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A B S T R A C T

Background: Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized
thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the
pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC.
Main Text: Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of
increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a
debated topic as other studies have suggested either a positive association or no association between DM and KC.
To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate
genes associated with KC and central corneal thickness in the literature. We then explored how these genes may
be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic
complications associated with DM.
Conclusions: Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for
future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as
diabetes.
1. Introduction

Keratoconus (KC) is a bilateral, progressive ectatic corneal disorder
characterized by localized thinning of the corneal stroma and alteration
of corneal curvature.1 As the cornea adopts a conical shape, this results in
myopia, irregular astigmatism, and eventual visual impairment.1 The
histopathology of KC includes stromal thinning, breaks in Bowman's
layer, focal fibrosis, thickening of the epithelium, and keratocyte
apoptosis in the anterior stroma.2,3 Although KC is known to be multi-
factorial with genetic, metabolic, hormonal, and environmental in-
fluences, the exact etiology remains elusive.4–6 The risk of developing KC
has been associated either positively or negatively with many systemic
disorders, including but not limited to, Down syndrome,7 connective
tissue diseases,8–10 autoimmune diseases,11 and diabetes mellitus
(DM).9,12–15 However, the exact etiology of KC and its relationship to
systemic diseases, such as DM, remains elusive.

DM may have multiple effects on the cornea, including keratopathy,
neuropathy, inflammation, alterations in collagen fibrils, and endothelial
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cell loss.16 Multiple studies have suggested that DM is inversely associ-
ated with the risk of KC, suggesting a protective role against the devel-
opment and/or severity of KC.13,14,17,18 This is in contrast to other studies
that have reported either 1) a positive association in both prevalence and
severity between KC and DM or 2) no significant correlation between the
two diseases.14,19–22 This discrepancy may be reflective of the varying
sample sizes, inclusion/exclusion criteria, sample ascertainment ap-
proaches, and populations analyzed (Table 1).

Our goal was to provide a comprehensive review of potential
genetic associations between DM and KC. We have outlined various
genes implicated in KC risk and summarized their potential roles in
DM-induced corneal changes (Table 2). These genes may work
through several mechanisms including alterations in corneal biome-
chanics and collagen crosslinking, alterations in ECM composition
and proteolytic activity, as well as increased inflammation and
oxidative stress.
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Table 1
List of human studies evaluating the relationship between keratoconus and diabetes
(adapted and modified from 26).

Study Study size Design Population Characteristics Findings Association

13 KC patients (n¼571)
Non-KC controls
(n¼571)

Retrospective case-
control study

- German population
- Hospital/clinic-based
- Ethnicity unspecified
- Age range: 20–40 yo; Mean age
KC: 28.86 � 5.79 years. Mean
age control: 29.45 � 5.75

T2DM showed a protective effect against KC
development (odds ratio ¼ 0.2195)

Inverse association of
KC development with
DM

14 KC patients without DM
(n¼269)
KC patients with DM
(n¼26)

Retrospective cross-
sectional study

- United States population
- Wilmer Eye Institute; Hospital/
clinic-based

- Ethnicity: White, Black, Other
- Age range: 14–80 yo; Mean age
42.7 � 13.4

T2DM showed a protective effect against more
severe KC (odds ratio¼ 0.2); No difference in DM
prevalence in KC population

Inverse association of
DM with KC severity

17 KC patients (n¼1383)
non-KC controls
(n¼1383)

Retrospective case-
control study

- Iranian population
- Farabi Eye Hospital; Hospital/
clinic-based

- Ethnicity unspecified
- Age range: 18–49 yo. Mean age
KC: 28.8 � 5.3 years. Mean age
control: 29.1 � 5.8 years.

T2DM showed a protective effect against KC
development (odds ratio ¼ 0.350)

Inverse association of
KC development with
DM

18 KC patients (n¼16,053)
non-KC controls
(n¼16,053)

Retrospective
longitudinal cohort
study

- United States population
- Population-based
- Multiple ethnicity (White, Black,
Latino, Asian, Other)

- All ages included; Mean age
40.4 � 13.0 years (KC and
matched controls)

20% lower odds of KC development with
uncomplicated DM; 52% lower odds of KC
development with DM-associated organ failure

Inverse association of
KC development with
DM

19 KC patients (n¼2679)
non-KC controls
(n¼26,7900

Retrospective
longitudinal cohort
study

- Danish population
- Population-based
- Ethnicity: European vs. Non-
European

- All ages included. Mean age:
38.2 � 15.9 (KC and matched
controls)

No significant difference in DM prevalence in KC
patients. Total DM odds ratio¼1.03, T1DM odds
ratio¼0.87, T2DM odds ratio¼1.07

No significant
association between KC
development and DM

298 KC patients (n¼575)
non-KC controls
(n¼2875)

Retrospective
longitudinal cohort
study

- Korean population
- Population-based
- Ethnicity unspecified
- All ages included. Mean age:
31.1 � 16.0 (KC and matched
controls)

No significant difference in DM prevalence in KC
patients. Multivariate odds ratio¼1.02

No significant
association between KC
development and DM

299 29 studies incorporating
50,358,341 subjects

Systematic review and
meta-analysis

- Global population; 15 countries
- Hospital/clinic/population
based

Odds of developing KC were 23% lower in T2DM,
but relationship was not significant

No significant
association between KC
development and DM

22 KC patients (n¼2051)
non-KC controls
(n¼12,306

Retrospective case-
control study

- Netherlands population
- Population-based, comparable
socioeconomic distribution

- Relative age group 10–40 years.
Mean age KC and control:
30 � 6.5.

No significant association in KC and DM, with
odds ratio 1.60 (0.89–2.89) and p-value 0.149.

No significant
association between KC
development and DM

20 KC patients (n¼1377)
non-KC controls
(n¼4131)
AND T2DM KC patients
(n¼75) non-DM KC
controls (n¼225)

Retrospective case-
control and Cross-
sectional study

- United States population
- Wills Eye Hospital Cornea
Service; Hospital/clinic-based

- Ethnicity unspecified
- All ages included; Mean age KC:
44.64 � 15.76 years. Mean age
control: 45.06 � 16.00

Higher prevalence of T2DM in KC population
compared to controls (6.75% and 4.84%,
respectively); Higher severity of KC in DM
patients (odds ratio ¼ 2.691)

Positive association of
KC development with
T2DM

21 KC patients (n¼1552)
non-KC controls
(n¼7.760)

Retrospective cohort
study

- South Korean population
- Population-based
- Ethnicity unspecified
- All ages included.

Higher prevalence of T2DM in KC population
compared to controls (19.2% and 14.5%,
respectively); Positive association of KC with DM
(odds ratio ¼ 1.35)

Positive association of
KC development with
DM
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2. Clinical significance

By gathering information regarding the potential overlapping genetic
factors in KC and DM, this review discusses potential therapeutic targets
that may slow or halt the progression of KC. In other words, it might be
beneficial to manage KC by utilizing the same mechanisms that
strengthen the cornea in DM. These mechanisms include but are not
limited to shifting the balance in the cornea microenvironment towards
increased endogenous collagen crosslinking, decreased extracellular
matrix (ECM) remodeling and proteolytic degradation, and decreased
inflammation. By regulating local gene expression, this may serve as an
alternative form of therapy for those patients in which corneal
2

crosslinking is not an option, such as those with prior history of herpetic
keratitis and history of poor epithelial wound healing.23 Furthermore,
this may reduce the need for corneal transplantation in patients with
more severe forms of KC.

3. Corneal biomechanics and collagen crosslinking in KC and DM

The cornea is naturally a viscoelastic structure, in that itmust be elastic
enough to expand into an aspheric half-sphere, but stiff enough to main-
tain its shape and resist the intraocular pressure (IOP).24,25 There is a
delicate interplay between the multiple corneal layers and the composi-
tion within each layer that contributes to the overall corneal shape. This



Table 2
List of genes that could mediate the potential correlation between keratoconus and diabetes.

Gene Functions CHR KC/CCT effects DM effects References

Cornea biomechanics and collagen crosslinking

LOX Lysyl oxidase, participates in
collagen crosslinking

5q23.2 Reduced LOX expression in corneal stroma
and reduced activity in KC-derived corneal
fibroblasts

Increased LOX expression and activity in
retinal endothelial cells; unclear effect in DM
cornea

33,45,47,58

COL5A1 Collagen type V, alpha-1 chain 9q34.2-
q34.3

COL5A1 haploinsufficiency results in
corneal stroma thinning, reduced collagen
fibers

Possible interaction between COL5A1 and
HbA1c in DR study; no known direct effect
on COL5A1 in cornea

65,66,72,81

ECM remodeling

FOXO1 Transcription factor 13q14.1 SNP in FOXO1 linked to CCT, FOXO1
expression/activity unknown in cornea

FOXO1 linked to AGE-mediated disruption
of autophagic flux and vascular endothelial
cell autophagic apoptosis, role in cornea
unknown

66,85,90

SMAD3 Transcription factor 15q22.23 SNP in SMAD3 linked to CCT, Increased
pSMAD3 and increased TGFβ signaling in
KC cells

SMAD3 linked to ECM remodeling in DN;
role in cornea unclear

49,98,100,106

TGFBI Transforming growth factor beta
induced

5q31.1 SNP in TGFBI linked to KC with decreased
levels of TGFBIp in KC cornea

Unknown effect in DM cornea, shown to be
upregulated in response to high glucose and
TGFβ in DM proximal tubules

124–126,132

ZEB1 Zinc finger transcription factor 10p11.22 Mutations in ZEB1 associated with KC and
PPCD; possible genotype/phenotype
correlation

Unknown effect in DM cornea, implicated in
epithelial-to-mesenchymal transition under
hyperglycemic conditions

152,154,155,158

MMP-9 Matrix metalloproteinase- 9 20q11.2-
q13.1

Increased MMP-9 activity noted in tear
sample with corresponding upregulation in
MMP-9 mRNA; SNP identified in MMP-9

Increased MMP-9 activity in tears from DM
patients; SNP identified inMMP-9 associated
with T2DM susceptibility

170,173,176,181,185

TIMP-1 Tissue inhibitor of
metalloproteinases-1

Xp11.23 Decreased TIMP-1 levels detected in KC
patients, SNP in TIMP-1 associated with
increased KC risk

Increased TIMP-1 levels in tears of pediatric
T1DM patients, but overall role of TIMP-1 in
DM remains inconclusive

83,178,182,185

MIR184 microRNA 15q22-
q25

Mutations in miR-184 implicated in KC
pathogenesis, but extent of association with
KC alone remains unclear

miR-184 expression decreased in pancreatic
β –cells in response to extracellular glucose;
decreased in islet cells of T2DM patients

187,196,200,201,310,311

Inflammation and ROS production

HGF Hepatocyte growth factor 7q21.1 Increased HGF protein in KC corneal
epithelium; increasedHGF and c-MetmRNA
in corneal wound healing

Increased HGF with decreased HGF receptor
c-Met expression in DM cornea

3,214,217,220

CAST Calpain/calpastatin, proteolytic
degradation

5q15 SNP in CAST strongly linked to KC; CAST
expression/activity unclear

High glucose induces calpain activity,
increasing ROS production and vascular
endothelial dysfunction; unknown effect in
cornea

226,229,230

SOD1 Superoxide dismutase 1
cytoplasmic antioxidant enzyme

21q22.11 Deletion mutation in SOD1 in several
cohorts; decreased SOD1 expression in KC
corneal fibroblast cultures

Associated polymorphisms in SOD1
identified; decreased SOD1 expression in
DM cornea with associated increase in RAGE

238–241,254,256

IL1A/IL1B Interleukin 1alpha/beta,
inflammatory cytokine

2q13 Increased IL-1α expression in KC corneas,
SNPs identified in IL1A and IL1B

Imbalance in IL-1β to IL-1Ra in DM cornea,
SNPs identified in IL1A, IL1B, and IL1RN in
DM patients

119,162,203,262,268

Additional genes of interest

SPRY2 Sprouty 2 13q31.1 SNP in SPRY2 linked to CCT and corneal
epithelium proliferation; SPRY2 expression
activity in KC cornea unknown

SNP near SPRY2 linked to increase DM
susceptibility; unclear effect in SPRY2
cornea

49,278,280–282

COL4A3,
COL4A4

Collagen type IV, alpha-3/4
chain, structural portion of
corneal membranes

2q36.3 Alterations in collagen type IV reported in
KC, but unclear if genetic polymorphisms
play a role

Alterations in collagen type IV reported in
DN and in the cornea under hypoxic
conditions, unknown genetic association
with DM cornea

48,283,290,291
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involves the organization of the collagen structure within each layer, the
attachment of proteoglycans and glycosaminoglycans to collagen fibers,
the corneal swelling pressure, and the production/degradation of extra-
cellular matrix components.24 There are three major mechanisms of
collagen crosslinking important in corneal biology, as previously outlined
in McKay et al., 2019.26 Those include an enzymatic reaction: lysyl
oxidase-mediated crosslinking as well as two non-enzymatic reactions: 1)
advanced glycation end product (AGE)-mediated crosslinking and 2)
photooxidative crosslinking mediated by riboflavin as a treatment option
for KC.Wewill discuss the crosslinkingmechanisms inmore detail as they
relate to the genes involved in KC and DM.

In order to quantify differences in corneal shape and structure, two
measurements are commonly obtained: the central corneal thickness
(CCT) and corneal hysteresis (CH). While CCT is a gross measure of the
overall thickness of the cornea, CH reflects the viscous damping ability of
3

the cornea. CH combines elasticity and viscosity and provides further
information on the structural integrity of the cornea. Increased edema in
the cornea may give the appearance of stromal thickening and increased
CCT. This must be taken into account in systemic diseases such as DM, in
which glucose induces increased water retention in multiple tissues,
including the cornea.27,28

KC is associated with alterations in the corneal biomechanics.1 Pre-
vious studies have shown altered expression or abnormal localization of
extracellular matrix (ECM) components in KC,29 with decreased levels of
proteoglycan core proteins and abnormal collagen synthesis.25 Further-
more, age has been shown to be inversely correlated with the risk of KC30

and KC progression,31 suggesting that age-related crosslinking is pro-
tective against KC and other ectasias.32

Conversely, diabetes is known to be an independent cause of
endogenous, non-enzymatic crosslinking as high levels of glucose causes
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glycosylation of corneal fibers and increases AGE-mediated crosslinking
in the cornea, causing the cornea to become stiffer.13,32–34 As a result,
increased CCT and alteration in corneal endothelial cells have been
observed in patients with diabetes.35–39 Lee et al., 2006 reported that
CCT was significantly correlated with the duration of diabetes after
controlling for age.37 Interestingly, Hager et al., 2009 observed a sig-
nificant increase in CH in patients with diabetes, although they did not
observe a significant increase in CCT after correcting for age, IOP, and
gender.40 Schler et al., 2012 also reported significantly higher CH and
corneal resistance factor (CRF) in patients with poorly-controlled dia-
betes as compared to healthy subjects and well-controlled diabetes.41

Since CH and CRF are correlated to HbA1c, this suggests that the cornea
biomechanics could be altered depending on extent of glucose control.41

These findings suggest that DM may induce structural alterations in the
cornea. In terms of corneal biomechanics, in this section we discussed
two genes, LOX and COL5A1, and their roles in relationship to the corneal
biomechanics observed in KC and DM.

3.1. LOX

Lysyl oxidase (LOX) is a copper amine oxidase that initiates the
physiologic crosslinking of collagens and elastin by oxidizing the side
chain of peptidyl lysine, thus generating reactive aldehydes on lysine
residues that may cross-react with nearby groups.26,42,43 In the eye, the
LOX enzyme has been detected in the trabecular meshwork, ciliary body,
lens, retina, and cornea.44–46 In addition to LOX, there are four LOX-like
proteins (LOXL1, LOXL2, LOXL3, and LOXL4) that also catalyze the
oxidative deamination of lysine residues in collagen and elastin45.

Multiple genome-wide association studies (GWAS) and candidate
association studies have identified the association between sequence
variants in LOX to both KC risk and CCT, suggesting its potential role in
KC pathogenesis.47–49 Specifically, a particular SNP rs2956549 in LOX
has been associated with KC in various ethnicities as well as a meta--
analysis.50–53 Dudakova et al., 2012 reported altered distribution of LOX
expression in the corneal stroma of KC patients, with a reduction in total
LOX (both LOX and LOXL) protein activity in corneal fibroblasts derived
from KC corneas.45 This was consistent with a recent study that reported
reduced pre-existing LOX and collagen levels in a patient who developed
ectasia after small incision lenticule extraction (SMILE), despite normal
preoperative biomechanical evaluation.54 Furthermore, ectopic LOX
expression in the human corneal fibroblast induced significantly more
collagen gel contraction in vitro, confirming the role that it plays in
strengthening the corneal stroma.54

Given LOX's role in collagen crosslinking, reduced LOX activity in KC
may lead to impaired cross-linking which results in corneal ectasia.45,54

Although there is a confirmed genetic association of LOXL1 to pseu-
doexfoliation syndrome and open-angle glaucoma,46,55,56 it is still un-
clear the role that LOXL proteins may play in the cornea. Dudakova et al.,
2016 confirmed that LOXL1-4 enzymes were present in all layers of the
cornea in cryosection samples and reported lower LOXL2 expression in
KC corneas using IHC andWestern blot analyses.57 Further studies will be
required to better understand the expression patterns and activity of
LOXL proteins in the cornea.

The exact role of LOX in DM-induced corneal changes remains un-
clear, as one study failed in observing an increase in LOX-mediated
crosslinking in the cornea of DM patients.33 However, Chronopoulous
et al., 2010 revealed that hyperglycemic conditions increased LOX
expression and LOX activity in rat retinal endothelial cells in vitro and in
diabetic rat retinas in vivo.58 This is consistent with the finding of
increased LOX-dependent crosslinking in skin collagen in patients with
diabetes.59 Coral et al., 2013 confirmed increased LOX mRNA expression
in ARPE-19 cells exposed to high glucose.60 Further studies will be
required to investigate the effects of DM on LOX activity in the cornea.
The increase in LOX activity and expression in response to high glucose in
retinal studies suggests that high glucose may have a similar effect in
corneal stromal and endothelial cells. Given that the cornea is an
4

avascular structure, there may be differential upstream regulation of LOX
in response to high glucose concentrations as compared to the retina.

3.2. COL5A1

Since collagen is the most abundant protein in the cornea,26 it is not
surprising that various types of collagen have been implicated in asso-
ciation with CCT and KC, including COL1A1 and COL1A2,61 COL8A2,62

and COL5A1.37,63 The genetic association of COL5A1 with CCT, in
particular, reached genome-wide significance after combining data from
European, Australian, and Singaporean GWAS.62–66 Collagen type V is a
regulatory fibril-forming collagen involved in the formation of hetero-
typic fibrils with collagen type I.67–70 Together, both collagen type I and
V are the dominant collagen isoforms in the human corneal stroma.71

Although collagen type V only comprises 2–5% of the total collagen in
most tissues, it determines 10–20% of the fibrillary collagens in the
cornea.67,72 Interestingly, the most common molecular mechanism in
classic Ehler-Danlos syndrome (EDS), a generalized connective tissue
disorder, is a functional loss of one COL5A1 allele.73,74 Segev et al., 2006
investigated the corneal phenotype in EDS patients with COL5A1 hap-
loinsufficiency and Col5a1þ/� mouse models. Both EDS patients and
knockout mice exhibited consistent corneal thinning and the Col5a1þ/�

mice also exhibited a decrease in total collagen content with a 25%
reduction in the number of stromal fibrils.72 These findings suggest that
alterations in COL5A1 expression serves as a strong genetic predisposi-
tion towards the development of corneal thinning and KC.

In DM, collagen is influenced by hyperglycemia primarily through
nonenzymatic AGE-mediated crosslinking. This occurs by way of the
Maillard reaction, in which a primary amine found on amino acid resi-
dues, such as lysine or arginine, is converted to a reactive Schiff base that
rearranges to form the Amadori product.26 This serves as an early-stage
product that leads to the formation of AGE products. A classic example
of the Maillard reaction is the glycation of hemoglobin, which gives rise
to the glycated HbA1c, the established biomarker for sustained glucose
levels.26,75 Studies have identified increased end products of the Maillard
reaction, including pentosidine, within the diabetic cornea.26,33 This
increase in AGE-mediated crosslinking in DM has been associated with
increased tendon stiffness and higher mechanical strength, which could
be inhibited by insulin supplementation.26,76,77 As a result, the increased
crosslinked collagen is resistant to enzymatic degradation in the
cornea.78 AGE-mediated crosslinked adducts can then bind to the re-
ceptor for advanced glycation end products (RAGEs), which are
pro-inflammatory receptors expressed in a wide variety of tissues.
Although originally described for its ability to bind AGEs, RAGEs have
the capability to bind multiple other ligands and play a crucial role in
homeostasis and inflammatory processes.79,80

To our knowledge no direct associations between COL5A1 expression
and DM have been established. Very recently, Ng et al., 2020 evaluated
possible gene-environment interactions between genetic variants identi-
fied via GWAS, and the effect of glycemic control (indicated byHbA1c) on
the risk of severe diabetic retinopathy (DR).81 Interestingly, the SNP
COL5A1 rs59126004 exhibited a protective effect against DR in patients
with adequate glycemic control (HbA1c <7%), but not in patients with
inadequate glycemic control (HbA1c � 7%),81 suggesting a potential
interaction between COL5A1 rs59126004 and glucose levels in the retina.

Priyadarsini et al., 2016 quantified the expression of collagen type I,
III, and V in the human corneal stroma of Type 1 and Type 2 DM, and
discovered elevated levels of collagen type I and type III, but not collagen
type V.27 Given that this was a small study with four to eight donor
corneas in each category, it would be worth expanding the study with a
larger sample size. Collagen type I and V are the predominant types of a
healthy cornea, while collagen type III is primarily associated with
fibrosis and wound healing in the setting of injury. This finding suggests
that hyperglycemia may induce collagen expression in an
isoform-dependent manner.27 We expect more studies of COL5A1 to
better understand DM's direct effects on COL5A1 in the cornea.
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4. Alterations in extracellular matrix (ECM) remodeling in the
cornea

In line with collagen crosslinking, alterations in corneal ECM
remodeling have been observed in KC and DM including variations in
cellular proliferation, disruption in autophagic flux, and increased ECM
fibrosis. This is complemented by the observation of an imbalance be-
tween matrix metalloproteinase (MMP) and tissue inhibitors of matrix
metalloproteinase (TIMPs) in KC patients.82,83 Here, we take a close look
at several KC- and CCT-associated transcription factors including FOXO1,
SMAD3, TGFBI, and ZEB1 (Table 2). We then searched the literature to
determine how they may be differentially regulated under hyperglycemic
conditions in the cornea. We also included ECM remodeling genes
MMP-9, TIMP-1, and MIR184.

4.1. FOXO1

Transcription factor Forkhead box protein O1 (FOXO1) is ubiqui-
tously expressed in mammalian cells.84 It mediates multiple different
pathways, including regulation of metabolic homeostasis, oxidative
stress, cell proliferation, and autophagy. Sequence variants near or
within FOXO1 have been associated with CCT,66,85,86 but its effect on
FOXO1 expression and activity is not well-described in the KC cornea.
FOXO1 is regulated by a variety of environmental factors, including in-
sulin, which normally inhibits FOXO1 activity.87 In settings of insulin
resistance and increased glucose, such as T2DM, increased FOXO1 has
been shown to induce gluconeogenesis abnormalities, cell apoptosis,
uncontrolled autophagy, and inhibition of proliferation.84,88

Although much remains to be understood about FOXO1's role in KC
and DM, some studies have analyzed its effects on vascular endothelial
cells. Wilhelm et al., 2016 indicated that FOXO1 decreases the metabolic
and proliferative activities of vascular endothelial cells by attenuation of
glycolysis and mitochondrial respiration.84,89 This study reported that
the endothelial-restricted deletion of FOXO1 in mice caused a profound
increase in endothelial cell proliferation, such that it induced vascular
hyperplasia and vessel enlargement. In contrast, overexpression of
FOXO1 resulted in vessel thinning and reduced branching of vascula-
ture.89 A separate study reported that FOXO1 signaling was involved in
AGE-induced vascular endothelial cell autophagy through impairment of
autophagosome-lysosomal fusion. This impaired autophagic flux then
resulted in endothelial cell autophagic apoptosis.90 These findings are
intriguing as they suggest a correlation in FOXO1 activity with
AGE-induced endothelial damage and decreased endothelial cell prolif-
eration in the vasculature. Thus, it would be interesting to perform
similar studies in the microenvironment of the cornea to determine if
differential regulation of FOXO1 may contribute to altered endothelial
cell proliferation and/or endothelial cell apoptosis in KC and DM corneas.

4.2. SMAD3

There are three functional classes of SMAD proteins, including the
receptor-regulated SMAD (R-SMAD), the Co-mediator SMAD (Co-
SMAD), and the inhibitory SMAD (I-SMAD) proteins.91 SMAD3 is an
R-SMAD that is directly phosphorylated and activated by type I receptor
kinases, forming activated SMAD complexes that then activate the tran-
scription of target genes,91 specifically those involved in the TGFβ
signaling pathway. TGFβ signaling is tightly regulated by I-SMAD pro-
teins, SMAD6 and SMAD7, which compete for binding of SMAD3 to
co-mediators.92 TGFβ signaling is known to play an important role in
ECM remodeling and MMP expression.93–95

Several studies have identified involvement of TGFβ signaling in
KC.96–99 Priyadarsini et al., 2015 observed a significant increase in
pSMAD3 expression with TGFβ3 signaling in human KC cells compared
to normal human corneal fibroblasts.98 This was paralleled by significant
downregulation of SMAD6/7 at baseline and failure of SMAD6/7 upre-
gulation in response to stimulation with TGFβ in the human KC cells.98
5

Recently, variants near or within SMAD3were identified to be associated
with KC susceptibility in GWAS of CCT,49,100 further reinforcing its po-
tential role in KC pathogenesis. Taken together, it has been suggested
that the lack of inhibition by SMAD6/7, along with potential alterations
in SMAD3 activity, results in increased TGFβ signaling that may promote
the formation of a fibrotic ECM in KC.98

TGFβ/SMAD signaling plays an important role in regulating glucose
and energy homeostasis as well.101 The TGFβ/SMAD3 pathway is acti-
vated downstream of the AGE/RAGE signaling pathway in the setting of
hyperglycemia.102,103 This is suggested to be the main driving force in
the development of diabetic nephropathy (DN) due to increased ECM
deposition in mesangial cells.104,105 Ono et al., 2018 demonstrated that
AGE stimulation resulted in significant activation of Smad1 and Smad3 in
mesangial cells in mice, likely as a result of increased TGBβ signaling.106

Additionally, the loss of Smad3 prevented renal dysfunction under dia-
betic conditions by reduced mesangial matrix accumulation and reduced
GBM thickening.106 This reinforces the critical role that TGFβ/SMAD3
plays in ECM remodeling, and shows that this pathway is also affected
under hyperglycemic conditions. However, this pathway has not been
analyzed in the DM cornea. Interestingly, TGFβ/SMAD3 signaling pro-
moted gluconeogenesis in hepatocyte cells through interaction with
FOXO1, another established KC-susceptibility gene.101 It is necessary to
determine if the TGFβ/SMAD interaction with FOXO1 is present in the
human cornea.

4.3. TGFBI

The transforming growth factor beta-induced (TGFBI) gene has been
implicated in the pathogenesis of KC and a heterogeneous group of
corneal dystrophies that are characterized by the progressive loss of
corneal transparency.107 It encodes transforming growth factor
beta-induced protein (TGFBIp), which is also known as keratoepithelin,
BIGH3, or βigh3.108 In the cornea, it is expressed primarily in the corneal
epithelium, stroma, and retrocorneal fibrous membranes.108–112 TGFBIp
is known to interact with multiple extracellular macromolecules,
including the proteoglycan decorin113 and collagen type I, II, IV, VI, and
XII.114–117 It is thought to link cells to the ECM through various integrin
binding sites116,118–122 and thus play important roles in corneal wound
healing and maintenance of the ECM.

In a cDNA library constructed from KC corneas, TGFBI was found to
be the second most abundant transcript.123 Sequence variants in TGFBI
were also identified in Chinese and Polish KC patients.124,125 However,
the exact relationship between TGFBI, TGFBIp, and KC is still unclear.
Researchers have suggested that mutations in TGFBI could contribute to
decreased mechanical stability in the cornea, thus resulting in corneal
thinning as seen in KC.126 This is supported by findings of decreased
TGFBIp in KC corneas.126 Conversely, elevated levels of TGFBIp have
been found in areas of corneal scarring, likely due to TGFB1-mediated
upregulation in response to corneal injury.126–128 Interestingly, two KC
patients had stromal amyloid deposits that were associated with TGFBIp
in the corneal buttons, but no TFGBImutation was present.99 It is possible
that there was concurrent scarring in these two patients, or that local
factors in the KC corneas predispose to development of TGFBIp amyloid
deposits, thus disrupting the structural integrity of the cornea.99

TGFBI has also been identified as a potential risk gene for the
development of both T1DM and T2DM after detecting the association of
several SNPs in human genetic studies.129 Aside from the cornea, TGFBIp
is produced by smooth muscle cells, fibroblasts, and proximal tubular
epithelial cells130,131 upon TGFβ or high-glucose stimulation.127,132 In
studies investigating DM, it was observed that high glucose levels
increased TGFBIp expression in renal proximal tubule epithelial cells by
activating TGFβ. This coincided with findings of a high
glucose-stimulated increase in collagen and fibronectin production in
mesangial cells and proximal tubular cells, which is mediated by TGFβ
activation.133–135 Although the pathologic consequences of increased
TGFBIp in the proximal tubules remains unclear, it may play an
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important role in the degree of renal interstitial fibrosis, which is closely
correlated with a progressive decline in renal function in DM.132,136,137

To date, no studies have analyzed TGFBI and TGFBIp in the diabetic
cornea, but TGFBI has been shown to be upregulated in vitro in the human
corneal epithelial cell line in response to TGFβ.128 Given these findings, it
is possible that TGFBIp may also be increased in the cornea in response to
high glucose, promoting TGFβ-mediated corneal thickening and fibrosis.
Additionally, it has been suggested that TGFBIp mutations occur in a
genotype-phenotype fashion, in which various mutations account for the
different degrees of phenotypic severity seen in KC and corneal dystro-
phies.138 Thus, the high glucose environment seen in DM could result in a
variation on the phenotypic spectrum of TGFBI mutations and/or
epigenetic modifications.

4.4. ZEB1

The zinc finger E box-binding homeobox 1 (ZEB1), also known as
transcription factor 8 (TCF8)139,140 or δEF1,141 can function as either a
transcriptional enhancer or repressor for different genes.142 ZEB1 has
been implicated in the regulation of type 1 collagen expression, partic-
ularly in osteoblasts,141 and repression of the epithelial pheno-
type.140,143,144 It has been identified as a potent epithelial to
mesenchymal transition (EMT) activator and stimulator of angiogenesis
in tumor biology studies,145–147 as well as a regulator of TGFβ signaling
with its counterpart, ZEB2.148

Mutations in ZEB1 have been reported in posterior polymorphous
corneal dystrophy (PPCD),139,140,149 Fuch's endothelial corneal dystro-
phy (FECD),127,150,151 and keratoconus.152 This highlights another
example of genetic heterogeneity that results in a variety of phenotypic
presentations, like that of TGFBI. A heterozygous frameshift mutation in
ZEB1 was found to induce ectopic expression of COL4A3 by corneal
epithelial cells in PPCD, implicating COL4A3 as a possible target of ZEB1
regulation.140 In contrast, a missense ZEB1 mutation resulted in mark-
edly reduced COL4A1, COL4A2, and COL4A3 expression in corneal ker-
atocytes.152 Reduced expression of COL4A1 and COL4A3 has also been
reported in KC,29,153 but further work is required to determine the role of
COL4A1/COL4A3 and how they may be regulated by ZEB1 in KC. Based
on current findings, Lechner et al., 2013 suggested that missense muta-
tions in ZEB1 are associated with FECD and KC, while protein truncating
mutations result in PPCD.152 This is supported by the finding of unique
mutations in a family with both KC and FECD, as well as a patient with
triple corneal dystrophy consisting of KC, FECD, and epithelial basement
membrane corneal dystrophy.152,154

In efforts to better understand ZEB1's role in wound healing and
angiogenesis, it was recently found that persistent hyperglycemia, as seen
in DM, potently induced ZEB1 expression in human dermal microvas-
cular endothelial cells (HMEC).155 This corresponded with increased
ZEB1 expression in laser capture microdissection endothelial tissue ob-
tained from the wounded edge of diabetic wound patients.155 In Singh
et al., 2019, immunoprecipitation-mass spectrometry was performed to
gain further mechanistic insights into the differential action of ZEB1
under normoglycemic and hyperglycemic conditions, thus revealing
putative proteins that physically associated with ZEB1.155 It was found
that hyperglycemia diminished the physical association of ZEB1 with
E-cadherin, resulting in a loss of control over E-cadherin repression
which is known to cause the microvascular endothelial dysfunction
commonly observed in DM.155,156 Additionally, hyperglycemic condi-
tions impaired the binding of several pro-inflammatory proteins, sug-
gesting that alterations in cellular ZEB1 may contribute to the
inflammation seen in DM.155

A different study analyzed the role of long noncoding RNA (lncRNA)
ZEB1 antisense 1 (ZEB1-AS1) in DM, as it has been shown to increase
ZEB1 expression.157,158 By increasing ZEB1 expression, ZEB1-AS1 is
thought to play an antifibrotic role in DM through modulation of EMT,
which is considered to be the main pathogenic factor of renal
fibrosis.158–160 Wang et al., 2018 confirmed this in ZEB1-AS1 knockdown
6

studies, which increased high glucose-induced ECM accumulation by
downregulation of ZEB1 expression, resulting in renal fibrosis.161 This
was investigated further by Meng et al., 2020, who reported that
ZEB1-AS1was down-regulated in kidney tissues of DM patients as well as
hyperglycemic-induced HK-2 cells.158 Furthermore, ZEB1-AS1 improved
the high glucose-induced EMT and fibrogenesis by mediating
miR-216a-5p and BM7.158 While the exact mechanisms are beyond the
scope of this review, it is clear that there is a very complex mechanism of
regulation surrounding ZEB1. It is important to study the role of ZEB1 in
the cornea of DM patients as it may have the potential to alter the
expression of inflammatory cytokines and disrupt corneal endothelia-
l/epithelial structure under hyperglycemic conditions.

4.5. MMP-9 and TIMP-1

MMPs are a family of 24 zinc-dependent proteases involved in mul-
tiple physiological processes including tissue remodeling and the
degradation of ECM.162,163 The activity of the MMPs is balanced by four
inhibitory proteins, the tissue inhibitors of metalloproteinases
(TIMPs1-4).164,165 Multiple MMPs have been implicated in the patho-
genesis of KC, including MMP-1, MMP-2, MMP-3, MMP-7, and
MMP-13.166,167 MMP-9, also known as gelatinase B, is among the most
well-studied in relation to KC.164 Multiple studies of tear composition
have shown increased levels of MMP-9 protein in KC, including one pa-
tient with asymmetrical KC in which MMP-9 was upregulated only in the
tears of the affected eye.168–170This increase in MMP-9 was confirmed
with an accompanying upregulation of MMP-9 mRNA in the corneal
epithelium.170 Interestingly, the MMP-9 mRNA in KC patients was
significantly higher in cells from the cone apex as compared to the
corneal periphery, which may contribute to the focal structural weakness
of the cornea.171 An additional study revealed an increase in MMP-9
protein level in the blood of KC patients compared to controls.172

TIMP-1 exhibits a uniquebinding interactionwithMMP-9, as it usually
exhibits a high level of coordinated expression with MMP-9, is frequently
secreted as a TIMP-1/MMP-9 complex, and binds MMP-9 with high af-
finity.173 Recent studies revealed a decrease in the levels of TIMP-1 in KC
corneas.83,174,175 Taken together, the increased MMP-9 and decreased
TIMP-1 activity seen in KC may reflect in an imbalance of proteolytic ac-
tivity, thus contributing to ECM degradation and corneal thinning. This is
reinforced by the analyses of genetic polymorphisms in MMP-9 and
TIMP-1 in KC patients that were associatedwithfindings of higherMMP-9
and lower TIMP-1 activity in KC tear samples.176 It is important to note
that the TIMP-1 SNP was only associated with increased KC risk in fe-
males.177 Given thatTIMP-1 is located on the X chromosome,178 this likely
accounts for differences in gender susceptibility.

In regards to DM, studies have indicated that elevated glucose levels
also disrupt theMMP/TIMPbalance inmacrophages and endothelial cells,
primarily through an amplification in MMP expression and activity.179

Takahashi et al., 2000 reported enhancedMMP activity in human corneal
epithelial cells under hyperglycemic conditions as well as increased
MMP-9 activity in the cornea of diabetic rat models.180 In support of this
finding, two studies reported: 1) increased MMP-9 and TIMP-1 protein
levels in the tears of pediatric T1DM patients along with 2) increased
MMP-9 activity in tears of T2DM patients.181,182 Additionally, genetic
polymorphisms in MMP-9 have been associated with susceptibility to
T2DM and diabetic nephropathy.183–185 However, no genetic association
has been identifiedwithTIMP-1 andDM in patients.185 The role of TIMP-1
in DM remains inconclusive. Taken together, differences in the imbalance
of MMP-9/TIMP-1 activity may contribute to different degrees of ECM
remodeling in the cornea of KC and DM patients.

4.6. MIR184

MicroRNAs (miRNAs) bind to the complementary sequences located in
the 30-UTR region of the target genes, resulting in degradation of the
mRNAor suppression of translation.186MIR184, in particular, encodes for
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miR-184, which is expressed in the central corneal epithelial cells and the
lens epithelium.187–189 It is the most abundant miRNA in both the cornea
and the lens and it is known to competitively inhibit the binding of
miR-205 to the mRNA of the inositol polyphosphate phosphatase-like 1
gene (INPPL1, also known as SHIP2).189,190 This neutralizes the inhibitory
activity of miR-205 on INPPL-1 and subsequently downregulates the Akt
pathway, which has been shown to markedly increase keratinocyte
apoptosis and cell death.190 Interestingly, this situation is unique to the
corneal epithelium as it is the only known epithelium that exhibits over-
lapping expression ofmiR-184andmiR-205.189,190Additionally,miR-184
has been shown to regulate differentiation of human-induced pluripotent
stem cells into corneal epithelial-like cells.191,192

Given its role in the cornea, it is not surprising that mutations in
MIR184 may lead to KC. To date, multiple studies have identified a
heterozygous mutation in MIR184 in a Northern Ireland family with KC
and cataracts,187 a family with EDICT (endothelial dystrophy, iris hy-
poplasia, congenital cataract, and stromal thinning) syndrome,193 and an
European Spanish family with various corneal abnormalities including
severe KC.194 However, the lack of mutations in KC patients from Iran,191

Turkey,195 and Saudi Arabia196 suggests a limited role of MIR184 in KC
pathogenesis.196

Specific miRNAs have also been associated with T2DM cellular pro-
cesses, including apoptosis, response to cytokines, and insulin secre-
tion.197 miR-184, in particular, has been identified as an important
modulator of compensatory pancreatic β-cell expansion during insulin
resistance.198–200 Generally, the expression of miR-184 is increased in
islet cells in periods of fasting, demonstrating an active role in pancreatic
β-cells as the glucose levels decrease.201 Likewise, the miR-184 expres-
sion levels have been shown to decrease in the presence of increasing
extracellular glucose.201 Together, this highlights the potential role of
miR-184 in glucose metabolism. Furthermore, its expression is strongly
decreased in the pancreatic islet cells of insulin-resistant mouse models
and human patients with T2DM.200 miR-184 expression and activity
needs to be further studied in the DM cornea. Given its regulation by
glucose levels in pancreatic islet cells, it is possible that miR-184 may be
similarly downregulated by high glucose levels in the DM cornea, thus
inhibiting cellular apoptosis and resulting in corneal thickening.

5. Inflammation and oxidative stress in the cornea

Although KC has traditionally been described as a noninflammatory
degenerative condition, there is emerging evidence suggesting that
inflammation within the epithelium and stroma are involved in the
pathogenesis of KC.3 Multiple studies have observed significant increases
in proinflammatory molecules such as IL-6, IL-4, IL-5, IL-8, and
IL-12169,202 in KC tears compared to controls. Additionally, KC kerato-
cytes have been reported to express more IL-1α receptors,203 which may
trigger keratocyte apoptosis since IL-1α is a proinflammatory
cytokine.204

In parallel, several studies have found that oxidative stress is involved
in the development and progression of KC.83,205–207 KC corneas have
exhibited abnormalities such as increased levels of inducible nitric oxide
synthase, nitrotyrosine, malondialdehyde, and glutathionine S-trans-
ferase,208 as well as decreased activities of extracellular superoxide dis-
mutase.205 This is supported by multiple observations of KC corneas and
fibroblasts exhibiting increased levels of ROS and relatively greater
mitochondrial DNA damage as compared to controls.207,209,210 Interest-
ingly, the combination of oxidative stress and hyperglycemia, particu-
larly in T2DM, accelerates AGE formation.80 Thus, with increased AGE
accumulation, this may create the potential for increased inflammation,
enhanced production of ROS, and impairment of DNA repair mecha-
nisms80 in the DM cornea as well.

The increase in inflammatory markers and ROS within the KC cornea
may be the result of environmental stimuli such as eye-rubbing and
external oxidants such as UV light, which drives the pathological thin-
ning of the stroma.211 DM itself is an inflammatory systemic disease, so
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we wanted to explore its effects on the KC-associated genes. In this sec-
tion, we focused on HGF, CAST, SOD1, and IL1A/IL1B and their roles in
DM and KC pathophysiology (Table 2).

5.1. HGF

Hepatocyte growth factor (HGF) is a pleiotropic growth factor that
binds to its receptor, mesenchymal-epithelial transition factor (c-Met/
Met) and activates multiple downstream pathways, including MAPK,
PI3K-Akt axis, and activators of transcription (JAK/STAT) pathways.212

It is primarily involved in cell proliferation and migration, particularly in
corneal epithelial cells, as well as inflammatory-related signaling cas-
cades.3,213,214 Injured corneas have exhibited increased HGF and c-Met
mRNA expression during corneal wound healing.214–216

The genetic association between HGF variants and KC susceptibility
was identified with several HGF SNPs in the European and Australian
cohort studies.50,217,218 Given that all the currently identified SNPs are
located in a noncoding region upstream of HGF, it was suggested that
they regulate gene expression by way of RNA splicing, transcription
factor binding, and miRNA regulation.3,219 Additionally, there is recent
evidence of increased HGF protein in the KC epithelium compared to
control corneal epithelium.3 This suggests that poorly regulated and
overexpressed HGF may have detrimental effects on the ECM due to
inflammation in KC.

In diabetic corneas, both ex vivo and organ culture, HGF expression
was noted to be increased with a corresponding decrease in HGF receptor
c-Met expression.220 This suggests a disruption in the HGF/c-Met system,
such that there is reduced cell migration and poor epithelial healing,
which is characteristic of diabetic corneas.221–223 This hypothesis is
supported by the finding that overexpression of c-met in diabetic corneas
resulted in restoration of nearly normal epithelial wound healing
times.223 In other DM studies, HGF has been shown to play a role in the
metabolic flux of glucose, manage β-cell homeostasis, and modulate the
inflammatory response.224 Thus, it is possible that reduced receptor
c-Met expression in DM corneas could serve a protective role against the
inflammatory response mediated by HGF.

5.2. CAST

CAST encodes calpastatin, an inhibitor of calpains. CAST is a calcium-
dependent cysteine protease that is involved in a variety of cellular
processes, including proliferation, apoptosis, and cell migration.225 The
calpain/calpastatin system is present in the corneal epitheliumwhere it is
suspected to play a role in epithelial cell turnover and wound heal-
ing.226,227 It has also been localized to corneal endothelial cells and fi-
broblasts.226,228 Genotyping of both Caucasian and Han Chinese patients
with KC revealed a consistent association between variants near or
within CAST, with KC susceptibility.226,229

In DM, calpain activity has been shown to be increased in vascular
endothelial cells in response to excess glucose.127,230–233 Calpain may
also play a role in mitochondrial ROS generation, such that it contributes
to diabetic vascular injury by way of vascular inflammation232,234 and
glucose-induced apoptosis in endothelial cells.230,235 This is supported by
the finding that genetic inhibition of calpain through over-expression of
calpastatin reduces vascular ROS production.230 Increased
glucose-induced calpain activity has also been shown to initiate vascular
endothelial dysfunction by inactivating prostacyclin (PGI2), as over-
expression of endogenous calpastatin inhibited this effect.236 A similar
mechanism may be observed in DM corneas, as calpain is activated by
high-glucose levels. Analyzing the expression and activity levels of CAST
in KC and DM corneas will give us further insight into this pathway.

5.3. SOD1

Superoxide dismutase 1 (SOD1) encodes a copper and zinc-dependent
cytoplasmic enzyme that is directly involved in the antioxidative
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processes associated with ROS elimination and reduction of oxidative
stress in the cornea.205 It has been shown to localize to the corneal
epithelium, endothelium, and keratocytes.205 Given that there have been
increased levels of oxidative stress markers in the KC cornea, several
studies have suggested that mutations in SOD1 might be involved in
development of KC.48,83,237 A specific SOD1 deletion was detected in two
non-related American families with an autosomal dominant form of KC as
well as in the Greek and Brazilian KC population.238–240 Mutational an-
alyses revealed that this deletion excluded the SOD1 protein active site,
which suggests a loss of enzyme function.239 Although the specific SOD1
deletion has had a low frequency in cohort studies, the fact that it has
been identified in various populations suggests that it might serve as a
potential genetic component in the development of KC. This is supported
by the finding of suppressed levels of SOD1 expression in KC corneal
fibroblast cultures as compared to controls.241 However, this is a
controversial topic as other studies have refuted SOD1's involvement as
there was not enough evidence in mutational analyses.48,127,237,242–246

Mutations in the SOD1 gene has also long been associated with
amyotrophic lateral sclerosis (ALS). It is generally accepted that muta-
tions in SOD1 results in conformational instability of the protein,
resulting in the formation of SOD1 aggregates that exert a cytotoxic effect
in motor neurons, which then results in the progressive degeneration of
motor neurons observed in ALS.247 Interestingly, ALS has recently been
shown to share several genetic pathways with DM.248 Additionally,
several genetic variations of SOD1 polymorphism have been associated
with diabetes and diabetic complications.249–254 One study implicated a
role for AGE/RAGE signaling in DM-mediated vascular calcification
through activation of Nox-1 and decreased expression of SOD1, which
increased oxidative stress.255 Recently, a separate study investigated
ocular surface damage in diabetic mice and found an accumulation of
ROS, increased expression of RAGE, and decreased SOD1 expression in
the cornea.256 This study also reported that topical treatment with
pigment epithelium-derived factor (PEDF) was shown to improve corneal
epithelial damage by decreasing RAGE and increasing SOD1 expres-
sion.256 Together, this suggests that SOD1 may play an important role in
alleviating the oxidative stress seen in corneal pathology. SOD1's role in
KC pathogenesis is currently under debate, but it is possible that
increased AGE/RAGE activity in the DM cornea results in decreased
SOD1 expression.

5.4. IL1A and IL1B

Interleukin (IL)-1 is a proinflammatory cytokine involved in various
cellular activities, including cell proliferation, differentiation, and
apoptosis.257 The IL-1 family includes two proinflammatory cytokines,
IL-1α and IL-1β, and the IL-1 receptor antagonist (IL-1Ra), encoded by
IL1A, IL1B, and IL1RN, respectively.257 IL-1 has been shown to upregu-
late keratocyte expression of collagenases, metalloproteinases, and other
enzymes involved in collagen remodeling during corneal wound heal-
ing.258,259 Early studies detected increased keratocyte apoptosis in KC
corneas and suggested that it might be triggered by increased basal IL-1
release.260,261 This is supported by the finding of increased IL-1α binding
sites in KC corneal fibroblasts compared to control corneas.203 However,
genetic association analyses for polymorphisms in IL1A and IL1B in KC
have remained controversial. Genetic associations with KC have been
identified with variants in IL1B in the Han Chinese,262 Korean,263 and
Japanese KC population,257 but the involvement of IL1A was only
observed in the Han Chinese KC population.262 Furthermore, no genetic
associations with variants in or near IL1A or IL1B were observed in the
Turkish population.264 To date, it is still unclear how the mRNA
expression levels of IL1A and IL1B relates to the expression of cytokines
IL-1α and IL-1β in KC pathophysiology.

The IL-1 family of cytokines has also been implicated in DM and DM-
related complications by way of inflammation.265–268 To better under-
stand the role of IL-1 in the diabetic cornea and corneal wound healing, a
recent study utilized a genome-wide cDNA array analysis in normal and
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DM mouse corneas.268 This study by Yan et al., 2016 reported upregu-
lation of IL-1β expression in the healing corneal epithelium of both
normal and DM corneas, with no difference in IL-1α expression.268 There
was a corresponding increase in IL1RN expression in the normal cornea,
but a decrease in the DM cornea, suggesting a disturbed balance of IL-1β
to IL-1Ra.268 This disruption in IL-1Ra signaling had multiple adverse
effects in corneal wound healing, including suppression of proin-
flammatory cytokine/chemokine expression and a decrease in the overall
early inflammatory response to wounding in DM mouse corneas.268

Interestingly, increased production of IL-1β has also been observed in
macrophages in response to prolactin stimulation.269 Given that
prolactin-induced protein has recently been suggested to be a novel
biomarker for KC,270,271 this is an intriguing association between the
balance of IL-1β to IL-1Ra signaling and hormonal influences.

A separate cross-sectional analysis reported increased levels of IL-1Ra
in patients with prevalent DM or metabolic syndrome.162 It was sug-
gested that the increased IL-1Ra expression levels predicted the pro-
gression of metabolic syndrome to clinically incident diabetes,
independently of CRP and other risk factors.162 This study also revealed
genetic variants in IL1A, IL1B, and IL1RN that may have gender-specific
associations with DM.162 Further studies will be required to better un-
derstand how the genetic variants in IL1A and IL1B influence expression
of IL-1α and IL-1β and whether there is differential regulation of the IL-1
family in KC and DM.

6. Additional genes of interest

Multiple other genes have been associated with CCT and KC patho-
physiology, including but not limited to SPRY2 and COL4A3/
COL4A448,49 (Table 2). Here, we discuss how these genes may potentially
have overlapping or differing roles in KC and DM pathogenesis.

6.1. SPRY2

The Sprouty family consists of four members, SPRY1-4. All are direct
targets and negative feedback regulators of fibroblast growth factor
(FGF) signaling,272–274 playing important roles in the early development
of multiple organs.273,275,276 SPRY2, in particular, has been shown to
modulate the apoptotic actions induced by pro-inflammatory cytokine,
TNF-α.277 Kuchara et al., 2011 revealed an important role for Spry1 and
Spry2 in the regulation of lens vesicle separation and corneal epithelial
proliferation in mouse models.278 This study generated Spry1;Spry2
double-null mutants and observed increased corneal epithelial prolifer-
ation and an inhibition in terminal differentiation.278 A later study
revealed that eyelid closure was impaired due to increased proliferation
of conjunctival epithelial cells in Spry conditional knock-out mutants.279

This suggests that Spry-1 and Spry-2 normally suppress ectopic growth in
the corneal epithelial tissue. A recent GWAS identified SPRY2 as a novel
candidate gene significantly associated with CCT inter-individual varia-
tion.49 Although no studies have analyzed SPRY2 in KC pathogenesis, it is
possible that it may contribute to alterations in the corneal epithelium.

Recently, a variant near SPRY2 was found to be associated with
increased susceptibility to T2DM in both the Han Chinese and Japanese
population.280,281 SPRY2 KO in human hepatocyte cells resulted in
increased glucose intake, suggesting a possible role for SPRY2 in glucose
metabolism in hepatocytes.282 This same study also reported the upre-
gulated genes in SPRY2 KO cells to be involved with DNA replication and
cell cycle regulation, which is consistent with its established role in in-
hibition of cellular proliferation.282 Taken together, deletions in SPRY2
may have pathologic effects in both the cornea and metabolic
homeostasis.

6.2. COL4A3/COL4A4

COL4A3 and COL4A4 both encode for collagen type IV, the major
structural component in epithelial and endothelial basement membranes
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in the human cornea.283,284 Collagen type IV mutations have been
implicated in a variety of clinical manifestations, including Alport syn-
drome and PPCD.140,283,285 Both genes have been reported to be differ-
entially expressed in KC corneas, suggesting a role for collagen type IV in
KC pathogenesis.153,286 However, in genetic analyses of COL4A3 and
COL4A4, no pathogenic variants were identified in KC patients, although
common polymorphisms are present in the affected and healthy
populations.48,86,283,287,288 Thus, the role of collagen type IV mutations
in KC pathogenesis is unclear.

Collagen type IV is also a major structural component of the
glomerular basement membrane (GBM), and alterations in the collagen
composition have been implicated in the pathogenesis of nephropathy in
DM.289 GWAS meta-analysis of T1DM revealed a SNP rs55703767 that
resulted in thinner GBM in patients with DM but was protective against
renal complications.290 Interestingly, Onochie et al., 2020 reported that
hypoxia induced a reduction in laminin and collagen type IV in the
cornea, which resulted in a delay in wound healing and increased corneal
stiffness.291 This was in parallel to the finding of impaired wound healing
and a decrease in laminin along the basal lamina in the diabetic
Fig. 1. In KC and DM, several overlapping mechanisms may contribute to the dis
crosslinking, alterations in ECM composition and proteolytic activity, as well as incr
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cornea.284 Given that diabetes can cause a transition to a hypoxic state,
this suggests a potential role for collagen type IV in the induction of
increased corneal stiffness that has been reported in DM.291 Further
studies will be needed to see if collagen type IV mutations have a po-
tential effect on the DM cornea and to better understand how hypoxia
affects collagen type IV.

7. Discussion

Multiple retrospective epidemiological studies have suggested that
patients with DM have reduced risk in the development and/or severity
of keratoconus (Table 1).13,14,17,18 Seiler et al., 2000 was among the first
to report this protective role of DM in a retrospective case-control study
of the German population.13 This finding was later confirmed by Naderan
et al., 2014 in the Iranian population,17 and Kuo et al., 2006 in the United
States population.14 One limitation of the above studies is that the data
was extracted from the hospital/clinic population. Woodward et al.,
2016 addressed this by conducting a retrospective longitudinal
population-based cohort study in the United States.18 With a larger
cussed pathology, including alterations in corneal biomechanics and collagen
eased inflammation and oxidative stress.
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sample size, Woodward et al., 2016 found that there were 20% lower
odds of KC development with uncomplicated DM and 52% lower odds of
KC development with DM-associated complications.18

A common working hypothesis in support of this observation is that
chronic hyperglycemia promotes glycosylation of corneal fibers and in-
duces endogenous collagen crosslinking within the corneal stroma, thus
preventing the biomechanical weakening of the cornea.13,34 Although
the cornea is an avascular structure, previous reports have indicated that
corneas in diabetic patients are still exposed to increased glucose con-
centration,292–294 which supports this hypothesis. Another working hy-
pothesis is that DM disrupts corneal endothelial cell function, resulting in
stromal edema and increased CCT35,37,295–297 (Fig. 1).

This remains a debated topic as other studies have either 1) suggested
a positive association between KC and DM or 2) did not identify a sig-
nificant correlation (Table 1).14,19–22 For example, Kosker et al., 2014
conducted a retrospective case-control and cross-sectional study in the
United States population and reported a higher prevalence of T2DM in
the KC population as well as greater severity of KC in DM patients.20

However, this was clinic-based, and the prevalence of DM in clinic
populations as compared to the general population may account for
differences in these findings. Subsequently, Moon et al., 2020 conducted
a retrospective cohort population-based study in the Korean population
and they also reported a higher prevalence of T2DM in the KC population
with a positive association of KC and DM.21 In contrast, Bak-Nielsen
et al., 201919 and Lee et al., 2020298 conducted a retrospective cohort
study in the Danish and Korean population, respectively, and found no
significant differences in DM prevalence in KC patients. In efforts to
consolidate the findings, Hashemi et al., 2020299 conducted a
meta-analysis and reported that although the odds of developing KCwere
23% lower, this relationship was not significant. A limitation of this
meta-analysis is that all studies included were either cross-sectional or
case-control studies, which can be more prone to information and se-
lection bias compared to cohort studies.299 Thus, the variations in study
designs likely contribute to differences in findings.

The multiple effects of DM on the cornea are complex and have been
reviewed elsewhere.16,26,300,301 These DM effects include, but are not
limited to, keratopathy, neuropathy, inflammation, alterations in
collagen fibrils, endothelial cell loss, and increased glucose in the
aqueous humor.16,292 Patients with DM are often predisposed to ocular
surface complications such as dry eye, recurrent corneal erosions, and
bacterial infection.26,302–304 However, the mechanism of correlation
between DM and KC pathogenesis remains unclear. In efforts to better
understand KC pathophysiology, multiple candidate and genome-wide
association studies have identified the genetic and metabolic compo-
nents involved in KC.48,49,100,305 Additionally, a recent review outlined
important biological and chemical pathways related to collagen cross-
linking in DM and KC.26

In terms of corneal biomechanics, KC is characterized by localized
stromal corneal thinning and reduced CCT,1 while DM generally causes
the cornea to become stiffer with increased CCT and/or CH.13,34,35,37

This is likely reflected by changes in the collagen composition of the
cornea, as outlined by McKay et al., 2019.26 Two genes, LOX and
COL5A1, may play important roles in corneal collagen crosslinking.
Current evidence suggests that overall LOX activity (including LOX and
LOXL proteins) is decreased in KC, leading to impairment of lysyl
oxidase-mediated crosslinking and weakening of the cornea.45,54 In
contrast, hyperglycemic conditions have been shown to upregulate LOX
expression and activity in retinal cells.58,60 If a similar effect may be seen
in corneal cells under hyperglycemic conditions, this could explain the
reduced risk of KC development in DM patients. Given that COL5A1
reached genome-wide significance in KC patients, and that patients with
COL5A1 haploinsufficiency exhibited corneal thinning, we discussed
whether COL5A1 shared similar genetic significance in DM corneal pa-
thology. To our knowledge, no studies have analyzed DM's direct effects
on COL5A1 in the cornea. A recent study did find differential collagen
10
composition with elevated levels of collagen types I and type III, but not
collagen type V, in the human corneal stroma of DM patients. This finding
suggests that hyperglycemia may induce collagen modulation in an
isoform-dependent manner. Further studies are needed to better under-
stand the effects of hyperglycemia and increased AGE-mediated cross-
linking on the various collagen isoforms in DM corneas, and to determine
whether sequence variants in or near COL5A1 are associated with KC and
DM cornea pathology.

Alterations in corneal biomechanics is also characterized by disrup-
tion in the ECM composition of the cornea. Thus, we explored several
genes that play a role in ECM remodeling and were identified in KC and
CCT-associated GWAS. This includes several transcription factors
including FOXO1, SMAD3, TGFBI, and ZEB1. It became readily apparent
that the investigation of these genes is lacking in the DM cornea, but
many exhibited an association with AGE-mediated signaling and differ-
ential expression under hyperglycemic conditions in other tissues. This
suggests that a similar effect could be seen in the DM cornea, but further
research studies will be needed to confirm this. TGFβ signaling would be
worth exploring further in the KC and DM cornea, as it has been asso-
ciated with alterations in SMAD3, TGFBIp and FOXO1 signaling. For
example, increased TGFβ signaling and SMAD3 activity has been sug-
gested to increase ECM deposition in mesangial cells, leading to the
development of DN. This, in combination with an imbalance in MMP-9/
TIMP-1 activity, may contribute to different degrees of ECM remodeling
in the cornea of KC and DM patients. Additionally, MIR184 has a very
unique role in the remodeling of the corneal epithelium. Given its
downregulation by high glucose levels in pancreatic islet cells, MIR184
may potentially link elevated glucose levels and alterations in corneal
epithelial cell apoptosis in the DM cornea.

Interestingly, there was genetic overlap in several inflammatory
proteins and regulators of oxidative stress in both KC and DM. Although
KC was previously described as a noninflammatory condition, it has been
suggested that external environmental factors such as excessive eye
rubbing may induce an increase in inflammatory markers, contributing
to KC pathogenesis. Likewise, DM has been associated with low-grade
inflammation that is thought to contribute to insulin resistance
observed in T2DM.306 In this review, we closely examined the role of
HGF, CAST, SOD1, and IL1A/IL1B. While HGF's role remains unclear, the
imbalance in HGF and HGF receptor c-Met expression in DM corneas is
intriguing, which could lend towards a protective role against inflam-
matory degradation in the ECM of DM. We found that SOD1 likely plays a
similar role in reducing oxidative stress, as decreased SOD1 expression
has been suggested in both KC and DM. Further studies into the cal-
pain/calpastatin system, as well as the ratio of IL-1α/IL-1β to IL-1Ra, will
be needed before an association can be made between DM and KC. It is
possible that imbalances in both systems may contribute to the differing
clinical pathology observed in the cornea.

Last but not least, multiple other genes have been associated with KC
pathophysiology, but their roles in DM are unclear. We highlighted a few
remaining KC candidate genes, including SRPY2 and COL4A3/COL4A4.
However, much more extensive studies are required before correlations
can be made with DM. We suggest exclusively studying the DM cornea
with a focus on KC-associated genes and analyzing the expression pat-
terns of associated proteins.

From a clinical perspective, the age of onset for KC often ranges from
the teenage years to the 30s and 40s while the age of onset for type 2 DM
ranges from teenage years to the 70s.1,271,307–309 Type 2 DM is becoming
increasingly prevalent in children and adolescents worldwide, including
the US. The average age of diagnosis for children and adolescents in the
US is 14 years.307 The incomplete overlap in age-onset between KC and
DM may complicate efforts in interpreting the potential protective effect
of DM on KC. This raises an important question to all the reported studies:
what is the distribution of DM age-onset for those with KC or without KC?
It will be more beneficial to only include DM patients with age-onset less
than 30–40 years.
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8. Conclusions

Despite the conflicting literature evidence between KC and DM, our
comprehensive discussion explained whether and how DM is associated
with KC and how DMmay function as a protective mechanism (Fig. 1). At
this time, there is more evidence to support the protective role of DM in
KC patients. If true, we hope to identify potential localized therapeutic
targets in KC management that act by strengthening the KC cornea
through similar mechanisms that may alter the DM cornea. One such
example would be targeting LOX in the KC cornea and increasing its
expression such that LOX-mediated collagen-crosslinking is increased,
thus resulting in corneal thickening. Additionally, by targeting inflam-
matory cascades such as the calpain/calpastatin system and the IL-1α/IL-
1β to IL-1Ra ratio, we can then potentially halt the inflammatory-
mediated corneal thinning seen in KC. To conclude, by analyzing po-
tential genetic associations in KC and DM, this review illustrates the areas
where the current literature is lacking, with the hope of providing di-
rection for future studies in elucidating the pathophysiology of KC and
DM in the cornea. Future research would have tremendous benefit in
identifying potential therapeutic targets in clinical management of KC.

9. Literature search

A comprehensive literature search completed by the end of
September 2020 was performed on Pubmed. All selected articles were
reviewed thoroughly by the authors to consolidate candidate genes that
have been identified in genetic analyses and genome wide studies of
keratoconus and central corneal thickness variations. We then explored
how those respective genes may be similarly or differentially regulated
under hyperglycemic conditions and the role they play in the systemic
complications associated with diabetes.
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ALS amyotrophic lateral sclerosis
AGE advanced glycation end product
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DR diabetic retinopathy
ECM extracellular matrix
EDS Ehler-Danlos syndrome
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FECD Fuch's endothelial corneal dystrophy
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miRNA microRNA
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TGFBI transforming growth factor beta-induced
TGFBIp transforming growth factor beta-induced protein
VSX1 visual system homeobox 1
ZEB1 zinc finger E box-binding homeobox 1
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