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E N V I R O N M E N T A L  S T U D I E S

Positive interactions are common among  
culturable bacteria
Jared Kehe1,2†, Anthony Ortiz3,4, Anthony Kulesa1,2‡, Jeff Gore3,4,  
Paul C. Blainey1,2,5*, Jonathan Friedman6*

Interspecies interactions shape the structure and function of microbial communities. In particular, positive, 
growth-promoting interactions can substantially affect the diversity and productivity of natural and engineered 
communities. However, the prevalence of positive interactions and the conditions in which they occur are not 
well understood. To address this knowledge gap, we used kChip, an ultrahigh-throughput coculture platform, to 
measure 180,408 interactions among 20 soil bacteria across 40 carbon environments. We find that positive inter-
actions, often described to be rare, occur commonly and primarily as parasitisms between strains that differ in 
their carbon consumption profiles. Notably, nongrowing strains are almost always promoted by strongly growing 
strains (85%), suggesting a simple positive interaction–mediated approach for cultivation, microbiome engineer-
ing, and microbial consortium design.

INTRODUCTION
Microbial communities are composed of multiple species that in-
teract with one another in a variety of ways as part of the “struggle 
for existence” (1). Interactions between species can be negative, where 
a species inhibits another species’ growth through nutrient exploita-
tion and chemical warfare (2), or positive, where a species promotes 
another species’ growth by increasing nutrient availability and cre-
ating new niches (3). The bidirectional interaction between two 
species is determined by the two one-way interactions between the 
species. For example, a mutualism occurs when two species posi-
tively affect each other. The overall distribution of positive and neg-
ative interactions within a microbial community profoundly affects 
the community’s structure, stability, and productivity (4–6). These 
properties, in turn, shape a community’s ability to perform vital 
functions for the environment (7–10) and for host organisms (11–14). 
Despite the importance of the distribution of microbial interactions, 
the relative prevalence of positive and negative interactions in na-
ture remains largely unknown.

Positive interactions are generally thought to be rare. Experi-
mental evidence from coculture studies points to a dominance of 
negative interactions (2, 15). For example, evidence of positive in-
teractions was found in <10% of pairs of bacteria isolated from tree 
holes (15). However, these results are subject to strong experimental 
biases, such as the use of a single environment, although microbial 
interactions can differ markedly across environmental conditions 
(16–18), and the use of strains that each grow individually in the 
environmental conditions being tested. Metabolic modeling, which 
can simulate millions of interactions across myriad environments, as 

well as limited experimental evidence, suggests that positive interactions 
emerge via environment-dependent secretions and can facilitate 
otherwise nongrowing species (18–21). In addition, evolutionary 
theories such as the Black Queen hypothesis argue that such secre-
tion-mediated positive interactions are selected for (22). Together, 
these findings suggest that positive interactions among microbes 
may be common and play an important role in shaping microbial 
communities, but these theories have not yet been thoroughly tested 
experimentally.

Quantifying the prevalence of positive interactions and de-
termining the conditions in which they occur could improve our 
ability to predict and control the ecology of microbial communi-
ties (23, 24). Positive interactions are predicted to enhance a commu-
nity’s diversity and productivity but decrease its stability (6, 25, 26). 
Therefore, a better understanding of these interactions would en-
hance our ability to manipulate and manage communities, with 
widespread applicability in environmental conservation (27), crop 
health (28), and human health (29). Nevertheless, the data required 
for quantifying the distribution of interactions across environments 
are still lacking because of methodological limitations that frustrate 
comprehensive sampling of interactions under many conditions 
(30). Inferring interactions from metagenomic sequencing remains 
an outstanding challenge (31, 32), and directly measuring interac-
tions at scale is difficult to perform using existing experimental 
paradigms.

To gain a broad understanding of how species interact across a 
wide range of environments, we used a combinatorial screening 
platform called kChip (33–35) to measure >150,000 bidirectional 
bacterial cocultures among 20 different soil bacterial strains across 
40 environments with differing carbon source identity or concen-
tration. The kChip generates cocultures at an ultrahigh-throughput 
scale by rapidly and randomly combining droplets containing mi-
crobial cultures and/or medium components within microwells 
(Fig. 1, A to D, and fig. S1) (33). Here, we paired unlabeled (wild-
type) and green fluorescent protein (GFP)–labeled versions of 
20 Gammaproteobacteria isolated from soil (6 Enterobacterales 
and 14 Pseudomonadales; table S1 and figs. S2 and S3). We selected 
these bacterial strains from our larger pool of fluorescently labeled 
soil isolates, maximizing for phylogenetic diversity (table S1 and 
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Materials and Methods). We cocultured each strain pair in each of 
the 33 single-carbon sources [0.5% (w/v)], a mix of these, 5 of the 33 at 
reduced concentration [0.05% (w/v)], and a no-carbon control. Car-
bon sources were drawn from several biochemical classes including 
carbohydrates, amino acids, and carboxylates (table S2). We mea-
sured the effect of each unlabeled strain on the growth of each labeled 
strain in each carbon source, giving a total of 17,600 combinations 
[20 labeled strains, (20 + 2 control) unlabeled strains, and (39 + 1 
control) carbon sources]. Each combination appeared >10 times on 
average, and only 3% appeared <3 times and were excluded from 
further analysis (fig. S4). Measured one-way interactions were used 
to classify each bidirectional interaction qualitatively (Fig. 1E) and 
quantitatively (Fig. 1F).

Our data provide direct experimental evidence that positive in-
teractions are indeed common and occur primarily as parasitisms, 
where one species’ growth is improved at the expense of the other’s. 
More broadly, we found that interactions strongly depend on the 
environment via differences in the carbon consumption preferences 
of the interacting strains. Notably, we found that strongly growing 
partners consistently enabled the growth of strains that were unable 
to grow in monoculture (85%), suggesting a simple strategy for culti-
vation, microbiome engineering, and design of microbial consortia.

RESULTS
Positive interactions occur frequently
The effect of each unlabeled strain on each fluorescently labeled strain 
was classified as positive (yield increase compared to monoculture), 

negative (yield decrease compared to monoculture), or 0 if there was 
no evidence for an effect (Fig. 1, C and D, and fig. S5) (see Materials 
and Methods). The size of an effect was calculated as log2 of the ratio 
of growth (fluorescence) in coculture to monoculture. Bidirectional 
interactions were classified as mutualism (+,+), commensalism (0,+), 
parasitism (−,+), amensalism (−,0), competition (−,−), or neutralism 
(0,0) (Fig. 1E and fig. S6). We focused our analysis on the 72-hour 
time point by which cultures typically reached saturation (33). We 
interpret the fluorescence at saturation as “yield,” the overall biomass 
of a fluorescently labeled strain grown on a given carbon source. 
Thus, the measured interactions reflect changes in strains’ overall 
growth yield rather than growth rates.

Positive interactions were common overall (Fig. 2A). Excluding 
cases when neither strain within a pair grew detectably in monocul-
ture, >40% of cocultures that contained at least one strain facilitated 
the other’s growth, and more than half of these cases occurred within 
a parasitism (22% parasitisms, 14% commensalisms, and 5% mutu-
alisms). There were also many cocultures that contained only negative 
interactions (35% competitions and 18% amensalisms). Relatively 
few interactions were neutralisms (6%), although neither strain grew 
in monoculture for 21% of pairs.

The extent to which interacting pairs influenced each other’s 
growth also varied quantitatively across strain and carbon environ-
ments. For example, in a parasitism, the facilitated strain may have 
increased in yield more than the inhibited strain decreased or vice 
versa. To capture these quantitative differences, we measured the 
magnitude m (strength) and angle Ө (type) of each bidirectional 
interaction in polar coordinates (Fig. 1F). Ө represented the relative 
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Fig. 1. High-throughput interaction assay and analysis. (A) Steps to assay the effect of multiple unlabeled species on a single-label species across carbon sources on 
each kChip. Color-coded droplets, each containing either a labeled + unlabeled coculture or a single carbon source, were generated (step 1), pooled together (step 2), 
and loaded onto a kChip (step 3). Each kChip contained an array of microwells that randomly paired coculture droplets with carbon source droplets. After imaging the 
color codes to identify the inputs per microwell, droplet pairs were merged via exposure to an electric field (step 4), and the growth of the labeled strain was measured 
at 0, 24, and 72 hours (step 5). (B) Overall size of the kChip screen. (C) Using data across kChips, bidirectional interactions were deduced by combining data where each 
strain within a given pair was the labeled strain. (D to F) Framework for kChip data analysis. Each bidirectional interaction was described qualitatively (interaction classi-
fication) and quantitatively (interaction strength, m; interaction type, ϴ).
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effect of cocultured strains on each other (with Ө = −90° indicating 
that both strains inhibited each other equally, Ө = 0° indicating a 
balanced parasitism with equal and opposite effects, and Ө = 90° 
indicating that both strains facilitated each other equally; no Ө is 
assigned to neutralisms).

The average interaction was a parasitism (Ө = −14.7° and m = 1.16) 
in which one strain was facilitated at the expense of the other strain 
whose growth was inhibited (Fig. 2A). On average, the inhibited strain 
was hurt (~50% growth compared to monoculture) more than the 
facilitated strain was helped (150% growth compared to monocul-
ture). The results at 24 hours were similar and included even more 
positive interactions, with 54% of cocultures containing ≥1 one-way 
positive interaction (20% parasitisms, 25% commensalisms, and 9% 
mutualisms), although the average interaction, also a parasitism, 
favored the facilitated strain (~30% growth for one strain and 170% 
for the other as compared to monocultures) (fig. S7).

We have validated the kChip interaction assay by measuring a 
subset of the interactions in microtiter plates [(7 strains + 1 control) 
and four carbon sources, generating 256 combinations, or <2% of 
the total combination constructed on kChip]. Monoculture fold 
growth based on GFP and OD600 (optical density at 600 nm) mea-
surements in microtiter plates were strongly correlated (fig. S8A). In 
addition, there was strong agreement between monoculture growth 
based on GFP measurements in microtiter plates and kChip (fig. 
S8B), as well as between one-way effects and interaction types calcu-
lated from these measurements (fig. S8, C and D). Last, as expected, 
intrastrain interactions measured on kChip (i.e., those between 

labeled strains and their unlabeled counterparts) were typically 
competitions (90% when excluding nongrowing strains) that re-
duced the yield of the labeled strain by 50% on average (fig. S9).

The occurrence of positive interactions differs among strain 
pairs and among carbon sources
The prevalence of positive interactions differed significantly among 
strain pairs: Positive interactions never occurred for some pairs, 
while, for others, they occurred in a large fraction of the tested envi-
ronments (Fig. 2, B and C). Many pairs were capable of producing 
all six interaction types across the carbon source library (Fig. 2C), 
indicating that it can be challenging to predict the interaction of a 
particular pair in a given environment based on the pair’s interac-
tion in a different environment.

Positive interactions were also more common on certain carbon 
sources than others. In galactose, for example, a majority of bidirec-
tional interactions were competitions (53%), with only 20% con-
taining ≥1 positive interaction (Fig.  2D). In uridine, however, 
competitions were relatively rare (11%), with 56% of bidirectional 
interactions containing ≥1 positive interaction (Fig. 2E). Several 
carbon sources were capable of producing all interaction classes 
across our strain set (fig. S10).

The strong dependence of the interaction type on strain identity 
and carbon source indicated a need to examine our dataset broadly to 
detect patterns governing the occurrence of positive interactions. We 
therefore tested whether characteristics of the environmental condi-
tions or the strain pairs could explain the interactions that we observed.

A All data ≥1 grows in monoculture

Mutualism(+,+)
(0,+)

(0,0)

Commensalism

Parasitism
Competition
Amensalism
Neutralism

Average interaction (–1.00,0.587)

Average strength m 0.983 1.16
Average type –15.2° –14.7°

Average relative yield (55%,140%) (50%, 150%)

D EGalactose

5%
1%

14%

53%

20%

6%

Uridine

11%

24%

21%

11%
12%

20%

–77.7°

34.6˚

6

-6 EB   A

EA    B

C PR1 + SF

10%

13%15%

18%

10%
35%

B

68%

8%
25%

–69.1°
20.7˚

PR1 + PAr

Specific strain pairs Specific carbon sources

+

0

20%

18%
5%

12%

21%

29%

15%

45%
35%

+,+

0,+

0,0
0

+

35%

6%

18%

14%

5%
22%

23%

55% 22%
0,0

0,+

+,+

Interaction classification
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Positive interactions occurred independently 
of environmental characteristics
Broad environmental characteristics, including carbon source bio-
chemical class and number of carbon atoms, did not appear to dic-
tate the occurrence of positive interactions. We found that the 
variation in interaction classification between carbon sources with-
in a class was not significantly different than variation between 
classes [pairwise permutational multivariate analysis of variance 
(PERMANOVA), P > 0.05; Fig. 3A]. We hierarchically clustered all 
interactions for all strain pairs and carbon sources and found that 
carbon sources did not group by biochemical class [although tricar-
boxylic acid (TCA) cycle carboxylate ions grouped more adjacently] 
(fig. S11). We further found that the occurrence of positive interac-
tions was only weakly correlated to the number of carbon atoms 
that each carbon source had (Spearman correlation, 0.32; P = 0.07) 
(Fig. 3B). For example, serine, a compound with only three carbon 
atoms, enabled more positive interactions than all other carbon 
sources except uridine.

Positive interactions increase with strain dissimilarity
We found that positive interactions were more common among 
taxonomically dissimilar strains. We compared interactions within 
and between the two taxonomic orders represented in our set, En-
terobacterales (En) and Pseudomonadales (Ps), since pairwise phy-
logenetic distances, calculated from full-length 16S ribosomal RNA 
(rRNA) gene sequences (fig. S3), distributed bimodally (fig. S12). 
More positive interactions occurred among interorder pairs (En + Ps) 
than intra-order pairs (En + En and Ps + Ps) (Fig. 3C): Twenty-six 
percent of En + En pairs and 20% of Ps + Ps pairs contained ≥1 
positive interaction, compared to 47% for En + Ps pairs. The aver-
age interaction type was negative for intra-order cocultures (−32° for 
En + En and −45° for Ps + Ps) but positive for interorder cocultures 

(4.5° for En + Ps) (Fig. 3D) without significant differences in inter-
action strength (fig. S13).

The fraction of positive interactions, especially parasitisms, in-
creased with the metabolic distance between the interacting species 
(Fig. 3E). Metabolic differences between strains were calculated as 
the Euclidean distances between strains’ carbon source utilization 
profiles, given by each strain’s ability to grow on each carbon source 
in monoculture (fig. S2). The distribution of metabolic distances be-
tween all strains was a continuous bell-shaped distribution (fig. S12), 
which captured more finely graded functional differences among 
strains than bimodal phylogenetic distances. Intrastrain mutual-
isms (i.e., those between labeled strains and their unlabeled coun-
terparts) occurred in a small fraction of strains (3.7%), which we 
hypothesize was caused by higher starting density [a phenomenon 
known as an Allee effect (36)]. Interactions between metabolically 
similar strains were also typically competitions (68% for the most 
metabolically similar but nonidentical strains) (Fig. 3E). As meta-
bolic distance increased, the fraction of pairs that exhibited ≥1 pos-
itive interaction increased monotonically from 0.2 to 61%, with a 
growing fraction of these positive interactions occurring within 
parasitisms. This result indicated a strong and directional depen-
dence of positive interaction frequency on the functional dissimi-
larity of strain pairs.

As metabolic distance increased, the average interaction type Ө 
also became increasingly positive (Spearman correlation, 0.75; P < < 
0.01) (Fig. 3F). This trend reflects both shifts in the frequency of 
interaction classes and quantitative changes in the relative strength 
of interactions’ components. Notably, among parasitisms, the aver-
age Ө within each metabolic distance bin increased, indicating an 
increasingly large facilitative effect relative to the reciprocal inhibitory 
effect (fig. S13). Since the prevalence of interaction types was cor-
related with strains’ metabolic capabilities, we next tested whether 
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interactions in a given environment were dependent on the inter-
acting strains’ abilities to grow in monoculture in that environment.

Monoculture yields shape occurrence of positive 
interactions in coculture
Interaction networks for each carbon source suggested that mono-
culture yield indeed related to interactions (examples in Fig. 4A and 
all networks in fig. S14). Regardless of the carbon sources or strain 
pair, positive interactions (often in the form of parasitisms) com-
monly occurred between strong and weak growers and sometimes 
occurred between weak growers; competition commonly occurred 
between strong growers (Fig. 4B).

These patterns were found to be robust in a systematic analysis 
of interactions as a function of monoculture yield (Fig. 4, B and C). 
The frequencies of mutualisms, commensalisms, and parasitisms all 
increased with the difference between the monoculture yields of in-
teracting strains (individually normalized to the maximum ob-
served growth of each strain across all carbon sources; off-diagonal 
in Fig. 4C and fig. S15B). By contrast, for interactions of strain pairs 
able to grow on a carbon source equally well (diagonal in Fig. 4C 
and fig. S15A), competitions were consistently prevalent and in-
creased in frequency with monoculture yield. Among interactions 
between the strongest growers, 77% were competitions where both 
species were inhibited compared to their monoculture growth. 
Moreover, in 99% of pairs of the strongest growers, at least one spe-
cies was inhibited (77% competitions, 18% amensalisms, and 4% 
parasitisms). Interaction at 24 hours followed the same trend (fig. 
S16), with the overall increased prevalence of positive interactions 

(fig. S7) likely reflecting the lack of high monoculture yield values. 
Overall, interactions appeared to depend heavily on the two inter-
acting strains’ individual abilities to grow in a specific environment, 
and this dependence explained the interaction variability exhibited 
by certain strain pairs and certain carbon sources.

These results were also consistent with the fact that there were 
far fewer positive interactions on low-concentration carbon sources 
(11% with ≥1 positive interaction, as opposed to 35% for their 
high-concentration counterparts) (fig. S17). The low-concentration 
carbon sources supported low-to-midrange monoculture yields that 
were similar among the strains (fig. S2). There were few instances of 
strong growers paired with weak growers, the regime where positive 
interactions otherwise emerged (fig. S17). Consequently, the inter-
action classifications on low-concentration carbon sources were 
nearly as different from their high-concentration counterparts as 
the high-concentration carbon sources were to each other (fig. S18). 
Unlike these low-concentration carbon sources, a mix of 33 carbon 
sources produced consistently high monoculture yields (most similar 
to glucose) (fig. S19). As a result, interactions occurred only between 
strong growers and were consequently highly negative (85% com-
petitions, with 99% containing ≥1 inhibition) (fig. S19). For each strain 
pair, the interaction type Ө on the mixed carbon source condition 
was, with a single exception [the species pair Pseudomonas rhodesiae #1 
and Pseudomonas arsenicoxydans (PR1 + PAr)], always lower than 
its average interaction across all carbon sources (fig. S19). Together, 
differences in monoculture yields provided a common statistical 
explanation for differences in the interaction distributions across 
time points, carbon source types, and carbon source concentrations.
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nongrowers that are obligately facilitated by strains with different monoculture yields. Line colors represent the interaction classifications in which the facilitation occurs 
(Mut., mutualism; Comm., commensalism; Para., parasitism; Total, total fraction of nongrowers facilitated). (E) The total number of carbon sources on which each strain 
can grow in monoculture and in at least one coculture. Each line represents one strain. All data are at 72 hours.
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Nongrowing strains are typically facilitated by strongly 
growing strains
To quantify the prevalence of obligate facilitation, where a nongrow-
ing strain required a facilitating partner to grow on a given carbon 
source, we examined interactions between strains that could grow 
strongly on a carbon source and those that could not (bottom row 
in Fig. 4C and fig. S15C). As the yield of the growing strain in-
creased, the frequency of facilitation of the nongrower increased 
markedly. When paired with the strongest growers, nongrowers 
were facilitated 85% of the time. Moreover, the relative fraction 
of these positive interactions that occurred as parasitisms also in-
creased (Fig. 4D), making up 55% of obligate facilitations between 
the strongest growers and nongrowers. Among these parasitisms, 
the average interaction type also became increasingly positive (fig. 
S16): The magnitude of the positive interaction increased mono-
tonically without the inhibited strain experiencing the same degree 
of yield loss (fig. S20).

At least one coculture partner could usually be found to support 
the growth of otherwise nongrowing strains on almost any carbon 
source. We observed a total of 125 cases where a given carbon 
source did not support detectable growth of a given strain in mono-
culture (Fig. 4E and fig. S21). By contrast, we found only 21 instances 
of a given carbon source never supporting the growth of a given 
strain despite its coculture with any partner strain. This common 
obligate facilitation provides a potential explanation for how biodi-
versity can be supported when few carbon sources are available or 
when only a subset of strains can use available carbon sources.

DISCUSSION
In this study, we performed comprehensive pairwise coculturing of 
20 culturable soil microbes across 40 different carbon source envi-
ronments. By measuring interactions across many environments, 
our study produced many instances in which at least one of the two 
cocultured strains grew poorly or not at all in monoculture, a re-
gime in which we found that positive interactions were far more 
likely to occur than previously measured (2, 15). The study also pro-
duced instances where both strains grew well and antagonism was 
common, a result consistent with previous large-scale studies of 
bacterial interactions (37, 38).

Our study unearthed the wealth of positive interactions that 
occur in our system. While mutualisms were relatively rare (5%), 
commensalisms (12%) and parasitisms (18%) were common and 
accounted for the majority of cases where total coculture yield was 
greater than the sum of monocultures (24%) (fig. S22), a criterion 
previously used to classify cooperative interactions (15). The preva-
lence of these positive interactions corroborates predictions from 
large-scale metabolic models (19, 20, 39, 40). Our results are also 
consistent with the predictions of theories such as the Black Queen 
hypothesis, which asserts that interspecies cross-feeding of “leaky” 
public goods is evolutionarily selected for (22, 41). Last, our results 
generalize smaller-scale demonstrations that cocultured strains (42) 
and spent media (43) can induce growth of fastidious bacteria. To-
gether, positive interactions increasingly appear to play a dominant 
role in driving community properties, such as resistance to invasion 
and productivity (3, 22), and in supporting microbial biodiversity 
(44). Positive interactions can also shape the phylogenetic composition 
of communities. In particular, common facilitation among phylo-
genetically distinct strains, as shown in our data, may promote 

phylogenetic diversity within communities, potentially leading to 
phylogenetic overdispersion (45, 46).

Interactions in our system varied significantly across environ-
ments and time points (fig. S20), suggesting that properties of natural 
communities can display considerable spatial and temporal vari-
ability. While interactions did not appear to significantly depend on 
properties intrinsic to the environment itself, they nonetheless 
strongly depended on the environment via the ability of each strain 
to individually grow in it: Negative interactions were frequent be-
tween strong growers, while positive interactions occurred com-
monly between strong and weak growers across all time points and 
environments. Given the widespread differences in growth that oc-
cur among bacteria, these results suggest that positive interactions 
may occur commonly in nature.

A variety of mechanisms could explain the prevalence of positive 
interactions in our system. First, facilitated strains might have 
grown on components of accumulating dead cells, although this is 
unlikely given the time scale of the coculture experiment (47). Sec-
ond, the facilitator might have secreted carbon source–degrading 
enzymes that increased overall carbon availability. This mechanism 
is consistent with the general prevalence of positive interactions in 
dimeric and trimeric sugars (Fig. 3A) but may not explain positive 
interactions in simple carbon sources such as monomeric sugars 
and TCA cycle intermediates (Fig. 3, A and B). Third, the facilitator 
may have excreted incompletely oxidized metabolites that were used 
by the facilitated strain (20, 41, 48). Such “overflow metabolism” 
would allow strains to indirectly benefit from the biochemical 
transformation capabilities of their facilitators. Exploitation of newly 
created niches could explain the positive interactions that we ob-
served on simple carbon sources (e.g., the excretion of short-chain 
fatty acids as a by-product of incomplete monosaccharide oxida-
tion). It may also explain the rarity of positive interactions on lower 
carbon source concentrations since respiration is known to be fa-
vored over fermentation under such conditions and overflow is less 
likely to occur (48).

Despite the high throughput of our experiment, our system did 
not capture real-world bacterial diversity or environmental com-
plexity. Our strain library was limited to two taxonomic orders iso-
lated from topsoil. We only chose strains that grew on a minimal 
medium as part of our culturing protocol, possibly biasing our data-
set in a variety of ways, e.g., against obligate facilitations for interac-
tions involving amino acid or vitamin auxotrophies, which are 
known to be common (49). Strains were also pregrown on glucose 
as the sole carbon source before construction of coculture/carbon 
source combinations, imposing glucose consumption as a requisite 
for inclusion in our strain library and potentially affecting bacterial 
physiology (e.g., lag phase) and interactions. Moreover, while our 
carbon source library represented a variety of carbon source types, 
it was limited to soluble compounds, excluding many polymers on 
which metabolically driven positive interactions may be more com-
mon. Whether our results extend across additional phylogenetic 
groups (i.e., those occurring within soil and in other microbial eco-
systems) and nutrient environments (i.e., across different and/or 
multiple carbon sources, concentrations thereof, and noncarbon 
nutrient requirements) should be investigated in follow-up studies 
to generalize trends observed in our system.

Our results indicate that knowledge of how strains grow individ-
ually in an environment can be strongly predictive of how they 
interact in that environment. In contrast, knowing how the same 
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strains interact in a different environment or how different strains 
interact in the same environment does not appear to be very infor-
mative. Last, our results suggest that a potential strategy for inducing 
the growth of a nongrowing or weakly growing strain, independent of 
growth medium, is to coculture it with a strongly growing strain. 
Here, we uncovered several general, statistical rules governing micro-
bial community structure and function. These rules deepen our un-
derstanding of microbial community ecology and are crucial to enable 
the efficient design and control of beneficial microbial communities.

MATERIALS AND METHODS
Strain isolation from soil samples
Soil samples (two ~12-cm columns of topsoil, ~4 cm in diameter) 
were collected from multiple locations in Greater Boston on 
12 November 2017 (5.6°C) (specific locations are listed in table S1). 
Each sample was diluted in phosphate-buffered saline (PBS) within 
a few hours of collection (5 g of soil vortexed in 40 ml of PBS). Sin-
gle strains were first isolated by streaking 70 l of dilutions of this 
mixture (10−1, 10−2, 10−3, and 10−4) on 20 different solid (agar) me-
dia [tryptic soy broth (TSB; Bacto), 1% (v/v) TSB, lysogeny broth 
(LB; Bacto), 1% (v/v) LB, nutrient broth (NB; Bacto), 1% (v/v) NB, 
M9 salts (Sigma-Aldrich) + 0.5% (w/v) glucose, M9 salts + 0.005% 
(w/v) glucose, M9 salts + 0.005% (w/v) glucose + 0.2% (w/v) casa-
mino acids, M9 salts + 0.005% (w/v) glucose + 0.002% (w/v) casa-
mino acids, M9 salts + 0.5% (w/v) glucose + 0.2% (w/v) casamino 
acids (pH 4 and 5), M9 salts + 0.005% (w/v) glucose + 0.002% (w/v) 
casamino acids (pH 4 and 5), actinomycete isolation agar (Teknova), 
Brucella agar (Teknova), Streptomyces medium (Teknova), 
Campylobacter medium (Teknova), Bordetella medium (Teknova), and 
ATCC medium 1111 (Teknova)].

Strains were selected on the basis of the following criteria: growth 
in LB liquid medium of transferred colony (25°C), frozen glycerol 
stock revival in LB (OD600 > 0.1) (30°C), and subsequent growth on 
M9 + 0.5% (w/v) glucose (OD600 > 0.1) (30°C). We kept 96-well plates 
of isolates [LB, 25% (v/v) glycerol] at −80°C. Isolates included in the 
coculture experiment (table S1) were selected on the basis of robust 
revival from glycerol stocks and in subsequent culturing steps and the 
ability to label the strains via constitutive expression of GFP.

Strain labeling
The soil bacterial isolates were fluorescently labeled with the 
commercially available plasmid pMRE132 containing GFP2 (50). 
pMRE132 is a broad-host range plasmid used to constitutively ex-
press fluorescent protein genes in bacteria. First, the soil isolates 
and the Escherichia coli carrying pMRE132 (Ec-pMRE) were grown 
to saturation [5 ml of LB media (Bacto) in 50-ml Falcon tubes, loose 
caps, at 30°C for 24 hours, and chloramphenicol (15 mg/liter; Sigma- 
Aldrich) for Ec-pMRE]. Second, the saturated culture (SC) of each 
soil isolate was mixed with the SC of Ec-pMRE (500 l of each). 
This and subsequent steps were done in 2-ml 96 deep-well plates 
(Eppendorf) with a VIAFLO 96 liquid handler (Integra) to increase 
throughput. The mixed SCs were concentrated to 10× by centrifug-
ing (1 min, 7000 relative centrifugal force), discarding 900 l of the 
supernatant, and resuspending. Immediately after, 10 l of each SC 
was spotted, in three replicates, onto nutrient agar [5 g of peptone, 
3 g of yeast extract, and 15 g of agar (Bacto) in 1 liter of water]. The 
agar plates were incubated (24 hours, 30°C) to allow for conjugation 
and transfer of the plasmid from Ec-pMRE to the soil isolates. The 

bacterial lawns were picked with sterile wooden applicators (Puri-
tan), suspended in PBS (Corning), and mixed by pipetting 30 times 
with VIAFLO. The suspensions were then serially diluted (100, 
10−1, and 10−2) and spotted onto minimal media agar to select for the 
transconjugants [1× M9 minimal salts (Teknova), glucose (5 g/li-
ter), chloramphenicol (15 mg/liter; Sigma-Aldrich), and 15 g of 
agar (Bacto)]. Fluorescent colonies were picked and streaked onto 
minimal media agar to counterselect Ec-pMRE. Last, SC from sin-
gle colonies were frozen with 50% glycerol and stored at −80°C.

Strain identification and calculation 
of phylogenetic distance
Each bacterium isolated from soil was classified phylogenetically 
with its 16S rRNA gene sequence. The full 16S gene sequences 
(~1500 base pairs) were obtained via Sanger sequencing (Quintara 
Biosciences), quality threshold-trimmed, and classified with SeqMatch 
(51). Sulfolobus solfataricus, a thermophilic archaeon, was used in 
the phylogenetic reconstruction as an outgroup species to root the 
tree. MUSCLE (52) with default parameters was used to align the 
sequences. PhyML-SMS (53, 54) with default parameters was used 
to select GTR + G + I as the best model and to infer the tree. The 
inferred branching order and branch lengths in the phylogenetic tree 
are the maximum likelihood estimates given the sequence alignment. 
The pairwise phylogenetic distances between strains were calculated 
directly from the phylogenetic tree with R (Phytools).

Medium construction
The medium used in the coculture experiment was an M9 minimal 
medium consisting of 1× M9 salts (Teknova), 1× trace metals 
(Teknova), 0.1 mM calcium chloride, and 2 mM magnesium sulfate. 
We additionally added 0.05% (w/v) bovine serum albumin (BSA) to 
the medium to improve the retention of fluorescent dyes used in the 
droplet color codes (33) (see the “Input color coding” section) and, 
presumably, other small molecules (55). We previously showed that 
addition of BSA does not affect bacterial growth (33).

A bank of kChip-deployable carbon source growth substrates 
was developed from which libraries could be readily created. Carbon 
compounds in this bank met the following criteria: The compounds 
were soluble at 2% (w/v) in water, the solutions were emulsifiable 
using Bio-Rad QX200 cartridges, and the integrity of the color code 
dye signals were maintained despite the presence of the carbon 
compound (see the Input color coding section). A total of 33 carbon 
compounds were chosen that passed these criteria, representing a 
diversity of growth substrates including monosaccharides, oligosac-
charides, polysaccharides, carboxylate ions, amino acids, sugar al-
cohols, and a nucleic acid (fig. S2).

In the coculture experiment, a total of 40 environmental condi-
tions were used. These included the 33 chosen compounds at 0.5% 
(w/v), 5 of these compounds (glucose, glycerol, pyruvate, proline, 
and sucrose) at 0.05% (w/v), an even mix of all 33 compounds [to-
taling 0.5% (w/v)], and a no-carbon control.

Carbon source plates consisting of the 40 carbon source condi-
tions in water (4× experiment concentration) were frozen at −20°C 
and thawed at the onset of each round of the experiment (see the 
“kChip coculture construction” section in the Supplementary Ma-
terials). We previously demonstrated preservation of the frozen car-
bon substrate plates by showing tight correspondence in the growth 
of E. coli K-12 MG1655 on the freshly prepared carbon substrate 
plate and plates stored in −20°C for 3 and 15 days (33).
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Microbial culturing
All labeled and unlabeled monocultures initially underwent two 
pre-experiment regrowth cycles (“starter phase” in a rich medium 
and “preculture phase” in minimal medium) and, at the onset of the 
experiment (“experiment phase”), were normalized to a starting 
density of OD600 = 0.02 in carbonless minimal medium. In the start-
er phase, glycerol stocks of the unlabeled and labeled strains were 
inoculated into 525 l (0.8-ml-deep 96-well plate) of LB medium 
(25°C, 220 rpm, 16 hours). Inoculations from glycerol stocks were 
conducted via pin replicator [sterilized via 70% (v/v) ethanol bath 
and flame treatment between inoculations]. In the preculture phase, 
all cultures were washed in carbonless M9 medium two times and 
then diluted (1:50) into 1-ml M9 medium with 0.5% (w/v) glucose 
(25°C, 220 rpm, 24 hours). Last, the experimental phase began by 
washing cells three times in a carbonless M9 medium to remove 
residual glucose and normalizing to a starting OD600 of 0.02 (or 
~20 cells per droplet depending on the strain).

Input color coding
Every unique input to the coculture screen (e.g., a bacterial culture 
or environmental condition) received a “color code,” or unique ra-
tio of three fluorescent dyes (standardized to a total final dye con-
centration of 2.5 M), before generating droplets (fig. S1B). Each set 
of three dyes collectively labeled each specific input. The dyes in-
cluded Alexa Fluor 555, Alexa Fluor 594, and Alexa Fluor 647, all of 
which have distinct excitation and emission spectra, and dyes did 
not interfere with GFP. We previously showed that the color-coding 
dyes do not affect bacterial growth (33).

Droplet preparation and pooling
Each 1-nl droplet contained either a labeled/unlabeled pair or a sin-
gle carbon source (Fig. 1A). The labeled strain was projected to each 
unlabeled strain (1:1 ratio) just before making droplets. Droplets 
were produced on a Bio-Rad QX200 Droplet Generator (which gen-
erated roughly 20,000 ~1-nl emulsifications prepared per 20-l in-
put for eight inputs at a time; 3 min per eight-input cartridge). The 
continuous phase was a fluorocarbon oil (3M Novec 7500). For 
droplet-making, 2% (w/w) fluorosurfactant (RAN Biotech 008 
FluoroSurfactant) was added to stabilize droplets.

For each kChip loading (see the kChip coculture construction 
section in the Supplementary Materials), about 5000 droplets for each 
of the labeled/unlabeled inputs (22 + 2 empty controls or a total of 
24 × 5000 = 120,000 droplets) and about 3000 droplets per carbon 
source (39 + 1 empty control or a total of 40 × 3000 = 120,000 drop-
lets) were pooled, generating a total of about 240,000 droplets, where 
half contained cultures and the other half contained carbon sources. 
As a result, about a half of randomly generated pairwise droplet 
combinations on the kChip contained one labeled/unlabeled pair 
(premerge OD600 = 0.04 for each strain; postmerge OD600 = 0.02 for 
each strain or ~20 cells per droplet) and one carbon source droplet 
[final concentration, 0.5% (w/v) or 0.05% (w/v)]. Please refer to 
Supplementary Materials and Methods for a detailed description of 
kChip loading and fluorescence imaging.

Bootstrap resampling and interaction classification
To measure EB→A, the effect of unlabeled strain B on labeled strain 
A for a given carbon source environment, the log2 of the ratio of its 
yield of A in coculture (median of A+B replicates) to monoculture 
(median of Amono replicates) was calculated (Fig. 1D and fig. S5A). 

In instances where either of these values fell below the detection 
limit (DL), they were replaced with the DL, which was calculated as 
the 90% percentile of the distribution of A+B when no carbon source 
was present. Several examples of this calculation are provided in fig. 
S5B. Positive values indicated facilitation; negative values indicated 
inhibition, and 0 indicated no detected effect.

The coordinate (EB→A, EA→B) represented both sides of an inter-
action. To qualitatively classify this interaction, this point was plot-
ted on a Cartesian plane (and, as necessary, reflected to the left of 
the identity line y = x). Uncertainty was calculated via bootstrap-
ping: 1000 calculations were performed for EB→A and EA→B via res-
ampling A+B, Amono, B+A, and Bmono. The 25th and 75th percentiles 
of the resulting distributions were plotted (Fig. 1E and fig. S6A). An 
interaction was classified as mutualism (+,+) if both sets of uncer-
tainty bars fell within the first quadrant, as a parasitism if they both 
fell within the second quadrant (+,–), and as a competition if they 
both fell within the third quadrant (−,–). Error bars passing over 
quadrants indicated that a classification for at least one of the two 
effects did not adequately separate from no effect. If an uncertainty 
bar passed over the y axis, then an interaction was classified as a 
commensalism (+,0); if an uncertainty bar passed over the x axis, 
then the interaction was classified as an amensalism (−,0), and if 
both uncertainty bars passed over the x and y axes, then the interac-
tion was classified as a neutralism (0,0). Examples of these pairwise 
classifications are shown in fig. S6A.

The point (EB→A, EA→B) occupied a radial continuum of possible 
pairwise interactions, with the magnitude m and the angle Ө of this 
point in polar coordinates providing a quantitative description of 
the interaction strength and type, respectively (Fig. 1F). The value Ө 
specifically represented the relative size of the effects of two strains 
on each other. To determine Ө, the line y = −x was assigned to 0° 
(representing a balanced parasitism of equal and opposite effects). 
Values −90° < Ө < −45° quantified competition, with −90° indicat-
ing that two strains inhibited each other equally; −45° indicated 
amensalism; −45° < Ө < 0° quantified parasitism, where the inhibi-
tory effect outweighed the facilitative effect; 0° < Ө < 45° quantified 
parasitism, where the facilitative effect outweighed the inhibitory 
effect; 45° indicated commensalism; and 45° < Ө < 90° quantified 
mutualism, with 90° indicating that two strains facilitated each other 
equally. The distribution of m and Ө is given in fig. S10A (and sep-
arated by carbon source in fig. S10D). Ө for all pairwise interactions 
is hierarchically clustered in fig. S11.

For a given set of interactions (e.g., all pairs among a phylogenetic 
group), the mean interaction [(EB→A), (EA→B)] was sometimes 
calculated (fig. 6SB). The average interaction magnitude m and av-
erage interaction type Ө of this average interaction were also calcu-
lated. The variance in a set of interactions can also be calculated as 
an interaction diversity metric. This analytical framework was ap-
plied to the entire dataset (Fig. 2 and fig. S7) and to subsets of the 
data organized by properties of the environments, such as biochem-
ical classification (Fig. 3B), or properties of strains, such as phyloge-
netic distances (Fig.  3D). The distribution of the average m and 
average Ө for interactions grouped by coculture pair and by carbon 
source are given in fig. S10 (B and C, respectively).

Binning interactions by metabolic distance or 
monoculture growth
Using measured resource utilization profiles (monoculture growth 
values across all carbon sources normalized to the maximum 
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growth per strain, per time point) (fig. S2), the Euclidean distance 
between each resource utilization profile was computed for each 
strain pair (fig. S3C) as a measure of metabolic similarity. Whereas 
the phylogenetic distances among pairs produced a bimodal distri-
bution that reflected the two taxonomic orders, the metabolic distance 
values produced a continuous bell-shaped distribution (fig. S12).

We binned the 190 possible cocultures into eight discrete meta-
bolic distance bins of increasing dissimilarity and counted interac-
tion types in each bin across all carbon sources (Fig. 3E and fig. S13). 
(Cocultures of labeled strains cocultured with their unlabeled coun-
terparts, for which the metabolic distance was 0, were grouped as 
bin #0.) In the center of the metabolic distance distribution (bins #3, 
#4, #5, and #6), each bin spanned 0.25 Euclidean distance units. Be-
cause there were fewer data points nearer the tails of the distribu-
tion, bins #2 and #7 each spanned 0.5 Euclidean distance units, and 
bins #1 and #8 spanned 1 Euclidean distance unit. The resulting 
bins each had roughly equal numbers of data points.

Unlike binning by metabolic distance, binning by monoculture 
growth disregarded any larger interaction patterns within a given 
strain pair, i.e., each interaction generated among a pair across each 
carbon source was independently binned only by the degree to which 
each strain grew on the given carbon source. Normalized monocul-
ture yields (fig. S2) were placed into one of seven bins (cutoffs: 0, 
0.005, 0.05, 0.1, 0.2, 0.3, 0.5, and 1). The first bin, [0 0.005), repre-
sented undetectable growth (within background noise) as qualified 
as “no growth” in analyses of obligate facilitation (Fig. 4D). With 
the exception of the second bin, [0.005 0.05), which spanned a de-
cade, bin cutoffs were roughly based on exponential doublings.

Interaction networks and binning
Interaction networks were constructed for all pairwise interactions 
occurring per carbon source (examples in Fig. 4A and all networks 
in fig. S14). The nodes, each representing a strain, were arranged 
concentrically by carbon utilization similarity (same order as in fig. 
S2). The size of the node corresponded linearly to the normalized 
monoculture growth (fig. S2). Edges between nodes, each repre-
senting a pairwise interaction, were colored by interaction classifi-
cation (with neutralisms not shown). The thickness of the edge 
corresponded to interaction strength m.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abi7159
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