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Abstract

Targeting glutamine catabolism has been attracting more research attention on the development
of successful cancer therapy. Catalytic enzymes such as glutaminase (GLS) in glutaminolysis,

a series of biochemical reactions by which glutamine is converted to glutamate and then alpha-
ketoglutarate, an intermediate of the tricarboxylic acid (TCA) cycle, can be targeted by small
molecule inhibitors, some of which are undergoing early phase clinical trials and exhibiting
promising safety profiles. However, resistance to glutaminolysis targeting treatments has been
observed, necessitating the development of treatments to combat this resistance. One option is to
use synergy drug combinations, which improve tumor chemotherapy’s effectiveness and diminish
drug resistance and side effects. This review will focus on studies involving the glutaminolysis
pathway and diverse combination therapies with therapeutic implications.
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Introduction

Glutamine, the most abundant free amino acid in plasma, is the quintessential substrate

in several biosynthesis processes, such as the synthesis of nucleotides (purines and
pyrimidines), fatty acids, antioxidants, and different nonessential amino acids (NEAAS),
many of which are vital for rapidly proliferating cells such as cancer cells [1]. Forty

years ago, scientists revealed that glutamine serves as the major energy source in cultured
cervical cancer cells (HelLa cells) [2]. The dependence on glutamine has subsequently

been seen in other cancer types, such as pancreatic cancer, ovarian cancer, breast cancer,
and glioblastoma multi-forme (GBM) [3-7]. While glutamine is a nonessential amino

acid in most cases, it is indispensable for glutamine-addicted cancer cells, and glutamine
deprivation impairs cancer growth [1]. Glutamine can also activate the mammalian target

of rapamycin complex 1 (mTORC1) pathway by being exchanged for leucine through

the large neutral amino acid transporter (LAT1) or by contributing to the production of
more a-ketoglutarate after the conversion to glutamate, which eventually leads to cell
growth and suppression of autophagy [8-10]. Inhibiting glutaminolysis, coupled with chemo
medications or other metabolic inhibitors, triggers synergy drug combinations in glutamine-
dependent tumors. Specifically, GLS inactivation causes redox imbalance, suppresses the
synthesis of nucleotides, and induces replication stress, making cancer cells more dependent
on poly (ADP-ribose) polymerase (PARP) DNA repair and thus sensitizing them to the
PARP inhibitor [11]. On the other hand, pancreatic tumors were found to escape GLS
inhibition by elevating glutamate production, such as through the glutaminase Il pathway,
where glutamine is converted to glutamate via the intermediates a-ketoglutaramate (KGM)
and a-ketoglutarate (a-KG) [12]. Knockdown of glutamine transaminase K (GTK), a key
enzyme of the glutaminase Il pathway, in combination with GLS inhibition, can impair both
metabolic pathways [12]. Pancreatic tumors undergo metabolic compensation to rely more
on glucose metabolism after GLS inhibition [13]. Cancer cells that survive GLS inhibition
tend to be more susceptible to metformin, a drug used to treat diabetes [13]. Moreover, even
if glutamate production from other sources is limited, N-acetylaspartylglutamate (NAAG)
can serve as an essential reservoir to provide glutamate to cancer cells via carboxypeptidase
I1 (GCPII), thereby making GCPII a viable target for cancer therapy, either alone or in
combination with GLS inhibition [14]. As a result, a combination of GLS inhibitors and
other treatments could be a potential avenue to successful cancer therapy.

The crucial role of glutamine metabolism in cancer growth and survival

In order to decipher the fate of glutamine in cancer cells, glutamine metabolism, including
glutaminolysis, has been an important and vigorously researched topic. Cancer cells
transport exogenous glutamine into the cytoplasm via alanine, serine, cysteine transporter

2 (ASCT2, also called SLC1AD5), and glutamine can subsequently be converted to glutamate
via glutaminase 1 (GLS1 or GLS) or glutaminase 2 (GLS2) (Figure 1). Glutamate
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then undergoes a deamidation through two different possible pathways to produce a-
ketoglutarate (a-KG), which is incorporated into the TCA cycle. The first pathway is
catalyzed by glutamate dehydrogenase (GDH/GLUDZ1), which converts glutamate into
ammonium and a-KG. The second pathway is catalyzed by a number of transaminases,
such as glutamate-pyruvate transaminase and glutamate-oxaloacetate transaminase.

The transaminase reactions can contribute to the production of other nonessential amino
acids, including alanine and aspartate. Apart from its incorporation into the TCA cycle

for the subsequent production of energy, a-KG can be exported from the mitochondria,
where the TCA cycle occurs, to the cytosol and be converted to isocitrate by isocitrate
dehydrogenase 1 (IDH1), which is then converted to citrate for de novo fatty acid synthesis
[9,15]. Other TCA cycle metabolites produced from glutamine can be released into the
cytosol and be converted into other molecules that also assist proliferating cells. For
example, pyruvate can be generated from malate, concomitant with the production of
NADPH via malic enzyme 1 (MEL) to replenish cell reduction capacity. Oxaloacetate
(OAA) and glutamate can undergo a transamination reaction and generate a-KG and
aspartate, which can be transported to the cytosol and participate in nucleotide synthesis
[16-18]. Furthermore, glutamine is also the precursor (via glutamate) of glutathione (GSH),
which is an endogenous antioxidant that shields cancer cells from excessive oxidative stress
and sustains their survival [1]. Glutamine provides nitrogen for nucleobase synthesis, carbon
for the TCA cycle [19], and participates in lipid synthesis and redox hemostasis. These

are necessary for the survival and proliferation of cancer cells, making glutaminolysis an
attractive target for developing new small molecule anticancer drugs [20,21].

Glutamine-addicted cancers

While an accurate proportion of human cancers that display glutamine addiction is yet to

be defined, it has been noted that particular cancer types or cancer cell lines may be more
prone to glutamine addiction than others, such as pancreatic cancer, acute myelogenous
leukemia, GBM, myeloma, clear cell renal cell carcinoma (ccRCC), lung cancer and triple-
negative breast cancer (TNBC) [22-26]. The dependency on glutamine in glioblastoma was
interpreted by the high concentration of glutamine in glioblastoma of patients injected with
13C4-glucose [27]. Lung cancer cells become addicted to glutamine as a result of aberrantly
triggered oncogenes and the lack of tumor suppressors in contrast to normal counterparts
[28]. Glutamine addiction may be specific to a particular breast cancer subtype; for instance,
the TNBC MDA-MB-453 cell line is tamine dependent, while the luminal A subtype MCF-7
breast cancer cell line is not [29].

We analyzed the fractions of cancer cell lines that are more dependent on the glutaminolysis
pathway using data collected from DepMap (https://depmap.org/portal [30] Table 1).

The data collected from DepMap are recorded using CERES dependency scores [32]

that are based on data from cell depletion arrays. Glutamine-addicted cancer cells may
express a higher level of the following genes: GLS1, GLS2, MYC, ASCT2, and GLUDL1.
Consequently, we calculated the dependent rate of cell lines toward certain genes by dividing
the number of cell lines dependent on the genes (as the CERES score of 0 indicates

that the gene is not essential for the cell line, and a lower score indicates that the gene
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is more likely to be crucial for the survival of the cell line, a cell line with a CERES

score below 0 are taken as gene dependent [31,32]) by the total number of cell lines.

Since glutamine synthetase (GLUL) catalyzes the synthesis of glutamine from glutamate
and ammonia, GLS1/GLUL, GLUD1/GLUL, and (GLS1 + GLUD1)/GLUL were used

to show the activity of glutamine catabolism as compared to glutamine anabolism [5].
Acute myeloid leukemia (AML), cervical squamous, esophagus adenocarcinoma, nonsmall
cell lung cancer (NSCLC), non-Hodgkin’s lymphoma, ovary adenocarcinoma, thyroid
carcinoma, and several types of soft tissue sarcoma manifest high ratios of GLS1/GLUL,
GLUD1/GLUL, and (GLS1 + GLUD1)/GLUL suggesting a greater reliance on extracellular
glutamine catabolism (Table 1).

Biomarkers determining glutamine addiction in cancer

In order to select patients for future clinical trials evaluating the efficacy of glutaminolysis
inhibitors, certain biomarkers need to be identified to determine the cancers that are
glutamine addicted. The study by Yuneva et al. showed that MYC expression results in a
strong dependence on glutamine in cancer cells, so much so that upon removal of glutamine,
these cells undergo apoptosis [33]. This is because, largely glutaminolysis is stimulated

by an MY C-regulated transcriptional program. Thus, MYC causes the mitochondrial TCA
cycle to become reliant on glutamine [34]. MYC is also responsible for activating SLC38A5
(SN2), a major transporter of glutamine, and SLC1A5 (ASCT2), an amino acid transporter
that is involved in glutamine-dependent mTORC1 activation. mTORC1, a protein translation
regulator, has been shown to be responsive to the levels of glutamine in the cell [22].
Furthermore, in cells that are dependent on glutamine, higher than average levels of
SLC1AG5 are often present [35]. For example, SLC1AS5 is highly expressed in TNBC
patients, and knocking it down improved survival in tumor-bearing mice [26]. Additionally,
it has been discovered that in cells displaying an overexpression of MYC, glutaminase levels
are higher than those in cells with low MYC expression levels [11,36]. Thus, all of these—
MYC, SLC1A5, and mTORCL1 levels in addition to levels of glutaminase—can be used in
future clinical trials as biomarkers to select patients when evaluating the potential efficacy
of glutaminolysis inhibitors as they all are present at greater levels in glutamine-dependent
cells.

Targeting glutaminolysis in combination with other therapies for cancer treatment

Decades ago, several glutamine antagonists, such as DON (6-diazo-5-oxo-L-norleucine),
acivicin, and azaserine, were developed by researchers to inhibit glutamine metabolism
in cancer cells (Table 2) [37— 41]. Although such glutamine analogs demonstrate high
efficiency in obstructing cancer cell growth, they are not ideal cancer drugs because of
their high toxicity [1]. To alleviate gastrointestinal (Gl) toxicities, scientists developed
DON prodrugs that optimized the delivery of DON to tumors with limited exposure

to Gl tissues and suggested administrating these prodrugs in a low dosage [38,42].
Moreover, treating MC38 colon cancer cells with JHU083, a prodrug of DON developed
by Leone et al., not only decreased glycolysis and oxidative phosphorylation but also
promoted oxidative metabolism of effector T cells [43]. Taken together, prodrugs of the
glutamine antagonist DON together with optimized delivery strategies and dosages may
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show promising outcomes in patients with glutamine-addicted tumors in clinical trials in the
future.

On the other hand, glutaminolysis has been an attractive cancer therapy target for the

past decade (Figure 1). Researchers have developed multiple medications blocking various
steps of glutamine catabolism pathways to impede glutamine-addicted cancer cells’ growth.
Targeting amino acid transporter SLC1Ab5 plays a vital role in importing extracellular
glutamine. High SLC1AS5 expression level has been documented to be correlated to poor
overall survival in various types of cancers, including nonsmall cell lung cancer, liver cancer,
and breast cancer [44—46]. The SLC1AD5 inhibitor L-y-glutamyl-p-nitroanilide (GPNA) is an
analog of glutamine that blocks SLC1A5 [47,48]. V-9302, a small molecule antagonist, is
another SLC1ADS inhibitor. In a previous study, blocking SLC1A5 with V-9032 diminished
cancer growth, disturbed redox homeostasis, and inflicted cell death in preclinical models
[49]. Small-molecule allosteric inhibitors of GLS have been identified, including compound
968, BPTES (bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide), and CB-839
(Telaglenastat). Compound 968 can interact with kidney glutaminase (KGA or GLS1) and
its slicing variant, glutaminase C (GAC) [50]. It inactivates GAC by inhibiting nonactive
monomeric GAC from forming enzymatically active GAC tetramer [51]. Compound 968
also inhibits the liver-type glutaminase (GLS2 or LGA) and its slicing variant, glutaminase
B (GAB), in luminal-subtype breast cancer [52]. While the inhibitory potency of BPTES is
substantial, its low solubility makes it difficult to deliver /n vivo[1,53]. Hence, scientists are
now vigorously engaged in concerted efforts to refine BPTES and create BPTES analogs in
the hope of boosting its efficacy for cancer therapy [53,54]. Although these small molecule
drugs showed profound efficiency in inhibiting glutaminolysis and are capable of hampering
cancer cell growth in preclinical models, the emergence of therapeutic resistance has been a
refractory issue. It is common in real-world scenarios to find heterogeneity within a single
tumor relying on different metabolic pathways [55-57]. Solely inhibiting glutaminolysis

is not enough to cure patients whose tumors exhibit high intratumoral heterogeneity.
Therefore, scientists now aim to target additional pathways besides glutaminolysis to
optimize cancer treatments.

Targeting GLS1 by CB-839 synergizes with other clinical drugs

CB-839, another important GLS inhibitor, selectively inhibits both KGA and GAC [58].
CB-839 has undergone many clinical trials for many cancer types, including clear cell renal
cell carcinoma (ccRCC), colorectal cancer, ovarian cancer (NCT03875313, NCT02861300,
NCT03944902). CB-839 is also currently undergoing a phase I clinical trial to treat patients
with relapsed and/or treatment-refractory leukemia (NCT02071927).

Over the past decade, CB-839 has been used in various preclinical studies and clinical trials
in combination with various clinical drugs, and some of them have shown a promising
synergistic effect (Table 3). In a patient-derived TNBC xenograft model and a basal HER2*
cell line xenograft model, CB-839 resulted in significant reductions in tumor growth,

either alone or in combination with paclitaxel, which showed strong synergy to suppress
the regrowth of the tumors [59]. A phase Il combination trial of CB-839 and paclitaxel

in patients with advanced TNBC was also performed (NCT03057600). In addition, the
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combined use of CB-839 and olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor,
resulted in potently synergistic cell death presumably due to extreme oxidative stress and
DNA replication stress in tumors, reinforcing the rationale for a clinical trial setting to
incorporate GLS inhibitors with PARP inhibitors (Figure 2) [11,60]. Furthermore, CB-839
could act synergistically with the epidermal growth factor receptor (EGFR) inhibitor
erlotinib or the EGFR-targeted monoclonal antibody cetuximab for cancer therapy [61,62].
Specifically, CB-839, in combination with erlotinib, synergistically triggered in vitro
apoptosis and reduced /7 vivo tumor growth in EGFR mutant nonsmall cell lung cancer [61].
A combination of CB-839 and cetuximab also showed a synergistic effect and decreased cell
viability in colorectal cancer cells [62]. CB-839 is currently undergoing clinical trials, both
alone or in conjunction with everolimus (NCT03163667), cabozantinib (NCT03428217),

or nivolumab (NCT02771626), for various cancers [63]. The phase I or phase Il clinical
trials showed positive results and demonstrated that all the drug combinations could be
tolerated [63]. CB-839 has a synergistic effect of promoting ER stress and apoptosis

caused by carfilzomib in treating myeloma cell lines with the proteasome inhibitor-resistant
phenotype [64]. By activating mitochondrial-mediated apoptosis, CB-839 displayed good
synergism with ABT-199, a BCL-2 inhibitor, killing acute myeloid leukemia blasts [65]. In
the tumor microenvironment [66], tumor cells outcompete T-cells for scarce nutrients such
as glutamine. By diverting glutamine from cancer cells to active T-cells, CB-839 is proposed
to have synergistic effects with nivolumab, an immunoglobulin G4 PD-1 immune checkpoint
inhibitor (Figure 2) [63]. Inhibition of glutamine metabolism can hamper oxidative and
glycolytic metabolism in cancer cells while stimulating oxidative metabolism in effector T
cells and rendering these Tcells highly activated and long-lived [67]. These findings signify
that targeting glutamine addiction through GLS1 inhibition in combination with other drugs
provides a promising therapeutic strategy for several types of cancers.

Dual inhibition of glutaminase | and glutaminase Il pathways

A study recently discovered that the inhibition of GLS1 could only partially reduce tumor
growth and not entirely hinder cancer cell proliferation [12]. By following glutamine
metabolism in mice bearing patient-derived pancreatic cancer using (m+7) 13C§5 N»-labeled
glutamine [68], the authors observed an increase in (m+5) glutamate production upon
GLS1 inhibition using BPTES-NP (nanoparticles encapsulated BPTES). As 13C4° N;
glutamate and 13C5 glutamate are the only two possible (m+5) glutamate produced from
13C§5 N,-labeled glutamine, and 13C}15 N; glutamate is highly improbable, GLS1 inhibition
should lead to a reduction in (m+5) glutamate production if it is the only pathway for

the generation of glutamate. This is because the formation of 13Cs glutamate requires

a transamination reaction from 13Cs a-KG, which requires the production of 13C§5 Ny
glutamate via GLS1. The result obtained thus indicates the presence of a different
glutamate generation pathway other than glutaminolysis [12]. The study indicated that

the 13C5 glutamate production occurs by the transamination of 13Cs a.-KG derived from
an alternative pathway: the glutaminase Il pathway [12]. The glutaminase Il pathway
begins with a glutamine transaminase (most notably glutamine transaminase K; GTK) that
catalyzes the transamination of glutamine to a-ketoglutaramate (KGM) in the presence
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of a suitable a-keto acceptor. In the second step, the enzyme w-amidodicarboxylate
amidohydrolase then catalyzes the conversion of KGM to a-KG (Figure 2). Glutamate can
be further derived from a-KG by a transamination reaction or by GDH [12]. The carbon
backbone for glutamate is derived from a-KG in the transamination reaction. This sequence
of reactions thereby helps to demonstrate how both 1°N-labels are lost.

Glutaminase Il Pathway

(m+7)L — glutamine + @ — keto acid = KGM + L
— amino acid

@

KGM + H,O — a — ketoglutarate + N Hj 2

Transamination Reaction

a — Ketoglutarate + L — amino acid = (m + 5)L
— glutamate + a — keto acid

©)

KGM, the glutaminase Il pathway intermediate, was studied to further validate that the
glutaminase Il pathway is responsible for the increased (m+5) glutamate production.

Since w-amidase only catalyzes reactions involving the open form of KGM (note that at
physiological pH, 99.7% of KGM is cyclized to a lactam and only 0.3% is in the open-
chain (substrate) form) [69], mass spectrometry and 1H NMR were employed to quantify
the levels of KGM in the tumors, where the KGM structure could only be adequately
identified in 1H NMR. Elevated KGM levels were found in tumors treated with BPTES-NP
as compared to tumors treated with blank-NP. For further verification, GTK, the primary
enzyme for the glutaminase 11 pathway that is responsible for generating KGM, was then
analyzed. In eight pancreatic cancer cell lines derived from patients, the highest expression
of GTK was found in P198 cells. shRNA knockdown of GTK in P198 resulted in reduced
cell numbers, indicating that GTK is essential for the proliferation of cancer cells. Moreover,
knockdown of GTK led to the complete suppression of /n vivo pancreatic tumorigenesis
[70]. With the role of the glutaminase Il pathway in cancer now uncovered, a novel class of
specific small molecule inhibitors with dual targeting of both the GLS1 and glutaminase |1
pathways could be a potential therapeutic strategy for cancer therapy.

Glutaminase 1 (GLS1) and glutaminase 2 (GLS2)

There are two isoenzymes of glutaminase, glutaminase 1 (GLS1 or GLS) and glutaminase

2 (GLS2 or LGA), which were initially found in the kidney and the liver, respectively [71].
Both are essential enzymes required in the regulation of glutamine metabolism that catalyzes
the hydrolysis of glutamine to glutamate [72,73]. However, in tumorigenesis, GLS1 and
GLS2 lead to opposite effects [74,75]. Studies have shown the significant role of GLS2 as

a tumor suppressor in cancers such as gastric cancer [76,77]. The idea that GLS2 functions
as a tumor suppressor while GLS1 promotes cancer growth has led to the assumption that
inhibiting the GLS1 pathway is a sufficient anticancer strategy [74]. However, this is not

Curr Opin Chem Biol. Author manuscript; available in PMC 2021 November 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shen et al.

Page 8

completely true, as emerging evidence illustrates the importance of GLS2 in cancer cell
proliferation, and a study on luminal-subtype breast cancer suggests a dual-GLS1/GLS2
inhibition to be more effective than GLS1 inhibition alone [52]. GLS2 is also expressed,
though downregulated, in pancreatic cancer cells [78]; hence, it is possible that the resistance
to BPTES-NP in pancreatic cancer could come from the compensation of GLS2. Although
compound 968 inhibits both GLS1 and GLS2, this inhibition will not prevent the generation
of glutamate via the glutaminase 1l pathway, as discussed in section 2.2. Therefore, dual
glutaminase | and Il pathway inhibition would be a better option.

Combined treatment of GLS1 inhibitor with blockage of glutamate release from its

reservoir

N-Acetyl-aspartyl-glutamate (NAAG), the third most abundant neurotransmitter in the
human body, has been studied thoroughly with respect to its function in several neurological
disorders [79]. However, its role in cancer metabolism, its feasibility as a cancer therapy
target, and its capacity as a noninvasive cancer progression indicator have only recently been
discovered. A study by Nguyen et al. revealed that NAAG is a quintessential glutamate
reservoir and that GCPII is responsible for the hydrolysis of NAAG to N-acetyl-aspartate
(NAA) and glutamate (Figure 2) [14]. Knocking down the GCPII gene in pancreatic cancer
P198 cells, using both shRNA lenti-virus and CRISPR, and treating them with BTPES,
showed accentuation of decreased intracellular glutamate level and an inhibitory effect on
cell proliferation compared to the control cells [14]. The possibility of targeting GCPII as

a means of cancer therapy was then further tested using 2-(phosphonomethyl)-pentanedioic
acid (2-PMPA), which was found to be a selective competitive inhibitor of GCPII, to treat
patient-derived ovarian and orthotopic pancreatic tumors, and this treatment resulted in a
significant reduction in tumor sizes [14]. A combination therapy using CB-839 and 2-PMPA
was then tested, and, importantly, the decrease in tumor growth was found to be greater than
when either treatment was used alone [14]. This is because these two compounds target two
different glutamate metabolic pathways, which reduces drug resistance. Nguyen et al. also
found that the concentrations of NAAG in MYC- transformed lymphoma B cells [80-82],
high-grade ovarian tumors, and brain tumors are higher than those in low-grade cancers of
the same type [14]. This is corroborated with other studies showing that GCPII exists at
higher levels and exhibits greater activity in metastatic prostate cancer cells than in either
benign or normal cells by at least a factor of ten [83]. NAAG also has the potential to

be used as a noninvasive marker of predicting tumor growth. The study done by Nguyen

et al. found that increases and decreases in NAAG concentrations in plasma took place
before corresponding increases and decreases in tumor growth, respectively [14,84]. This
correlation may allow physicians to monitor and stay one step ahead of tumor development
and should have translational implications by introducing a new strategy for future clinical
testing.

In short, NAAG’s role in glutamine metabolism and its correlation with cancer progression
make this compound and the proteins involved in its metabolism likely candidates for future
research and potential therapeutic targets. However, due to the propensity of many cancers
for drug resistance, any future therapies targeting NAAG metabolism will likely be more
effective when combined with other metabolic inhibitors, especially glutaminase inhibitors.
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Combination therapy with GLS inhibitor and other metabolic inhibitors

BPTES-nanoparticles, where nanoparticles made up of poly (ethylene glycol) (PEG) and
poly (lactic-coglycolic acid) (PLGA) encapsulate the drug to increase blood circulation
time and tumor uptake, was an attempt to overcome the solubility limitation of BPTES.
Indeed, it was shown to have better pharmacokinetics than unencapsulated BPTES [13].
The combined treatment of BPTES-NPs and gemcitabine, the current standard post-PDAC
surgery adjuvant chemotherapy, did not result in improved tumor reduction [13]. Upon
BPTES-NPs treatment, the residual tumor relies on glycolysis and glycogen synthesis, as
evidenced by increases in the levels of lactate, glycogen, glucose-6-phosphate, glucose-1-
phosphate, and UDP-glucose. Elgogary et al. then tested the combination of BPTES-NP
and metformin, a diabetic drug currently in phase 111 clinical trials for cancer therapy
(NCT01101438). Metformin has the ability to reduce glucose metabolism [13,85]. It

has been previously shown that by inhibiting hexokinase-I1, which catalyzes glucose
phosphorylation, metformin reduces the supply of cellular energy and glucose metabolism
[86]. With the combined therapy of BPTES-NPs and metformin, a greater decrease tumor
growth as compared to either drug acting alone, as well as a decreased level of lactate,
glucose-6-phosphate, glucose-1-phosphate, and UDP-glucose was detected.

Combination therapy has the ability to combat intratumoral metabolic heterogeneity and has
important implications for the design of more effective treatment strategies. The rationale for
combination therapy is to use drugs that work via different mechanisms, thereby decreasing
the likelihood that resistant cancer cells will develop. With many types of combination
therapies investigated, the combination of BPTES and metformin was selected by tracking
the metabolic pathways utilized in the tumor cells remaining after GLS inhibition and
identifying the best-suited drugs for combined synergistic therapy.

Conclusion

Resistance to therapy is a major impediment in the treatment of cancer, especially in
heterogeneous cancers. In comparison, malignant cells rely more on glucose, glutamine,
and other substrates than their noncancer counterparts. Given that glutamine metabolism
underpins human malignancies, and GLS expression in cancer cells can determine their
response toward GLS inhibiting drugs, biomarkers such as GLS can be used to select
patients who are most likely to respond to and benefit from the anti-GLS therapy [87]. The
utilization of L-[*1C]glutamine positron emission tomography (PET) imaging demonstrates
the value of noninvasive biomarkers that may be paired with therapies targeting tumor
metabolism [88]. Future analysis of the molecular-based metabolic vulnerabilities of cancer
cells will allow for the stratification of additional resistant patient populations who may
benefit from GLS inhibitor treatment in combination with other anti-cancer drugs. Since
combination therapy could decrease the likelihood of the development of resistant cancer
cells through the inhibition of several different pathways, it is by far the most effective
cancer treatment [89]. Future investigations that will provide more mechanistic insights into
the metabolic adaptation of glutamine-dependent tumors will further highlight and potentiate
novel strategies for cancer therapy.
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Figure 1.
The glutaminolysis pathway and its inhibitors.

Glutamine is an important nitrogen and carbon source for actively proliferating cells,
especially glutamine-addicted cancer cells, and is an essential building block for numerous
biosynthesis processes, such as the synthesis of glutathione, NADPH, nucleotides, and fatty
acids. Glutamine can be imported from the extracellular space via alanine, serine, cysteine
transporter 2 (ASCT2). Glutamine is then converted to glutamate by either glutaminase 1
(GLS1) or glutaminase 2 (GLS2). Glutamate is then converted to a-ketoglutarate (a-KG).
This reaction can be catalyzed by either glutamate dehydrogenase (GDH) generating one
equivalent of ammonia or by transaminases in which the nitrogen is incorporated into other
amino acids. a-KG can be incorporated into the TCA cycle and its carbon converted to
malate, oxaloacetate (OAA), and citrate subsequently. Malate can be transported from the
mitochondrion to the cytoplasm, where it is a substrate of the malic enzyme 1 (ME1),
thereby assisting in the production of NADPH from NADP*. OAA can be converted to
aspartate and transported to the cytoplasm to participate in nucleotide synthesis. a-KG

can also be transported to the cytoplasm as a source of acetyl-CoA, which is an essential
substrate of fatty acid synthesis. There are several drugs developed to inhibit different parts
of the glutaminolysis pathway. The first type is exemplified by glutamine analogs, such as
DON, acivicin, and azaserine. The second group is represented by the SLC1AS5 inhibitors,
including GPNA and V-9302. Last, GLS1/2 is also a promising target for glutaminolysis
inhibition. Several noncompetitive allosteric inhibitors have been identified, such as CB-839,
BPTES, and compound 968.
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Figure 2.

Emerging combination therapy: Combined blockage of glutaminolysis with inhibition of
other pathways.

CB-839 or BPTES, small molecule inhibitors of GLS, combined with other drugs, is an
emerging cancer treatment strategy. (1) CB-839 combinations: CB-839 combined with
cabozantinib, a small molecule inhibitor of growth factor signaling, or with everolimus,

an mTOR inhibitor, are currently undergoing clinical trials. In addition, CB-839 synergizes
with nivolumab, a human 1gG4 monoclonal antibody blocking PD-1, and this combination is
also undergoing a Phase Il clinical trial. Poly (ADP-ribose) polymerase (PARP) is important
for cancer cells to reduce ROS stress and sustain genome integrity. GLS inhibition by, e.g.
CB-839 treatment, suppresses the generation of nucleotides and causes replication stress,
which may activate PARP-dependent DNA repairs. Treating cancer cells with a combination
of CB-839 and PARP inhibitor, such as olaparib, has been shown to achieve synergistic
antitumor activity. NAAG has been identified as a glutamine reservoir in cancer cells and is
hydrolyzed to generate glutamate and NAA by carboxypeptidase 11 (GCPII), which can be
inhibited by 2-PMPA. Combining 2-PMPA with CB-839 showed a more significant decrease
in tumor size compared to treating the tumor with either of these drugs alone. (2) BPTES
combination: BPTES combined with metformin, a glucose metabolism inhibitor, results in
greater inhibition of tumor growth. The glutaminase Il pathway provides cancer cells with

a mechanism for bypassing GLS inhibition. Inhibition of both GLS1/2 and the glutaminase
Il pathway is a novel strategy for treating glutamine-addicted cancers. The effect of each
drug or shRNA (highlighted in yellow) is shown in red, metabolites are shown in black, and
enzymes are shown in blue boxes.
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