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Abstract

Ridge-like regularization often leads to improved generalization performance of machine 

learning models by mitigating overfitting. While ridge-regularized machine learning methods 

are widely used in many important applications, direct training via optimization could become 

challenging in huge data scenarios with millions of examples and features. We tackle such 

challenges by proposing a general approach that achieves ridge-like regularization through implicit 

techniques named Minipatch Ridge (MPRidge). Our approach is based on taking an ensemble 

of coefficients of unregularized learners trained on many tiny, random subsamples of both 

the examples and features of the training data, which we call minipatches. We empirically 

demonstrate that MPRidge induces an implicit ridge-like regularizing effect and performs 

nearly the same as explicit ridge regularization for a general class of predictors including 

logistic regression, SVM, and robust regression. Embarrassingly parallelizable, MPRidge provides 

a computationally appealing alternative to inducing ridge-like regularization for improving 

generalization performance in challenging big-data settings.

Index Terms—

Ridge-like regularization; implicit regularization; ensemble learning

I. Introduction

Ridge-like regularization often leads to improved generalization error by mitigating 

overfitting, and it is used explicitly in a wide variety of learning frameworks including 

support vector machines (SVM), kernel learning, and deep learning. However, directly 

training explicitly ridge-regularized learners could become challenging in various data 

scenarios, for instance: i) optimizing the ridge-regularized objective function can become 

computationally intractable with millions of examples and features; ii) the full training data 

are stored in distributed databases with each node having access to only a subset of examples 

and/or features; and iii) the training data suffer from a large degree of missingness.
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Recently, the topic of implicit regularization has attracted much attention, and researchers 

have shown that it is possible to obtain models of lower complexity without explicitly 

applying regularization during training in certain scenarios [1, 2, 3]. In particular, [4] 

showed that a large ensemble of independent ordinary least squares (OLS) predictors that 

are trained using random submatrices of the training data can achieve the optimal ridge 

regression risk under mild assumptions. In addition, another line of work reveals that the 

dropout technique combined with stochastic gradient descent in deep learning can induce 

ridge-like regularization in the context of generalized linear models (GLMs) [5].

In this work, we tackle the aforementioned challenges of applying ridge-regularized machine 

learning methods in big-data settings by proposing a general approach named Minipatch 

Ridge (MPRidge). Inspired by [4], MPRidge is an ensemble of the parameter coefficients 

of unregularized learners trained on many tiny, random subsamples of both the examples 

and features of the training data (Sec. II). We empirically show that MPRidge elicits an 

implicit ridge-like regularizing effect (Sec. III). In particular, while no explicit regularization 

is applied during training, we empirically demonstrate that the resulting predictor of the 

MPRidge ensemble performs nearly the same as the explicitly ridge-regularized predictor 

fit using the entire training data in terms of in-sample and out-of-sample risk for a 

general class of predictors including the logistic regressor, SVM classifier, and robust 

regressor. Additionally, we empirically show that MPRidge can largely recover the entire 

regularization path of parameter coefficients for the explicitly ridge-regularized counterpart. 

Because training unregularized learners on many tiny subsets of data in parallel has major 

computational advantages, MPRidge provides a computationally efficient alternative to 

inducing ridge-like regularization in big-data scenarios where direct training of explicitly 

ridge-regularized learners via optimization could be challenging.

II. Method

A. Minipatch Ridge (MPRidge)

Our proposed approach is based on taking many tiny, random subsamples of both the 

examples and features of the training data simultaneously. We call these random subsamples 

“minipatches”, as illustrated in Fig. 1. This term is reminiscent of patches in imaging 

processing and minibatches commonly used in machine learning. While random sampling of 

the training data has been extensively used in ensemble learning techniques (e.g., Random 

Forest (RF) [6], Bagging [7, 8], Boosting [9], Random Patch [10]), we are following up 

on [4] to specifically investigate the implicit ridge-like regularization properties elicited by 

aggregating learners trained on many random minipatches for a general class of learners.

Leveraging the idea of minipatches, we propose and develop the Minipatch Ridge 

(MPRidge) method—a general meta-algorithm that can be employed with a wide range 

of learners. MPRidge is summarized in Algorithm 1. Here, ℒ( · ; β) denotes an unregularized 

loss function with parameter coefficient vector β whose specific form depends on the 

learning task at hand. For instance, ℒ could be the logistic loss or hinge loss (i.e., SVM) 

for classification tasks. In essence, MPRidge trains K unregularized learners independently 

on K random minipatches in parallel and subsequently produces an ensemble estimator 
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βens for the learner parameter coefficients by aggregating unregularized estimates over these 

minipatches.

B. Practical Considerations

Our MPRidge method mainly has two tuning hyperparameters: the example subsampling 

ratio η ∈ (0, 1) and the feature subsampling ratio α ∈ (0, 1). Our empirical studies 

in Sec. III suggest that the feature subsampling ratio α controls the amount of implicit 

ridge-like regularization induced by MPRidge. In fact, there appears to be an one-to-one 

correspondence between α and the tuning hyperparameter for the corresponding explicitly 

regularized counterpart. Therefore, α can be chosen in data-driven manners such as 

cross-validation. Similar to findings in [4], the performance of MPRidge doesn’t seem to 

depend on the amount of example subsampling η provided that η well exceeds the sample 

complexity of the unregularized learner ℒ, so we focus our attention on the effect of α. 

Last but not least, our empirical results reveal that setting K = 1000 is sufficient for most 

problems.

C. Advantages & Possible Extensions

Embarrassingly parallelizable, MPRidge has major computational advantages, especially 

in big-data settings where direct training of the corresponding explicitly ridge-regularized 

learner via optimization could be challenging. In addition to computational advantages, 

MPRidge provides statistical benefits as it implicitly induces ridge-like regularizing effects 

to help achieve better generalization performance. We look to further investigate the 

statistical benefits of MPRidge theoretically in future work.

Furthermore, unavailability of the full training data poses another set of challenges to 

applying machine learning methods in some big-data scenarios. Such situations can arise 

when, for instance, i) only a subset of the training data can fit in the computer memory at 

a time; ii) the training data is stored in distributed databases with each node having access 

to only a subset of both the examples and features; and iii) the training data itself has a 

large amount of missingness. Because the training of MPRidge only relies on subsets of the 
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training data, MPRidge is well-suited to eliciting ridge-like regularization implicitly in these 

settings. We save the investigation of such extensions for future work.

III. Empirical Studies

In this section, we empirically demonstrate that our proposed MPRidge method induces 

an implicit ridge-like regularizing effect and it performs nearly the same as the explicitly 

ridge-regularized counterpart fit using the entire training data in terms of both in-sample 

and out-of-sample risks for a variety of learners including the robust regressor and SVM 

classifier. Moreover, we empirically show that MPRidge can largely recover the entire 

regularization path of parameter coefficients.

A. Synthetic Data

1) Data Generation: For the following empirical studies, we consider the autoregressive 

Toeplitz design for the data matrix X ∈ ℝN × M: the M-dimensional feature vector follows 

a N(0, Σ) distribution, where Σij = ρ|i−j| with ρ = 0.6. Such design represents a range 

of realistic data scenarios commonly found in machine learning applications. The M­

dimensional parameter coefficient vector β is generated from N 0, 1
M IM . Here, IM denotes 

the M × M identity matrix. To simulate various learning tasks, we consider the following 

outcome vectors y ∈ ℝN:

• Linear regression: generate y = Xβ + ϵ where the noise vector (ϵ1, …, ϵN) is IID 

N(0, 1).

• Regression with outliers: randomly pick N/2 examples to be outliers. For the 

ith outlier example, generate yi = xiTβ + ϵi with ϵi N(0, 100). For the ith inlier 

example, generate yi = xiTβ + ϵi with ϵi N(0, 1).

• Classification: for the ith example, generate 

yi Bernoulli
exp xiTβ

1 + exp xiTβ
, ∀i = 1, …, N.

For each of the learning tasks above, we consider two scenarios: Scenario I with N = 2000 

examples and M = 100 features; and Scenario II with N = 10000 examples and M = 500 

features. For both scenarios, we split the data set into 60% training data and 40% test data 

via stratified sampling, if applicable.

2) Results: We train our MPRidge meta-algorithm with various unregularized loss 

functions ℒ( · ; β) for the different learning tasks described above (see Table I). In particular, 

we compare our MPRidge employed with unregularized loss ℒ with its explicitly ridge­

regularized counterpart in terms of prediction risks and regularization path of coefficient 

estimates. For instance, for the linear regression task, the explicitly ridge-regularized 

counterpart is the ridge regressor, so on and so forth. Software implementations from 

Scikit-learn [11] are used for all explicitly ridge-regularized methods.

Yao et al. Page 4

Int Conf Big Data Smart Comput. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our qualitative results for both linear regression and regression with outliers tasks from 

Scenario I are shown in Fig. 2. In the top row (A1, B1), we compare the in-sample risk 

Rens, in(α) (out-of-sample risk Rens, out(α)) of our MPRidge method for a sequence of 

feature subsampling ratio α ∈ (0, 1) against the in-sample risk Rridge, in(λ) (out-of-sample 

risk Rridge, out(λ)) of the explicitly ridge-regularized counterpart for a sequence of its 

tuning hyperparameter λ ∈ ℝ+. Larger values of λ indicate larger amounts of explicit ridge 

regularization. The optimal tuning hyperparameters that result in the lowest out-of-sample 

risk are denoted with a vertical dashed line at (α*, λ*). In the bottom row (A2, B2), 

we display a subset of the regularization path, or coefficient estimates over the sequence 

of tuning hyperparameters, for our MPRidge method and its explicitly ridge-regularized 

counterpart. For both learning tasks, we clearly see that our MPRidge method achieves 

nearly the same prediction risk (both in-sample and out-of-sample) as the explicitly ridge­

regularized counterpart and largely recovers the corresponding regularization path. These 

observations suggest that our MPRidge method implicitly elicits ridge-like regularization 

even though no regularization is explicitly applied to the loss functions during training. 

Additionally, there appears to be an one-to-one correspondence between the feature 

subsampling ratio α and the tuning hyperparameter λ for the explicitly ridge-regularized 

method. Specifically, a smaller α corresponds to a larger λ, signifying a larger amount of 

implicit ridge-like regularizing effect for MPRidge. The results for logistic loss and hinge 

loss are similar and are not included due to the page limit.

Quantitative results of various learning tasks for both Scenario I and II are summarized 

in Table II. Here, we report the largest absolute difference for in-sample risk, out-of­

sample risk, and coefficient estimates between MPRidge and the explicitly ridge-regularized 

counterpart at their respective optimal tuning hyperparameters. Note that the optimal α* and 

optimal λ* are independently determined for the respective method. Clearly, we see that our 

MPRidge method performs nearly the same as its explicitly ridge-regularized counterpart 

across both scenarios for a range of commonly used learners including the logistic regressor, 

SVM classifier, and robust regressor. These results suggest that our MPRidge can achieve 

approximately the same optimal prediction risks (both in-sample and out-of-sample) and 

coefficient estimates as its explicitly ridge-regularized counterpart by eliciting implicit ridge­

like regularization.

B. Real Data Examples

We further demonstrate the performance of MPRidge using data from the ROSMAP study 

[12], which is a clinical-pathological study of Alzheimer’s disease (AD). Specifically, 

we consider a regression task with the numeric cognition score as the outcome and 

a classification task with the clinician’s diagnosis as the outcome; a subset of the 

gene expression via RNASeq data are used as features in both cases. Even though no 

distributional assumptions are made on the real data, MPRidge still exhibits ridge-like 

behavior, as shown in Fig. 3.
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IV. Conclusions

We have developed MPRidge, which is a general meta-algorithm that can be employed to 

implicitly yield ridge-like regularization for a general class of machine learning methods 

including the SVM classifier and robust regressor. Parallelizable and flexible, MPRidge 

provides an appealing alternative to direct training of explicitly ridge-regularized methods 

in challenging big-data scenarios. In future works, we look to investigate the theoretical 

properties of MPRidge so as to better understand the underlying mechanisms that impart 

such implicit ridge-like behavior.
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Fig. 1. 
A. Simultaneous random subsampling of examples (rows in red) and features (columns in 

yellow) without replacement from the original data matrix yields a “minipatch” (orange). B. 

The same minipatch in A is a random submatrix of the data matrix after a permutation. C. 

Minipatch learning is an ensemble of learners trained on many random minipatches.
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Fig. 2. 
For both linear regression (A1, A2) and regression with outliers (B1, B2) from Scenario 

I, MPRidge attains nearly the same out-of-sample risk as the explicitly ridge-regularized 

counterpart: in A1 and B1, the α- and λ-axes are aligned based on in-sample risk, so 

that Rens, in (green dot) aligns perfectly with Rridge, in (blue triangle). This results in the 

out-of-sample risk Rens, out (purple dot) also aligning approximately with Rridge, out (red 

triangle). Additionally, MPRidge largely recovers the corresponding regularization path, as 

shown in A2 and B2. This suggests that our MPRidge method elicits ridge-like regularizing 

effects implicitly.
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Fig. 3. 
Real gene expression via RNASeq data are used as features. A. Regression with the 

cognition score as the outcome; MPRidge employs the least-square loss as the unregularized 

base learner. B. Binary classification with the clinician’s diagnosis (AD versus non-AD) as 

the outcome; MPRidge uses the hinge loss as the unregularized base learner. Both real data 

examples show a near-match in out-of-sample risks, especially at (α*, λ*) which denotes 

the matched parameter pair minimizing out-of-sample risk.
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TABLE I

Summary of loss functions ℒ( · ; β) employed with MPRidge.

Task Loss Function ℒ yi, xi ; β

Linear regression Least-square loss yi − xiTβ 2

Regression with outliers Huber loss
yi − xiTβ 2, if yi − xiTβ < δ

2δ yi − xiTβ − δ2, O . W .

Classification Logistic loss −yixiTβ + log 1 + exp xiTβ

Classification Hinge loss max 0, 1 − yixiTβ
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