

s
Dαs

ψ ∞|ΩR| ≤ |ΩR|,

hence, using Young’s inequality for convolutions,

‖Ψs * Uβ‖2′ ≤ ‖Ψs‖1′‖Uβ‖2′ ≤ |ΩR|‖U‖2′ .

This shows that with scales γu, γx, γt set according to (4.9), the columns of G are close in

norm to the original dataset U. Similar scales γx, γt, γu can be chosen for different model

libraries and reference test functions, and a more refined analysis will lead to scales that

achieve closer agreement in norm. In the examples below we rescale the data and

coordinates according to (4.9), which results in a low condition number κ(G) (see Table 4).

Throughout what follows, quantities defined over scaled coordinates will be denoted by

tildes.

4.4. Query Points and Subsampling.

Placement of {(xk, tk)}k∈[K] determines which regions of the observed data will most

influence the recovered model18. In WSINDy for ODEs ([28]), an adaptive algorithm was

designed for placement of test functions near steep gradients along the trajectory.

Improvements in this direction in the PDE setting are a topic of active research, however, for

simplicity in this article we uniformly subsample {(xk, tk)}k∈[K] from (X, t) using

subsampling frequencies s = (s1, … , sD + 1) along each coordinate, specified by the user.

That is, along each one-dimensional grid Xd,
Nd − 2md

sd
 points are selected with uniform

spacing sdΔx for d ∈ [D] and sD + 1Δt for d = D + 1. This results in a (D + 1)-dimensional

coarse grid with dimensions 
N1 − 2m1

s1
× ⋯ ×

ND + 1 − 2mD + 1
sD + 1

,, which determines the

number of query points

K = ∏
d = 1

D + 1 Nd − 2md
sd

. (4.10)

4.5. Model Library.

The model library is determined by the nonlinear functions (fj)j∈[J] and the partial derivative

indices α and is crucial to the well-posedness of the recovery problem. In the examples

below we choose (fj)j∈[J] to be polynomials and trigonometric functions as these sets are

dense in many relevant function spaces. When the true PDE does not contain cross

18Note that the projection operation in (3.12) restricts the admissable set of query points to those for which ψ(xκ – x, tκ − t) is
compactly supported within Ω × [0, T], which is necessary for integration by parts to be valid.
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derivatives (e.g. ∂2
∂x1∂x2

), we remove them from the derivative library α and note that

including these terms does not have a significant impact on the results.

5. Examples

We now demonstrate the effectiveness of WSINDy by recovering the PDEs listed in Table 2

over a range of noise levels. These examples show that WSINDy provides orders of

magnitude improvements over derivative-based methods [39], with reliable and accurate

recovery of four out of the eight PDEs under noise levels as high as 100% (defined in (5.1)

and (5.2)) and for all examples under 20% noise. In contrast to the weak recovery methods

in [37, 13], WSINDy uses (i) the convolutional weak form (3.6) and FFT-based

implementation (3.12), (ii) improved thresholding and automatic selection of the sparsity

threshold λ  via (4.6) and (4.7), and (iii) rescaling using (4.9). The effects of these

improvements are discussed in Sections 5.4 and 5.5.

To test robustness to noise, a noise ratio σNR is specified and a synthetic “observed” dataset

U = U⋆ + ϵ

is obtained from a simulation U★ of the true PDE19 by adding i.i.d. Gaussian noise with

variance σ2 to each data point, where

σ ≔ σNR U⋆
RMS

≔ σNR
1

N1⋯NDND + 1
∑

k1 = 1

N1
⋯ ∑

kD + 1 = 1

ND + 1
Uk1, …, kD + 1

⋆ 2
1/2

.

(5.1)

We examine noise ratios σNR in the range [0, 1] and often refer to the noise level as σNR or

equivalently that the data contains 100σNR% noise. We note that the resulting true noise

ratio

19Details on the numerical methods and boundary conditions used to simulate each PDE can be found in Appendix B.
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σNR
⋆ ≔

ϵ RMS

U⋆
RMS

(5.2)

matches the specified σNR to at least four significant digits in all cases and so we only list

σNR. When the state variable is vector-valued, as with the nonlinear Schrödinger, reaction-

diffusion, and Navier-Stokes equations (see Table 2), a separate noise variance σ2 is

computed for each vector component so that the noise ratio σNR of each component satisfies

(5.2).

5.1. Performance Measures.

To measure the ability of the algorithm to correctly identify the terms having nonzero

coefficients, we use the true positivity ratio (introduced in [22]) defined by

TPR(w) = TP
TP+FN + FP (5.3)

where TP is the number of correctly identified nonzero coefficients, FN is the number of

coefficients falsely identified as zero, and FP is the number of coefficients falsely identified

as nonzero. Identification of the true model results in a TPR of 1, while identification of half

of the correct nonzero terms and no falsely identified nonzero terms results in TPR of 0.5

(e.g. the 2D Euler equations ∂tω = −∂x(ωu) − ∂y(ωv) result in a TPR of 0.5 if the underlying

true model is the 2D Navier-Stokes vorticity equation). We will see that in several cases that

the average TPR remains above 0.95 even as the noise level approaches 1. The loss function

ℒ(λ) (defined in (4.4)) and the resulting learned sparsity threshold λ  (defined in (4.7))

provide additional information on the algorithm’s ability to identify the correct model terms

with respect to the noise level. In particular, sensitivity to the sparsity threshold suggests that

automatic selection of λ  is essential to successful recovery in the relatively large noise

regime.

To assess the accuracy of the recovered coefficients we use two metrics. We measure the

maximum error in the true non-zero coefficients using

E∞(w) ≔ max
j : w j* ≠ 0

|w j − w j
⋆|

|w j
⋆|

, (5.4)

where |·| denotes absolute value, and the ℓ2 distance in parameter space using

E2(w) ≔
w − w⋆

RMS

w⋆
RMS

. (5.5)

E∞ determines the number of significant digits in the recovered true coefficients while E2

provides information about the magnitudes of coefficients that are falsely identified as

nonzero. Often when a term is falsely identified and the resulting nonzero coefficient is

small, a larger sparsity factor will result in idenfitication of the true model.
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Finally, when TPR(w) = 1, we report the prediction accuracy between the true data U★ and a

numerical solution Udd to the data-driven PDE using the same initial conditions. We

compute the relative L2 error Pt(w) at time t = 0.5T (i.e. at the half-way point in time)

defined by

Pt(w) ≔
‖Ut

dd − Ut
⋆‖

RMS

‖Ut
⋆‖

RMS

(5.6)

Where Ut
dd, Ut

⋆ denote the numerical solutions over the spatial domain at time t. Since

solutions to the data-driven dynamics and the true dynamics will eventually drift apart, we

also measure

T tol(w) ≔ 1
T inf t ∈ [0, T] : Pt(w) > tol , (5.7)

or, the first time t (relative to the final time T) that the numerical solution Ut
dd reaches a

relative L2 distance of tol from the truth. The minimum in (5.7) is computed over t ∈ t and

we set tol = 0.1. We provide results for P0.5T(w) and T0.1(w) averaged over the weights w

satisfying TPR(w) = 1.

For each system in Table 2 and each noise level σNR ∈ {0.025q : q ∈ {0, … , 40}} we run

WSINDy on 200 instantiations of noise20 and average the results of error statistics (5.3)–

(5.7). Computations were carried out on a University of Colorado Boulder Blanca Condo

cluster21.

5.2. Implementation Details.

The hyperparameters used in WSINDy applied to each of the PDEs in Table 2 are given in

Table 3. To select test function discrete support lengths we used a combination of the

changepoint method22 described in Appendix A and manual tuning. Across all examples the

real-space decay tolerance for test functions is fixed at τ = 10−10.

In computing a sparse solution w = MSTLS(G, b; ℒ, λ) (see equation (4.7)), the search space

λ for the learned threshold λ  is fixed for all examples at:

λ = 10
−4 + j 4

49 : j ∈ 0, …, 49 ,

in other words λ contains 50 points with log10(λ) equally spaced from −4 to 0. This implies

a stopping criteria of 50SJ thresholding iterations23.

20We find that 200 runs sufficiently reduces variance in the results.
212X Intel Xeon 5218 at 2.3 GHz with 22 MB cache, 16 cores per cpu, and 384 GB ram.
22For Burgers, KdV, and KS we set τ = 3 (defined in Appendix A.2) while for NLS, PM, SG, RD, and NS we used τ = 1. For KS
and NLS we chose (mx, mt) values nearby that had better performance.
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We fix the subsampling frequencies (sx, st) to 
N1
50 ,

N2
50  for PDEs in one spatial dimension

and to 
N1
25 ,

N3
25  for two spatial dimensions, where the dimensions (N1, N2, N3) depend on

the dataset. Additional information about the convolutional weak discretization is included

in Table 4, such as the dimensions and condition number of the rescaled Gram matrix G
(computed from a typical dataset with 20% noise), test function polynomial degrees (px, pt),

scale factors (γu, γx, γt), and start-to-finish walltime of Algorithm 4.2 with all computations

performed serially on a laptop with an 8-core Intel i7-2670QM CPU with 2.2 GHz and 8 GB

of RAM.

5.3. Comments on Chosen Examples.

The primary reason for choosing the examples in Table 2 is to demonstrate that WSINDy

can successfully recover models over a wide range of physical phenomena such as

spatiotemporal chaos, nonlinear waves, nonlinear diffusion, shock-forming solutions,

complex limit cycles, and pattern formation in reaction diffusion equations.

Recovery of the inviscid Burgers and anisotropic porous medium equations demonstrates (i)

that WSINDy can discover PDEs from solutions that can only be understood in a weak sense

and (ii) that discovery in this case is just as accurate and robust to noise and scaling as with

smooth data (i.e. no special modifications of the algorithm are required to discover models

from non-smooth data, as conjectured in [13]). We use analytical weak solutions, with

inviscid Burgers data forming a shock which propagates at constant speed (see Figure 3 for

plots of the characteristic curves) and porous medium data having a jump in the gradient ∇u.

In addition, we discover the porous medium equation using an anisotropic diffusivity tensor

to demonstate that WSINDy can identify the cross-diffusion term ∂xy(u2) to high accuracy

from a large candidate model library.

The inviscid Burgers and Korteweg-de Vries equations demonstrate that WSINDy

successfully recovers the correct models for nonlinear transport data with large amplitude.

Both datasets have mean amplitudes on the order of 103 (in addition KdV is given over a

short time window of t ∈ [0, 10−3]), and hence are not identifiable from large polynomial

libraries using naive approaches. The sparsification and rescaling measures in Sections 4.2

and 4.3 are essential to removing this barrier.

The Sine-Gordon equation24 is used to show both that trigonometric library terms can easily

be identified alongside polynomials and that hyperbolic problems do not seem to present

further challenges. Discovery of the Sine-Gordon equation also appears to be particularly

robust to noise, which suggests that the added complexity of having multiple spatial

dimensions is not in general a barrier to identification.

23In the examples shown here we observed an average of 5 thresholding iterations and a maximum of 14 in any given inner
MSTLS(G, b; λ) loop (i.e. for each λ ∈ λ as in equation (4.6)), hence in practice the full MSTLS(G, b; ℒ, λ) algorithm requires far
fewer iterations than the theoretical maximum of #{λ}SJ.
24We have not included experiments involving multiple-soliton solutions to Sine-Gordon, however the success of WSINDy applied to
KdV, nonlinear Schrödinger and Sine-Gordon suggests that the class of integrable systems could be a fruitful avenue for future
research.
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For the nonlinear Schrödinger and reaction-diffusion systems, we test the ability of

WSINDy to select the correct monomial nonlinearities from an excessively large model

library. Using a library of 190 terms for nonlinear Schrödinger’s and 181 terms for reaction-

diffusion (see the dimensions of G in Table 4), we demonstrate successful identification of

the correct nonzero terms. Moreover, for the reaction-diffusion system, misidentified terms

directly reflect the existence of a limit cycle25. Finally, the vortex-shedding limit cycle for

the 2D Navier-Stokes equations is used primarily to compare to previous results in [39], and

we find that at large-noise WSINDy conveniently selects the Euler equations.

5.4. Results: Model Identification.

Performance regarding the identification of correct nonzero terms in each model is reported

in Figures 4 and 5, which include plots of the average TPR, the learned threshold λ , and the

loss function ℒ(λ) (defined in (5.3), (4.7), and (4.4), respectively). As we will discuss,

significant decreases in average TPR are often accompanied by transitions in the identified

λ .

Figure 4 (left) shows that for inviscid Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky

and Sine-Gordon, the average TPR stays above 0.95 even for noise levels as high as 100%

(i.e. WSINDy reliably identifies these models in the presence of noise that has the same L2-

norm as the underlying clean data). The average TPR for the nonlinear Schrödinger and

porous medium equations stays above 0.95 until 50% noise, after which identification of the

correct monomial nonlinearity is not as reliable. For NLS, this is a drastic improvement over

previous studies [39], especially considering the large library of 190 terms used.

We observe in Figure 4 (right) that the learned threshold λ  increases with σNR, suggesting

that automatic selection of λ  in the learning algorithm (4.7) is crucial to the algorithm’s

robustness to noise. For example, the Kuramoto-Sivashinsky equation has a minimum

nonzero coefficient of 0.5 (multiplying ∂x(u2)), and we find that λ  approaches 0.1 as σNR

approaches 1, which implies that at higher noise levels the range of λ  values that is

necessary26 for correct model identification is approximately (~ 0.1, ~ 0.5). Since it is

highly unlikely that this range of admissible values would be known a priori, the chances of

manually selecting a feasible λ  for Kuramoto-Sivashinsky are prohibitively low in the large

noise regime (see Figure 5a for visualizations of the loss ℒ applied to KS data). This effect

is even greater for the porous medium equation. Automatic selection of λ  thus removes this

sensitivity. In contrast, λ  is largely unaffected by increases in σNR for Burgers, Korteweg-de

Vries and Sine-Gordon. In particular, Figure 5b shows little qualitative changes in the loss

landscape for Sine-Gordon in the range 0.1 ≤ σNR ≤ 0.4.

25We note that discovery of the same reaction-diffusion system from a much smaller library of terms is shown in [39, 37], but with
different initial conditions that result in a spiral wave limit cycle. Our choice of initial conditions is motivated below in Appendix B.
26By definition (4.7), λ  is the minimum value in λ that minimizes the loss ℒ (4.7), hence values in λ below λ  are precisely the

thresholds that result in misidentification of the correct model by overfitting, while thresholds above min
j:w j

⋆ ≠ 0
|w j

⋆| necessarily

underfit the model.
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Intriguingly, for reaction-diffusion, the average TPR falls below 0.95 at 22% noise, after

which WSINDy falsely identifies linear terms in u and v. If the true model is given by the

compact form ∂tu = 𝒜(u) for u = (u, v)T, then the misidentified model in all trials for noise

levels in the range 0.25 ≤ σNR ≤ 0.55 is given by

∂tu = β𝒜(u) + α
0 1

−1 0 u (5.8)

for some α > 0 and β ≈ 1 dependent on σNR. This is explainable by the fact that the

underlying solution settles into a limit cycle, which means that at every point in space the

solution oscillates. Indeed, the falsely identified nonzero terms in (5.8) exactly convey that at

each point in space the solution is oscillating at a uniform frequency (albeit with variable

amplitude and phase determined by the initial conditions27). Hence, in the presence of

certain lower-dimensional structures (in this case a limit cycle), higher noise levels result in

a mixture of the true model with a spatially-averaged reduced model. This shift between

detection of the correct model and the oscillatory version (5.8) is also detectable in the

learned threshold λ , which decreases at σNR = 0.22 (see RD data in Figure 4 (right)), and in

the loss function ℒ (Figure 5c). At σNR = 0.275 we see that ℒ in Figure 5c is minimized for

λ in the approximate range (~ 0.02, ~ 0.05) but also has a near-minimum for λ ∈ (~ 0.05, ~

0.1). These two regions correspond to discovery of the oscillatory model (5.8) and the true

model, respectively, but since the true model has a slightly higher loss at σNR = 0.275, model

(5.8) is selected. For σNR ≥ 0.4 there is no longer (on average) a region of λ that results in

discovery of the true model, and WINSDy returns (5.8) to compensate for noise.

For Navier-Stokes we see an averaging effect at higher noise, similar to the reaction-

diffusion system. TPR drops below 0.95 for noise levels above 27% with the resulting

misidentified model being simply Euler’s equations in vorticity form:

∂tω = − ∂x(ωu) − ∂y(ωv) .

This is due primarily to the small viscosity ν = 0.01 which prevents identification of the

viscous forces at higher noise levels. Examining the loss function ℒ, Figure 5d shows that

above σNR ≈ 0.275, minimizers of ℒ are above 0.01, hence the viscous terms will be

thresholded out. Another possible explanation is the low-accuracy simulation used for the

clean dataset: in the noise-free setting, Table 5 shows that WSINDy recovers the model

coefficients of Navier-Stokes to less than 3 significant digits in the absence of noise, which

is the same level of accuracy exhibited on each of the other systems under 5% noise (see

Figure 6). Nevertheless, with reliable recovery up to 27% noise, WSINDy makes notable

improvements on previous results ([39]). Moreover, recovery of the Euler equations at high

noise is desirable as this can be seen as the correct leader-order model.

27This is discussed further in Appendix B.7.
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5.5. Results: Coefficient Accuracy.

Accuracy in the recovered coefficients is measured by E∞ and E2 (defined in (5.4) and (5.5),

respectively) and shown in Table 5 for σNR = 0 and in Figure 6 for σNR > 0. As in the ODE

case, the coefficient error E∞ for smooth, noise-free data is determined by the order of

accuracy of the numerical simulation method28, since the error resulting from the

trapezoidal rule is of lower order for the values (px, pt) used in Table 4 (see [28], Lemma 1).

Table 5 also shows that the algorithm returns reasonable accuracy for non-smooth data, with

E∞ = 4.3 × 10−5 and E∞ = 2.2 × 10−6 for the inviscid Burgers and porous medium

equations, respectively. For reference, Table 6 shows that WSINDy improves over PDE-

FIND by about two digits29.

For σNR > 0, in Figure 6 it is apparent that E∞ scales approximately as a power law E∞ σNR
r

for some r approximately in the range (~ 1, ~ 2) in all systems except Navier-Stokes. It was

observed in [13] that E∞ will approximately scale linearly with σNR for Kuramoto-

Sivashinsky, however our results show that in general, for larger σNR, the rate will be

superlinear and dependent on the reference test function and the nonlinearities present. A

simple explanation for this in the case of normally-distributed noise is the following: linear

terms Ψs * U will be normally-distributed with mean Ψs * U★ and approximate variance

ΔxDΔt Dαs
ψ 2

2
σ2, hence are unbiased30 and lead to perturbations that scale linearly with

σNR. On the other hand, general monomial nonlinearities31 Ψs *Uj with j > 1 are biased and

have approximate variance ΔxDΔt Dαs
ψ 2

2
p2 j(σ) for p2j a polynomial of degree 2j. Hence,

nonlinear terms Ψs * fj(U) lead to biased columns of the Gram matrix G with variance

scaling with σ2r for some r > 1 and proportional to Dαs
ψ 2. Thus, for larger noise and

higher-degree monomial nonlinearities, we expect superlinear growth of the error, as

observed in particular with nonlinear Schrödinger’s, Sine-Gordon, and reaction-diffusion.

Nevertheless, Figure 6 suggests that a conservative estimate on the coefficient error is

E∞ ≤
σNR
10 , indicating 1 − log10(σNR) significant digits (e.g. for σNR = 0.1 we have E∞ ≤

10−2 for each system except KdV, indicating two significant digits), which is consistent with

the ODE case [28].

For Burgers and Korteweg-De Vries, the average error E2 at higher noise levels is affected

by outliers containing a falsely-identified advection term ∂xu. This is due to the large

amplitude datasets used, which lead to the closest pure-advection model for each system

being given by32

28For example, Sine-Gordon and Navier-Stokes are both integrated in time using second-order methods, hence have lower accuracy
than the other examples (see Appendix B for more details).
29Results shown for σNR = 0.01 reproduced from [39] (note that PDE-FIND is unreliable at higher noise levels).
30In other words, equal to the noise-free case in expectation (recall that U★ is the underlying noise-free data).

31With the exception of j = 2 and odd |αs|, due to the fact that 𝔼 Ψ s * ϵ2 ≈ 𝔼 ϵ2 ∫ ΩR
Dαs

ψdxdt = 0.

32This is found by projecting the left-hand side b onto the column ∂x * U★ (i.e. in the noise-free case).
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(Burgers)∂tu = − (498)∂xu, (KdV)∂tu = − (512)∂xu .

Hence, a falsely identified ∂xu term will have a large coefficient compared to the true model

coefficients which have magnitudes 0.5 or 1. In all other cases, the values of E2 and E∞ are

comparable, which implies that misidentified terms do not have large coefficients and might

be removed with a larger threshold. Lastly, the sigmoidal shape of E∞ and E2 for Navier-

Stokes is due again to the unidentified diffusive terms at larger noise. It is interesting to note

that for σNR ≤ 0.27 the coefficient error for Navier-Stokes is relatively constant, in contrast

to the other systems, and does not exhibit a power-law. However, at present, we do not have

a concrete explanation for this behavior.

5.6. Results: Prediction Accuracy.

Lastly, Figure 7 shows the prediction accuracy on a subset of the systems in Table 2 as

measured by P0.5T(w) and T0.1(w) (defined in (5.6) and (5.7), respectively). We report that

data-driven solutions attain greater than 90% accuracy in the L2 sense up to time 0.8T (80%

of the trajectory) for noise levels as high as 40%. (This excludes the KS equation, which

exhibits spatiotemporal chaos and cannot be expected to remain close to the noise-free data.)

Data-driven solutions to the KS equation, while eventually divergent, also attain 90%

accuracy up to time 0.5T for noise levels below 15%. Lastly, we note that for lower noise

levels (up to 10%), the accuracy of data-driven solutions to the inviscid Burgers, Korteweg-

de Vries and Sine-Gordon equations is on average above 96% along the entire trajectory (not

shown in the figures).

6. Conclusion

We have extended the WSINDy algorithm to the setting of PDEs for the purpose of

discovering models for spatiotemporal dynamics without relying on pointwise derivative

approximations, black-box closure models (e.g. deep neural networks), dimensionality

reduction, or other noise filtering. We have provided methods for learning many of the

algorithm’s hyperparameters directly from the given dataset, and in the case of the threshold

λ , demonstrated the necessity of avoiding manual hyperparameter tuning. The underlying

convolutional weak form (3.4) allows for efficient implementation using the FFT. This

naturally leads to a selection criterion for admissable test functions based on spectral decay,

which is implemented in the examples above. In addition, we have shown that by utilizing

scale invariance of the PDE together with a modified sparsification measure, models may be

recovered from large candidate model libraries and from data that is poorly scaled. When

unsuccessful, WSINDy appears to discover a nearby sparse model that captures the

dominant spatiotemporal behavior (see the discussions surrounding misidentification of the

reaction-diffusion and Navier-Stokes equations in Section 5.4).

We close with a summary of possible future directions. In Section 4.1 we discussed the

significance of decay properties of test functions in real and in Fourier space, as well as

general test function regularity. We do not make any claim that the class 𝒮 defined by (4.2)

is optimal, but it does appear to work very well, as demonstrated above (as well as in the
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ODE setting [28]) and also observed in [37, 13]. A valuable tool for future development of

weak identification schemes would be the identification of optimal test functions. A

preliminary step in this direction is our use of the changepoint method described in

Appendix A.

In the ODE setting, adaptive placement of test functions provided increased robustness to

noise. Convolution query points can similary be strategically placed near regions of the

dynamics with high information content, which may be crucial for model selection in higher

dimensions. Defining regions of high information content and adaptively placing query
points accordingly would allow for identification from smaller datasets.

Ordinary least squares makes the assumption of i.i.d. residuals and should be replaced with

generalized least squares to accurately reflect the true error structure. The current framework

could be vastly improved by incorporating more precise statistical information about the

linear system (G, b). The first step in this direction is the derivation of an approximate
covariance matrix as in WSINDy for ODEs [28]. Previous results on generalized sensitivity

analysis for PDEs may provide improvements in this direction [18, 46].

Accuracy in the recovered coefficients is still not entirely understood and is needed to derive

recovery guarantees. It is claimed in [13] that at higher noise levels the scaling will

approximately be linear in σNR, while we have demonstrated that this is not the case in

general: the scaling depends on the nonlinearities present in the true model, the decay

properties of the test functions, and accuracy of the underlying clean data. Analysis of

coefficient error dependence (on noise, amplitudes, number of datapoints, etc.) could occur

in tandem with development of a generalized least-squares framework.

The examples above show that WSINDy is very robust to noise for problems involving

nonlinear waves (Burgers, Korteweg de-Vries, nonlinear Schrödinger, Sine-Gordon),

spatiotemporal chaos (Kuramoto-Sivashinsky), and even nonlinear diffusion (porous

medium), but is less robust for data with limit cycles (reaction-diffusion, Navier-Stokes).

Further, identification of Burgers, Korteweg de-Vries, and Sine-Gordon appears robust to

changes in the sparsity threshold λ  (see Figure 4 (right)). A structural identifiability criteria
for measuring uncertainty in the recovery process based on identified structures (transport

processes, mixing, spreading, limit cycles, etc.) would also be invaluable for general model

selection.
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Appendix A.: Learning Test Functions From Data

We present the following algorithm for automatic selection of test functions which utilizes

the implicit smoothing of high-frequency noise afforded by the convolution. This approach

is useful in practice but we leave rigorous justification of it to future work. We proceed in

two steps: (1) estimation of critical wavenumbers k1*, …, kD + 1*  separating noise- and signal-

dominated modes in each coordinate and (2) enforcing decay in real and in Fourier space.

We will describe the process for detecting kx* = k1* from data U ∈ ℝ
N1 × N2 given over the

one-dimensional spatial grid x ∈ ℝ
N1 at timepoints t ∈ ℝ

N2. Figures 8–9 illustrate this

approach using Kuramoto-Sivashinsky data with 50% noise. Below, ℱx and ℱt denote the

discete Fourier transform (DFT) along the x and t coordinates, respectively, while ℱ denotes

the full two-dimensional DFT.

A.1. Detection of Critical Wavenumbers.

Assume the data has additive white noise U = U★ + ϵ with ϵ 𝒩 0, σ2  and that ℱ U⋆

decays. The power spectrum of the noise |ℱx(ϵ)| is then i.i.d, hence as discussed in Section

4.1, there will be a critical wavenumber kx* in the power spectrum of the data ℱx(U) after

which the modes become noise-dominated. To detect kx*, we collapse ℱx(U) into a one-

dimensional array by averaging in time and then take the cumulative sum in x:

Hk
x ≔ ∑

j = − N1/2

k
|ℱ j

x(U)| (A.1)

where |ℱ j
x(U)| is the time-average of the jth mode of the discrete Fourier transform along the

x-coordinate. Since |ℱx(ϵ)| is i.i.d., Hx will be approximately linear over the noise-dominated

modes, which is an optimal setting for locating kx* as a changepoint, or in other words the

corner point of the best piecewise-linear approximation33 to Hx using two pieces (see Figure

8). An algorithm for this is given in [20] and implemented in MATLAB using the function

findchangepts.

A.2. Enforcing Decay.

Having detected the changepoints kx* and kt*, we compute hyperparameters for the coordinate

test functions ϕx and ϕt using user-specified hyperparameters τ and τ . As in Section 4.1, τ
specifies the rate of decay of ϕx and ϕt in real space through equation (4.3). The

hyperparameter τ  is introduced to specify the rate of decay of ϕx and ϕt in Fourier space.

Specifically, for a chosen τ  we enforce that the changepoints kx* and kt* fall approximately τ

33In the weighted least-squares sense with weights ωk = |Hk
x|−1

.

MESSENGER and BORTZ Page 27

J Comput Phys. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



standard deviations into the tail of the spectra ϕx and ϕt. This is done by utilizing that ϕx and

ϕt are functions of the form

ϕa, p(s) ≔ C 1 − s
a

2
+

p
,

(i.e. centered, symmetric functions in the class 𝒮 defined in (4.2)) which are well-

approximated by Gaussians for large enough p and appropriate scaling C. Indeed, letting C
be such that ‖ϕa,p‖1 = 1 and setting σ ≔ a/ 2p + 3 we have that ϕa,p matches the first three

moments of the Gaussian

ρσ(s) ≔ 1
2πσ2e−s2/2σ2

,

which provides a bound on the error in the Fourier transforms and ϕa, p and ρσ for small

frequencies ξ in terms of their 4th moments34:

|ϕa, p(ξ) − ρσ(ξ)| ≤ |ξ |4 a4
2

p + 3/2
4p2 + 12p + 9 4p2 + 16p + 15

+ o(1) = 𝒪 |ξ |4a4p−3 .

This implies that for small ξ and a and large p, it suffices to use ρσ(ξ) = ρ1/σ(ξ) to estimate

ϕa, p. Hence, we enforce decay of ϕx (and similarly for ϕt) by choosing mx and px such that

2π
N1Δxkx* = τ

σ = τ
2px + 3
mxΔx 2πkx*mx = τ N1 2px + 3 . (A.2)

so that kx* is τ  standard deviations into the tail of ρσ(ξ), where σ = mxΔx/ 2px + 3. To solve

(4.3) and (A.2) simultaneously, we compute mx as a root of

F(m) ≔ F m; kx, N1, τ , τ ≔ log 2m − 1
m2 4π2kx

* 2m2 − 3N1
2τ2 − 2N1

2τ2log(τ) .

F(m) has a unique root mx ≥ 2 in the nonempty interval

3
π

N1/2
kx*

τ , 3
π

N1/2
kx*

τ 1 − (8/ 3)log(τ)

34This also shows that with σ = a/ 2p + 3, if we take a = 2p then we get pointwise convergence ϕa,p → ρ1 as p → ∞.
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on which F monotonically decreases and changes sign, provided N1 > 4, τ ∈ (0, 1) and
3

π
τ
kx*

∈ 4/N1, 1 , constraints which are easily satisfied. After finding mx we can solve for px

using either (4.3) or (A.2).

Figure 9 illustrates the implicit filtering of this process using the Burgers-type nonlinearity

∂x(U2) and the same KS dataset as in Figure 9 with 50% noise. The top panel compares a

one-dimensional slice in x taken at fixed time t = 99 of the clean data (U★)2 and noisy data

(U)2. The middle panel shows the Fourier transforms of (U★)2 and (U)2 along the given

slice, showing that modes after kx* become noise-dominated. Finally, the bottom panel shows

that after convolution with ∂xψ , where mx and kx are chosen with τ = 10−10 and τ = 2, the

clean and noisy spectra agree well, indicating successful filtering of noise-dominated modes

(note that (U)2 is highly-corrupted, nonlinearly-transformed, and biased from the noise-free

term (U★)2, making this agreement in spectrum nontrivial).

Appendix B.: Simulation Methods

We now review the numerical methods used to simulate noise-free datasets for each of the

PDEs in Table 2 (note that dimensions of the datasets are given in Table 3). Resolutions in

space and time were chosen to limit computational overhead while exemplifying the

dominant features of the solution. With the exception of the Navier-Stokes equations, which

was simulated using the immersed boundary projection method in C + + [44], all

computations were performed in MATLAB 2019b. An interesting extension for future work

would be to examine the dependence of WSINDy on the resolution, similar to the work in

[30].

B.1. Inviscid Burgers.

∂tu = − 1
2 ∂x u2

(B.1)

We take for exact data the shock-forming solution

u(x, t) =

A, t ≥ max 1
A x + 1

α , 2
A x + 1

α

− αx
1 − αt , A t − 1

α < x ≤ 0

0,  otherwise 

. (B.2)

which becomes discontinuous at t = α−1 with a shock travelling along x = A
2 t − 1

α  (see

Figure 3). We choose α = 0.5 and an extreme value of A = 1000 to demonstrate that

WSINDy still has excellent performance for large amplitude data. The noise-free data

consists of (B.2) evaluated at the points (xi, tj) = (−4000 + iΔx, jΔt) with Δx = 31.25 and Δt =
0.0157 for 1 ≤ i, j ≤ 256.
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Figure 8.
Visualization of the changepoint algorithm for KS data with 50% noise. Left: Hx (defined in

(A.1)) and best two-piece approximation L
kx* along with resulting changepoint kx* = 24. The

noise-dominated region of Hx (k > 24) is approximately linear as expected from the i.i.d.

noise. (The time-averaged power spectrum |ℱx(U)| is overlaid and magnified for scale).

Right: resulting test function ϕx and power spectrum |ℱ ϕx | along with reference Gaussian

ρσ with σ = mxΔx/ 2px + 3. The power spectra |ℱ ϕx | and |ℱ ρσ | are in agreement over the

signal-dominated modes (k ≤ 24). (Note that the power spectrum is symmetric about zero.)

B.2. Korteweg-de Vries.

∂tu = − 1
2 ∂x u2 − ∂xxxu (B.3)

A solution is obtained for (x, t) ∈ [−π, π] × [0, 0.006] with periodic boundary conditions

using ETDRK4 timestepping and Fourier-spectral differentiation [17] with N1 = 400 points

in space and N2 = 2400 points in time. We subsample 25% of the timepoints for system

identification and keep all of the spatial points for a final resolution of Δx = 0.0157, Δt =
10−5. For initial conditions we use the two-soliton solution

u(x, 0) = 3A2sech(0.5(A(x + 2)))2 + 3B2sech(0.5(B(x + 1)))2, A = 25, B = 16.

B.3. Kuramoto-Sivashinsky.

∂tu = − 1
2 ∂x u2 − ∂xxu − ∂xxxxu . (B.4)

A solution is obtained for (x, t) ∈ [0, 32π] × [0, 150] with periodic boundary conditions

using ETDRK4 timestepping and Fourier-spectral differentiation [17] with N1 = 256 points
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in space and N2 = 1500 points in time. For system identification we subsample 20% of the

time points for a final resolution of Δx = 0.393 and Δt = 0.5. For initial conditions we use

u(x, 0) = cos(x/16)(1 + sin(x/16)) .

Figure 9.
Illustration of the test function learning algorithm using computation of ∂xψ*(U2) along a

slice in x at fixed time t = 99 for the same dataset used in Figure 8. From top to bottom: (i)

clean U★ and noisy U variables, (ii) power spectra of the clean vs. noisy data along with the

learned corner point kx*, (iii) power spectra of the element-wise products ℱ ∂xψ ⊙ ℱ U⋆ 2
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and ℱ ∂xψ ⊙ ℱ (U)2  (recall that these computations are embedded in the FFT-based

convolution (3.12)).

B.4. Nonlinear Schrödinger.

wt = − i
2 ∂xxw + |w |2w (B.5)

Figure 10.
Noise-free data used for the anisotropic porous medium equation (B.7) at the initial time t =
0.5 (left) and final time t = 2.5 (right).

For the nonlinear Schrödinger equation (NLS) we reuse the same dataset from [39],

containing N1 = 512 points in space and N2 = 502 timepoints, although we subsample 50%

of the spatial points and 50% of the time points for a final resolution of Δx = 0.039, Δt =
0.0125. For system identification, we break the data into real and imaginary parts (w = u +

iv) and recover the system

∂tu = 1
2 ∂xxv + u2v + v3

∂tv = − 1
2 ∂xxu − uv2 − u3 .

(B.6)

B.5. Anisotropic Porous Medium.

∂tu = (0.3)∂xx u2 − (0.8)∂xy u2 + ∂yy u2 . (B.7)

The equation can be rewritten

∂tu = ∇ ⋅ D∇ u2
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for diffusivity tensor

D = 0.3 −0.4
−0.4 1 .

For noise-free data we use the analytical weak solution

u(x, t) = 1
t
max C − xTD−1x

16 t
, 0

where x = (x, y)T and C = (8π det(D))−1/2 is chosen to enforce that ∫
ℝ2u(x, t)dx = 1 for all

time. The solution has a finite jump in the gradient ∇u. For reference, this is the anisotropic

version of the classical Barenblatt-Pattle solution to the (isotropic) porous medium equation

[3, 32]. For the computation grid we use 200 points equally spaced from −5 to 5 in both x
and y and 128 timepoints equally spaced from 0.5 to 2.5. The resolution is then Δx = 0.05

and Δt = 0.0157.

B.6. Sine-Gordon.

∂ttu = ∂xxu + ∂yyu − sin(u) (B.8)

A numerical solution is obtained using a pseudospectral method on the spatial domain [−π,

π] × [−1, 1] with 64 equally-spaced points in x and 64 Legendre nodes in y. Periodic

boundary conditions are enforced in x and homogeneous Dirichlet boundaries in y.

Geometrically, waves can be thought of as propagating on a right cylindrical sheet with

clamped ends. Leapfrog time-stepping is used to generate the solution until T = 5 with Δt =
6e−5. We then subsample 0.25% of the timepoints and interpolate onto a uniform grid in

space with N1 = 403 points in x and N2 = 129 points in y. The final resolution is Δx =

0.0156, Δt = 0.025. We arbitrarily use Gaussian data for the initial wave disturbance:

u(x, y, 0) = 2π exp −8(x − 0.5)2 − 8y2 .

It is worth noting that when STLS is used instead of MSTLS (see Section 4.2) for sparsity

enforcement, WSINDy returns a combination of sin(u) and terms from Taylor expansion of

sin(u),

α u − 1
6u3 + ⋯ + (1 − α)sin(u) . (B.9)

MSTLS removes this problem. Furthermore, the test function selection method in Appendix

A is essential for allowing robust recovery of the Sine-Gordon equation as σ → 1 (see

Figure 4).
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B.7. Reaction-Diffusion.

∂tu = 1
10 ∂xxu + 1

10 ∂yyu − uv2 − u3 + v3 + u2v + u

∂tv = 1
10 ∂xxv + 1

10 ∂yyv + v − uv2 − u3 − v3 − u2v
(B.10)

The system (B.10) is simulated over a doubly-periodic domain (x, y) ∈ [−10, 10]×[−10, 10]

with t ∈ [0, 10] using Fourier-spectral differentiation in space and method-of-lines time

integration via MATLAB’s ode45 with default tolerance. The computational domain has

dimensions N1 = N2 = 256 and N3 = 201, for a final resolution of Δx = 0.078, Δt = 0.0498.

For initial conditions we use the spiral data

u(x, y, 0) = tanh x2 + y2 cos θ(x + iy) − π x2 + y2

v(x, y, 0) = tanh x2 + y2 sin θ(x + iy) − π x2 + y2 ,

where θ(z) is the principle angle of z ∈ ℂ. Note that this is an unstable spiral which breaks

apart over time but still settles into a limit cycle.

Using the traditional (stable) spiral wave data [39] (differing only from the dataset used here

in that the term π x2 + y2 in the initial conditions above is replaced by x2 + y2) we noticed

an interesting behavior in that for high noise the resulting model is purely oscillatory. In

other words, the stable spiral limit cycle happens to be well-approximated by the pure-

oscillatory model

∂tu = α
0 1

−1 0 u (B.11)

with α ≈ 0.91496. A comparison between this purely oscillatory reduced model and the full

model simulated from the same initial conditions is shown in Figure 11. For σNR ≤ 0.1

WSINDy applied to the stable spiral dataset returns the full model, while for σNR > 0.1 the

oscillatory reduced model is more frequently detected. This suggests that although the stable

spiral wave is a hallmark of the λ-ω reaction-diffusion system, from the perspective of data-

driven model selection it is not an ideal candidate for identification of the full model.
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Figure 11.
Comparison between the full reaction-diffusion model (B.10) (left) and the pure-oscillatory

reduced model (B.11) (right) at the final time T = 10 with both models simulated from the

same initial conditions leading to a spiral wave (only the v component is shown, results for u
are similar). The reduced model provides a good approximation away from the boundaries.

B.8. Navier-Stokes.

∂tω = − ∂x(ωu) − ∂y(ωu) + 1
100 ∂xxω + 1

100 ∂yyω (B.12)

A solution is obtained on a spatial grid (x, y) ⊂ [−1, 8] × [−2, 2] with a “cylinder” of

diameter 1 located at (0, 0). The immersed boundary projection method [44] with 3rd-order

Runge-Kutta timestepping is used to simulate the flow at spatial and temporal resolutions Δx
= Δt = 0.02 for 2000 timesteps following the onset of the vortex shedding limit cycle. The

dataset (U, V, W) contains the velocity components as well as the vorticity for points away

from the cylinder and boundaries in the rectangle (x, y) ∈ [1, 7.5] × [−1.5, 1.5]. We

subsample 10% of the data in time for a final resolution of Δx = 0.02 and Δt = 0.2.
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Highlights

• We present the WSINDy algorithm for data-driven discovery of partial

differential equations in weak form. Pointwise derivative approximations are

replaced by convolution against test functions for robust, high-accuracy model

selection in the presence of large measurement noise.

• Reformulating the weak dynamics in terms of convolutions allows for fast

FFT-based implementation and reveals that test function spectra plays a

crucial role in guaranteeing robustness to noise.

• Scale invariance is used together with an improved thresholding algorithm

with automatic threshold selection to enable PDE identification from poorly-

scaled data and large candidate libraries.

• Successful discovery is demonstrated on the inviscid Burgers, Korteweg-de

Vries, Kuramoto-Sivashinksy, nonlinear Schrödinger, anisotropic porous

medium, Sine-Gordon, reaction-diffusion, and Navier-Stokes equations from

highly corrupted datasets, and in the case of inviscid Burgers and porous

medium, from non-classical (weak) solutions.
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Figure 1.
Reduction in computational cost of multi-dimensional convolution Ψs * fj (U) when Ψs and

fj(U) have n and N points in each of D + 1 dimensions, respectively. Each plot shows the

ratio TII/TI (equations (3.13) and (3.11)), i.e. the factor by which the separable FFT-based

convolution reduces the cost of the naive convolution, for D + 1 = 2 and D + 1 = 3 space-

time dimensions and n ∈ [N]. The right-most plot shows that when N = 512 and D + 1 = 3,

the separable FFT-based convolution is 104 times faster for 100 ≤ n ≤ 450.
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Figure 2.

Plots of reference test function ψ and partial derivatives Dαs
ψ  used for identification of the

Kuramoto-Sivashinsky equation. The upper left plot shows ∂tψ, the bottom right shows ∂x
6ψ .

See Tables 2–4 for more details.
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Figure 3.
Characteristics of the shock-forming solution (B.2) used to identify the inviscid Burgers

equation. A shock forms at time t = 2 and travels along the line x = 500(t − 2).
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Figure 4.
Left: average TPR (true positivity ratio, defined in (5.3)) for each of the PDEs in Table 2

computed from 200 instantiations of noise for each noise level σNR. Right: average learned

threshold λ  (defined in (4.7)). For the porous medium equation (PM), λ  increases to 0:2 as

σNR approaches 1 (we omit this from the plot in order to make visible the λ  trends for the

other systems).
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Figure 5.
Plots of the average loss function ℒ(λ) and resulting optimal threshold λ  for the Kuramoto

Sivashinsky, Sine-Gordon, Reaction diffusion and Navier-Stokes equations.
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Figure 6.
Coefficient errors E∞ and E2 (equations (5.4) and (5.5)) for each of the seven models Table

2. Models in one and two spatial dimensions are shown on the left and right, respectively.
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Figure 7.
Prediction accuracy measured by P0.5T(w) and T0.1(w) (defined in (5.6) and (5.7),

respectively).
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Table 1.

Hyperparameters for the WSINDy Algorithm 4.2. Note that fj piecewise continuous is sufficient (we just need

convergence of the trapezoidal rule), m may be replaced by a spectral-decay tolerance τ > 0 if test functions

are automatically selected from the data using the method in Appendix A, and K is determined from m and s

using (4.10).

Hyperparameter Domain Description

(fj)j∈[J] C(ℝ) trial function library

α = (αs)s=0,…,S ℕ(S + 1) × (D + 1) partial derivative multi-indices

m = (md)d∈[D + 1] ℕD + 1 discrete support lengths of 1D test functions (ϕd)d∈[D + 1]

s = (sd)d∈[D + 1] ℕD + 1 subsampling frequencies for query points {(xk, tk)}k∈[K]

λ [0, ∞) search space for sparsity threshold λ

τ (0, 1] ψ real-space decay tolerance
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Table 2.

PDEs used in numerical experiments, written in the form identified by WSINDy. Domain specification and

boundary conditions are given in Appendix B.

Inviscid Burgers (IB) ∂tu = − 1
2 ∂x u2

Korteweg-de Vries (KdV) ∂tu = − 1
2 ∂x u2 − ∂xxxu

Kuramoto-Sivashinsky (KS) ∂tu = − 1
2 ∂x u2 − ∂xxu − ∂xxxxu

Nonlinear Schrödinger (NLS)

∂tu = 1
2 ∂xxv + u2v + v3

∂tv = − 1
2 ∂xxu − uv2 − u3

Anisotropic Porous Medium (PM) ∂tu = (0.3) ∂xx (u2) − (0.8) ∂xy (u2) + ∂yy (u2)

Sine-Gordon (SG) ∂ttu = ∂xxu + ∂yyu − sin (u)

Reaction-Diffusion (RD)

∂tu = 1
10 ∂xxu + 1

10 ∂yyu − uv2 − u3 + v3 + u2v + u

∂tv = 1
10 ∂xxv + 1

10 ∂yyv + v − uv2 − u3 − v3 − u2v

2D Navier-Stokes (NS) ∂tω = − ∂x(ωu) − ∂y(ωv) + 1
100 ∂xxω + 1

100 ∂yyω
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Table 3.

WSINDy hyperparameters used to identify each example PDE.

PDE U f j α (mx, mt) (sx, st)

IB 256 × 256 (uj−1)j∈[7] ((ℓ, 0))0≤ℓ≤6 (60, 60) (5, 5)

KdV 400 × 601 (uj−1)j∈[7] ((ℓ, 0))0≤ℓ≤6 (45, 80) (8, 12)

KS 256 × 301 (uj−1)j∈[7] ((ℓ, 0))0≤ℓ≤6 (23, 22) (5, 6)

NLS 2 × 256 × 251 (uivj)0≤i + j≤6 ((ℓ, 0))0≤ℓ≤6 (19, 25) (5, 5)

PM 200 × 200 × 128 (ui−1)i∈[5]
𝓁1, 𝓁2, 0 0 ≤ 𝓁1, 𝓁2 ≤ 4 (37, 20) (8, 5)

SG 129 × 403 × 205 (uj−1)i∈[5], (sin(ju), cos(ju))j=1, 2 ((ℓ, 0, 0), (0, ℓ, 0))0≤ℓ≤4 (40, 25) (5, 8)

RD 2 × 256 × 256 × 201 (uivj)0≤i + j≤4 ((ℓ, 0, 0), (0, ℓ, 0))0≤ℓ≤5 (13, 14) (13, 12)

NS 3 × 324 × 149 × 201

ωiu jvk
0 ≤ i + j + k ≤ 2, |αs| = 0

ωiu jvk
0 ≤ i + j + k ≤ 3, i > 0, |αs| > 0

((ℓ, 0, 0), (0, ℓ, 0))0≤ℓ≤2 (31, 14) (12, 8)
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Table 4.

Additional specifications resulting from the choices in Table 3. The last column shows the start-to-finish

walltime of Algorithm 4.2 with all computations in serial measured on a laptop with an 8-core Intel

i7-2670QM CPU with 2.2 GHz and 8 GB of RAM.

PDE G κ G (Px, Pt) (γu, γx, γt) Walltime (sec)

IB 784 × 43 1.4 × 106 (7, 7) (4.5 × 10−4, 0.0029, 1.1) 0.12

KdV 1443 × 43 3.2 × 106 (8, 7) (5.7 × 10−4, 8.3, 1250) 0.39

KS 1806 × 43 3.7 × 103 (10, 10) (0.26, 0.74, 0.091) 0.24

NLS 1804 × 190 1.2 × 105 (11, 10) (0.33, 3.1, 9.4) 2.5

PM 4608 × 65 2.4 × 104 (8, 10) (1.6, 2.7, 3.2) 16

SG 13000 × 73 1.3 × 104 (8, 10) (0.23, 8.1, 8.1) 29

RD 11638 × 181 4.5 × 103 (13, 12) (0.86, 6.5, 1.4) 75

NS 3872 × 50 8.2 × 102 (9, 12) (0.53, 0.72, 2.4) 12
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Table 5.

Accuracy of WSINDy applied to noise-free data (σNR = 0).

IB KdV KS NLS PM SG RD NS

E ∞ 4.3 × 10−5 3.1 × 10−7 8.1 × 10−7 9.4 × 10−8 2.2 × 10−6 4.3 × 10−5 3.9 × 10−10 1.1 × 10−3
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Table 6.

Accuracy comparison between WSINDy and PDE-FIND with σNR = 0.01 (results for PDE-FIND reproduced

from [39]).

KdV KS NLS RD NS

WSINDy 6.7 × 10−4 1.8 × 10−4 2.9 × 10−4 6.0 × 10−4 1.2 × 10−3

PDE-FIND 7.0 × 10−2 0.52 3.0 × 10−2 3.8 × 10−2 7.0 × 10−2
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