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Abstract

In this paper, we develop TWO-SIGMA, a TWO-component SInGle cell Model-based Association 

method for differential expression (DE) analyses in single-cell RNA-seq (scRNA-seq) data. The 

first component models the probability of “drop-out” with a mixed-effects logistic regression 

model and the second component models the (conditional) mean expression with a mixed-effects 

negative binomial regression model. TWO-SIGMA is extremely flexible in that it: (i) does not 

require a log-transformation of the outcome, (ii) allows for overdispersed and zero-inflated 

counts, (iii) accommodates a correlation structure between cells from the same individual via 

random effect terms, (iv) can analyze unbalanced designs (in which the number of cells does not 

need to be identical for all samples), (v) can control for additional sample-level and cell-level 

covariates including batch effects, (vi) provides interpretable effect size estimates, and (vii) 

enables general tests of DE beyond two-group comparisons. To our knowledge, TWO-SIGMA is 

the only method for analyzing scRNA-seq data that can simultaneously accomplish each of these 

features. Simulations studies show that TWO-SIGMA outperforms alternative regression-based 

approaches in both type-I error control and power enhancement when the data contains even 

moderate within-sample correlation. A real data analysis using pancreas islet single-cells exhibits 

the flexibility of TWO-SIGMA and demonstrates that incorrectly failing to include random effect 

terms can have dramatic impacts on scientific conclusions.
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1 Introduction

Advancements in single-cell sequencing technologies have created many exciting 

opportunities to researchers yet have also posed many challenges relating to data analysis. 

Expression profiles can now be analyzed at the single-cell level, providing new insights 

into the cellular heterogeneity of gene expression. Three characteristic features of single­

cell transcriptome sequencing data include excess zero counts, overdispersion of observed 

counts, and a large number of cells that are sequenced from a relatively small number 

of samples [29]. Technological limitations including low capture rate and amplification 

failure lead to “drop-out” events, in which the data may capture only a fraction of the 

transcriptome of a given cell and mistakenly generate zero measurements for expressed 

genes. The presence of these zeros creates a dataset with an excess of zeros (often 

called “zero-inflation”) beyond those that occur due to biological factors; these excess 

zeros often necessitate special modelling approaches such as a two-component model [5, 

9]. Overdispersion, in which the variance in expression exceeds the mean expression, 

is commonly observed in count-based quantitative sequencing due to large variance in 

expression and within gene variability over time or across samples. A within-sample 

correlation is also present because multiple cells are sequenced from the same biological 

sample. These challenges motivated us to develop the new statistical method TWO-SIGMA. 

It is designed for association analyses where the primary interest is in performing statistical 

inference on covariate(s) of interest, such as a treatment effect. TWO-SIGMA is not limited 

to a two-group comparison and can test for more general kinds of differential expression 

(DE) while simultaneously controlling for multiple sample-level and cell-level covariates 

and accounting for within-sample correlation. As we will discuss, accounting for this within­

sample dependency is a necessity to preserve type-I error when cells from the sample are 

even moderately correlated.

Most existing methods for DE analysis in scRNA-seq data are designed for a two-group 

comparison. As a result, benchmarking papers typically limit themselves to two-group 

comparisons [28, 23]. Three of the most popular methods for two-group comparisons are 

SCDE, scDD, and DESingle. SCDE and scDD are both innovative Bayesian methods, 

with the former utilizing a two-component negative binomial mixture method and the 

latter using a Dirichlet mixture process [10, 11]. Although both methods show strong 

performance, only the latter can adjust for confounding covariates, and this adjustment is 

indirect through a residualized analysis. DESingle employs a zero-inflated negative binomial 

(ZINB) distribution to analyze DE in scRNA-seq data while accounting for excess zeros 

and overdispersion [18]. Like SCDE and scDD, however, DESingle does not employ a 

regression modeling framework to control for other covariates or account for within-sample 

correlation.
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MAST was introduced as a hurdle model for the analysis of scRNA-seq data [5], and is 

considered to be one of the preferred methods for performing DE analysis in scRNA-seq 

data [15]. Like TWO-SIGMA, but unlike the methods described above, MAST can test 

for DE in cases beyond a two-group comparison. There are several important differences, 

however, between TWO-SIGMA and MAST. First, we fit a zero-inflated model on the 

observed counts while MAST fits a hurdle model (described in more detail in the next 

section) on the log scale. The ability to avoid log-transforming the data is desirable given 

recent evidence which suggests that log transformation can distort many scRNA-seq datasets 

by producing false variability [25, 16]. Further recommendations for DE analysis in scRNA­

seq data state that the observed counts should be modeled directly while accounting for 

batch effects as covariates rather than through normalization [15]. Second, TWO-SIGMA 

allows the covariates in each of the two components to differ. We will discuss reasons that 

this flexibility can be appreciated by researchers later. Third, and most importantly, although 

the ability to include random effects in either component of MAST is mentioned by its 

authors, they do not prioritize their inclusion for scRNA-seq data and do not evaluate the 

impact of random effects on the model’s performance. We will revisit the comparison with 

MAST in the methods section.

Several unsupervised methods, such as ZINB-WaVE [22] and ZIFA [20] have also been 

proposed for scRNA-seq analysis. Both ZINB-WaVE and ZIFA are primarily designed 

for settings in which dimension reduction, not association analysis, is the primary goal. 

One interesting use of ZINB-WaVE is to construct observation-level weights that can be 

incorporated into the popular bulk RNA-seq pipelines found in the DESeq2 [14] or edgeR 

[17] Bioconductor packages [26, 27]. These pipelines do not allow for random effects or 

model excess zeros separately and can involve some transformation of the data in processing 

or analysis.

The two-component zero-inflated model without random effects has a long history in the 

analysis of count and microbiome data [12, 3, 7], however its application in scRNA-seq 

data is limited. Furthermore, a zero-inflated negative binomial mixed effects model has 

previously been proposed for modelling zero-inflated count data [19]. The focus of that 

work was on typical repeated measures applications where the number of repeated measures 

per individual is small, in contrast to genomic applications which tend to include more 

repeated measures than samples. Because attention is split between zero-inflated and a 

similar approach called a hurdle model, and between the Poisson and negative binomial 

distributions, details regarding the performance and robustness of the zero-inflated negative 

binomial mixed-effects model are not discussed in as much detail as we can here.

The rest of the article proceeds as follows: first, we specify the TWO-SIGMA model, 

discuss implications of its parameterization, and provide details on parameter estimation. 

Next, we describe both traditional methods and a new ad hoc method to decide whether 

random effects should be included in our zero-inflated negative binomial model. Then 

we show simulation results and an application to a dataset of pancreatic islet single-cells, 

respectively. Finally, we conclude with a discussion.
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2 Materials and Methods

2.1 Zero-inflated negative binomial distribution

For a given gene, let i index the samples sequenced and j index the ni single cells from 

sample i. Consider the following parameterization of the negative binomial probability mass 

function (p.m.f.) at a non-negative integer yij corresponding to the observed read count:

Pr Yij = yij = f yij; μij, ϕ

=
Γ yij + ϕ

Γ yij + 1 Γ ϕ
1

1 + 1
ϕμij

ϕ 1
ϕμij

1 + 1
ϕμij

yij

,   yij = 0, 1, 2, …

With this parameterization, E(Yij) = μij and Var Y ij = μij + 1
ϕμij2 , such that ϕ is the 

overdispersion parameter (ϕ > 0). This parameterization is appealing for interpretability 

because as 1
ϕ 0+, the density above approaches the Poisson density with mean μ. Thus, the 

Poisson and negative binomial distributions are asymptotically nested (and nearly identical 

for large values of ϕ). One can compare the fit of the Poisson model to the fit of the 

negative binomial model by testing H0: 1
ϕ = 0 versus Ha: 1

ϕ > 0 using the likelihood ratio test 

(p-values come from a 50:50 mixture of χ1
2 and a point mass at zero). As seen in table 2 

in the real data analysis below, the p-value from such a test will often suggest a significant 

deviation from the Poisson model in scRNA-seq data.

To accommodate the excess zeros often observed in scRNA-seq data, we employ the zero­

inflated negative binomial distribution (ZINB). This distribution mixes a point mass at zero 

(from which observations are considered “drop-out”) with the negative binomial distribution. 

Let pij and μij be the probability of drop-out and the mean read count conditional on not 

being dropped-out for cell j from sample i, respectively. The p.m.f. of one observation Yij 

under the ZINB distribution is given by:

P Y ij = 0 = pij + 1 − pij f 0, μij, ϕ
P Y ij = yij = 1 − pij f yij; μij, ϕ , yij = 1, 2, 3, … (1)

The ZINB distribution thus assumes that there are two sources of zeros in the data: the 

first source is the process that governs drop-out and the second source is from the negative 

binomial process for genes that are not dropped-out. This differs from hurdle models used 

for gene expression data [5] which use a left-truncated or continuous distribution for the 

positive expression component—meaning zeros can only be generated from the drop-out 

process. Thus, the hurdle model does not allow zero expression measurements due to 

biological variation.

Interpretations from the zero-inflated model are quite natural for single-cell gene expression 

data because it is reasonable to believe that some observed zeros are “structural zeros” with 

bona fide zero expression due to stochastic biological factors (e.g. transcriptional bursting, 
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cell cycle) and not due to technical drop-out [29]. Although semantic, the distinction 

regarding the source of zeros affects the interpretation of model coefficients and is important 

because these models are often misinterpreted by researchers [21, 24].

2.2 TWO-SIGMA

We can now provide the full TWO-SIGMA specification:

logit pij = zijT α + ai, ai ∼ N 0, σa2

log μij = xijT β + bi, bi ∼ N 0, σb
2 ,   assume ai ⫫ bi

(2)

The model is fit for each gene individually, so all parameters are gene-specific. α and β are 

fixed effect coefficient vectors and the corresponding vectors of covariates zij and xij can 

be different. ai and bi are sample-specific intercepts (discussed more in the next section). 

Prediction of sample-specific intercepts and estimation of the variance components σa2 and 

σb
2 allow us to investigate heterogeneity among individuals, and tests of whether the variance 

components equal zero allow us to separately (or jointly) evaluate the need for random 

effects. Separate variance components are estimated because the different link functions 

in the two components correspond to linear predictors with different scales. Including the 

random effects terms also helps control for any within-sample correlation, providing more 

accurate estimates and standard errors of fixed effect parameters.

As part of our twosigma R package, we employ the glmmTMB package chi-square[2] to 

fit the model specified in equation (2). This package is well-suited to fit generalized linear 

mixed models (GLMMs) because the user can easily specify an arbitrarily complex model 

composed of fixed and random effects. More details regarding computational considerations 

can be found in section 5 of the supplement. To summarize, TWO-SIGMA controls for 

additional covariates in both components, incorporates random effects to accommodate 

within-sample dependency, can analyze unbalanced data, and allows for zero-inflated and 

overdispersed counts. The regression modelling framework provides interpretable effect 

size estimates and can examine any DE hypothesis that can be expressed as a contrast 

of regression coefficients. The implementation of the model strikes a balance between 

computational accuracy and efficiency, even as the number of random effects (number of 

samples in the context of the scRNA-seq data) or the number of single cells per sample 

increases.

2.3 Evaluating the need for random effects

One primary methodological contribution of TWO-SIGMA for scRNA-seq data analysis 

is the inclusion of random effect terms in each of the two components, which is a well­

established technique to account for within-sample correlation. Ignoring random effects in 

TWO-SIGMA is equivalent to assuming that cells from the same sample/individual are 

independent. This assumption can lead to underestimated standard errors and thus inflated 

type-I errors. An example is given in table 3 in the real data analysis section.

Evaluating the need for a random effect term involves a hypothesis test of whether the 

corresponding variance component(s) equal zero. For example, consider testing whether 
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random effects are needed in either component of TWO-SIGMA with H0 : σa = σb = 0 

versus Ha : σa > 0 or σb > 0 via the Likelihood Ratio Test (LRT). The test statistic has an 

asymptotic chi-square distribution under the null, and can be expressed as: −2 * lHo − lHa , 

where lHo and lHa are the log-likelihoods of the model under the null and alternative 

hypotheses, respectively. The null hypothesis is on the boundary of the parameter space, and 

the two variance components in equation (2) are estimated using a non-separable marginal 

likelihood function and are therefore not independent. Thus, to our knowledge, the true 

degrees of freedom for this LRT chi-square statistic have not been derived analytically. A 

conservative choice, however, would be to use 2 degrees of freedom for conducting the test, 

as discussed elsewhere in the context of one component generalized linear mixed models 

[30]. If testing only one component, one can use the LRT with p-values coming from a 50:50 

mixture of a chi-square distribution with 1 degree of freedom and a point mass at zero [30].

Other less desirable post-fitting options to compare models with and without random effects 

include information criteria like AIC and BIC or Wald tests of the variance components [6]. 

Critically, all options discussed require fitting the “full” model including the random effect 

terms. The scRNA-seq application is distinct from typical repeated measures analyses in 

that the number of repeated measures (cells) typically far exceeds the number of samples. 

Such designs can entail more extensive computational time for each gene over scenarios 

involving a smaller number of repeated measures from a modest number of individuals. 

These computational burdens are especially relevant given that scRNA-seq data typically 

include thousands of genes, each of which is fit separately using TWO-SIGMA. It would 

therefore be useful to identify the genes that are most likely to need the random effect terms 

without having to fit the full model to each gene.

2.3.1 ad hoc approach—First, define the Pearson’s residuals from a zero-inflated 

negative binomial regression model without random effects as follows, where yij is the 

observed count for cell j from sample i:

rij =
yij − yij
se yij

=
yij − 1 − pij μij

1 − pij μij 1 + ϕμij + pijμij

We employ the following ad hoc approach to determine whether random effects are needed 

in equation (2): using a one-way ANOVA, we regress the Pearson’s residuals on an indicator 

of sample and take the p-value from the overall ANOVA F test. Use of the Pearson’s 

residuals provides a convenient way to analyze the residual variation unexplained by either 

component of the model, and the ANOVA p-value serves as a rudimentary measure of 

whether this residual variation tends to differ across samples. If this p-value is significant, 

there is evidence that residuals are not exchangeable across samples, and thus that sample­

specific random effect terms may exist. The full TWO-SIGMA specification including 

random effects in both components will then be fit to more formally evaluate the need 

for random effect terms. In contrast, when the residuals show no tendency of differing 

across samples, we do not have evidence to believe that they are structured/clustered within 

samples and thus will not fit the full model with random effects. Because the Pearson 
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residual combines both components, and seems sensitive to presence of random effect terms 

in either component (Supplementary Figure S2) the ad hoc procedure is not designed to 

inform which component suggests a presence of random effects. Rather, formal testing can 

be used for this purpose as described above. See supplementary section 2 for more details, 

including results that show that the ad hoc procedure demonstrates good performance in a 

variety of simulation scenarios. Results from applying this proposed method to a real dataset 

of pancreatic islet cells are given in the data analysis section. In simulations, computation 

runtime for TWO-SIGMA was the longest for models attempting to fit random effects 

when variance components were truly zero (see supplementary tables 1–4). Therefore, as 

discussed more in section 3 of the supplementary file, the ad hoc method can dramatically 

reduce overall computation time over many genes in addition to increasing model parsimony 

where most appropriate.

2.4 Simulation studies

To evaluate the performance of TWO-SIGMA, we simulated data in a variety of 

scenarios. In each scenario, we simulated 10,000 independent genes using the R function 

simulate_zero_inflated_nb_random_effect_data in our twosigma R package. For each gene, 

a drop-out probability is simulated based on fixed effect parameter values, simulated 

covariates, and the possible presence of random effect terms. This probability is used to 

simulate the drop-out status of a given gene using the Bernoulli distribution. If the gene 

is not a drop-out, the mean expression value is then simulated from the negative binomial 

distribution with mean varying according to simulated covariates, parameter values, and 

the possible presence of random effect terms. Simulated covariates mirrored our pancreatic 

real data analysis and included a binary disease status, age and the cellular detection rate 

(CDR, see the real data analysis section and [5] for more details including discussions of 

its usefulness as a surrogate for batch effects and other technical artifacts). True parameter 

values α and β for these covariates are specified in supplementary sections S3 and S4 and 

were designed to mimic realistic parameter values as observed in the real data analysis 

of section 3.4. Type-I error and power were evaluated using the likelihood ratio test on 

the joint null hypothesis that the disease status indicator is not associated with expression 

through either drop-out probability or the conditional mean (H0 : α1 = β1 = 0, α1 and β1 

are set to 0 under the null and are non-zero under the alternative hypothesis). We used 

0.05 as the nominal significance rate to evaluate type-I error and power, but provide results 

for more stringent significance thresholds, such as the Bonferroni threshold of 1/10000, in 

supplementary figures S5–S6. We consider two different ways of simulating data: one in 

which the number of samples far exceeds the number of cells per sample, as is typical in 

most repeated measures contexts, and the other in which the number of cells far exceeds 

the number of samples, as is the case in scRNA-seq data. Although many methods exist for 

DE analysis in scRNA-seq data, as described above, we chose to focus our comparison to 

MAST because, like TWO-SIGMA, it uses a regression modeling framework that is suitable 

for designs beyond a two-group comparison and can simultaneously control for multiple 

cell-level and subject-specific covariates. We also compare to a ZINB model without random 

effects to highlight the impact random effect terms can have on model performance. See 

supplementary sections S3 and S4 for additional simulation details, results, and discussion.
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3 Results

3.1 Type-I error control

Table 1 shows results from simulations in which the true values of the overdispersion 

parameter ϕ and the variance components σa, σb vary. Type-I error is well-controlled for 

TWO-SIGMA in the scenarios involving more individuals than cells. When the number of 

cells increases, type-I errors from TWO-SIGMA are slightly inflated over the nominal rate 

of 5%, but consistently remain superior to the results from the ZINB model or MAST in 

the presence of ignored non-zero variance components. For example, the last row of table 

1 shows that, when ϕ = 1 and σa = σb = 0.5, type-I error for TWO-SIGMA increases from 

0.05 to 0.053 to 0.074 as the number of individuals decreases from 1000 to 100 to 25. 

In contrast, the ZINB model and MAST have inflated type-I errors in every scenario that 

increase to nearly 1 as the number of individuals decreases. This is not surprising because 

both of the latter methods cannot account for any within-sample dependency structure 

among the single cells from the same sample. Ignoring the dependency introduced by even 

a moderate random effect size can thus have a drastic impact on the type-I error. When 

true variance components are zero, both TWO-SIGMA and the ZINB model preserve type-I 

error while MAST consistently has higher type-I error, as seen in the first three rows of 

table 1. Coverage of confidence intervals for α, β, and ϕ always approaches the nominal 

level (Supplementary tables S1–S4). The reason for the slightly inflated type-I error for 

TWO-SIGMA observed in the scenario with 25 individuals is worth mentioning briefly. The 

smaller number of individuals (25) provides less information to estimate the sample-specific 

variance components σa and σb and few unique values of the simulated binary disease 

status indicator. The slightly lower coverage for variance components in the last 6 sets of 

supplementary table 4 is one illustration of the (relative) difficulty in getting precise variance 

component estimates. TWO-SIGMA outperforms MAST or the ZINB model in preserving 

type-I error and estimating parameters under a variety of sample size breakdowns and with a 

variety of true parameter values.

3.2 TWO-SIGMA retains high power under a variety of scenarios

Because the ZINB model and MAST both have heavily inflated type-I errors in many 

cases, using raw (or “apparent”) power does not provide a fair comparison for these 

two methods. For each method and each simulation setting under the null, we therefore 

calculate the empirical significance threshold, defined as the test statistic value at the 

quantile associated with 1 minus the significance level. A percentage of statistics equal 

to the nominal significance level will then be larger than this threshold. For various 

alternative hypotheses, we calculate “true” power for MAST and the ZINB model by using 

the empirical significance threshold from the corresponding setting under the null as the 

rejection threshold instead of a usual theoretical threshold (e.g. 5.9915 from χ2
2 at the 

.05 level). Figure 1 plots raw power for TWO-SIGMA and true power for MAST in the 

ZINB model in the following four scenarios: effect in both components, in either the same 

or opposite directions, and effects in only one of the two components. In the first three 

scenarios, MAST consistently has the lowest power, while TWO-SIGMA and the ZINB 

model have very similar power in the first two scenarios, beginning at around 20% and 
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increasing to nearly 100%. The ZINB model has higher power than TWO-SIGMA in the 

third scenario but the lowest power in the fourth scenario. In simulation, computing the 

empirical significance thresholds and true power is straightforward and computationally 

included. In real data settings, however, computationally intensive resampling approaches 

are needed for reliable estimates of the empirical significance thresholds. Because TWO­

SIGMA preserves type-I error, we can rely on raw power and can therefore bypass the need 

for any resampling approach for valid inference. This is a key advantage and shows that 

TWO-SIGMA is more robust and flexible than the ZINB model while both preserving the 

type-I error and having high power without any additional computation. When the effect 

is only in the zero-inflation component, power is lower for all methods than in the first 

three scenarios. Such effects present only in the zero-inflation component are known to 

be more difficult to detect, as seen in [3]. For full power results, including more detailed 

comparisons to the ZINB model with additional discussion, see section 4, figures S7–S9 and 

tables S5–S12 of the supplement.

3.3 Sensitivity of the ad hoc method for random effect screening in simulated data

We evaluated the ad hoc screening procedure used to select genes possibly in need of 

random effect terms using the simulated data. We found it to be effective as a screening 

procedure: for the data used in Table 1, most genes with non-zero variance components had 

p-values less than 0.05 and were flagged as in need of estimating variance components using 

TWO-SIGMA. When the variance components are zero, however, the p-values from the ad 

hoc method are close to uniformly distributed, indicating that the procedure is not too liberal 

under the null. See section 2 and figures S2, S3, and S4 of the supplement for more details 

and some example results.

3.4 Pancreas real data analysis

For illustrative purposes we applied TWO-SIGMA to a dataset of pancreatic islet cells 

isolated from nine individuals (see section 1 of the supplement and [4] for full details on 

the data processing and generation steps). To focus on the most informative cells and genes, 

we applied rather aggressive filtering of the data to keep the top 2,000 genes by number 

of transcripts observed and only keep cells with more than 1000 transcripts across these 

genes. After merging across all nine individuals, we were left with 1,290 genes and 10,269 

single cells of which we used only the 7,774 for which cell type information was available 

based on the expression of signature genes. Here we focus our attention on alpha and beta 

cells, which compose the majority (55% and 34%, respectively) of the cells in our dataset. 

Type-II diabetes (T2D) status is of primary interest, and age is included as an additional 

subject-level covariate given its potential to confound the relationship between T2D status 

and gene expression. The cellular detection rate (CDR) is defined in [5] as the percentage 

of genes expressed over some background level of expression (often chosen to be zero). The 

CDR therefore has a biological interpretation as a cellular scaling factor and is a surrogate 

for both technical and biological variation. This confirms the conclusions of [8] that the 

CDR can explain a substantial proportion of observed expression variability and should be 

included in any association analysis of scRNA-seq data. As such, we include CDR in all 

analyses performed and stratified by cell type. For more details about the pancreas data 

processing, see section 1 and figure S1 of the supplementary file.
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Figure 2 plots the relationship of mean versus variance for the 1,290 genes we used in 

our analysis. It shows that the Poisson and zero-inflated Poisson models cannot adequately 

account for the overdispersion observed in many genes. In contrast, TWO-SIGMA can 

accommodate these mean-variance pairs in a quadratic relationship via the overdispersion 

parameter ϕ. Because we have only nine individuals, we chose to focus on analyses 

excluding the zero-inflation random effect terms ai to improve convergence and overall 

model fit. Some genes still showed convergence issues–partly indicative of a misspecified 

or overparameterized model and partly due to the small number of cells and samples in 

the dataset. As a general guideline, we recommend that users with concerns or limited 

computational resources begin including random effects in the mean component, and 

scale upwards to include random effects in the zero-inflation component if performance 

is satisfactory.

Table 2 shows the proportions of genes showing statistically significant results at the .05 

level for three types of hypothesis tests: the joint test of significance for the binary disease 

indicator H0 : α1 = β1 = 0, the test of the mean model variance component H0 : σb = 

0, and the test for the presence of overdispersion H0: 1
ϕ = 0. For example, when fitting the 

TWO-SIGMA model without the zero-inflation variance component to alpha cells, 73.8% 

of genes had statistically significant variance components in the mean model. Most genes 

showed the need for a random effect term or the negative binomial distribution (or both).

3.4.1 Impact of ignoring within-sample correlation—Models for genes that 

mistakenly exclude the bi random effect term often show highly significant results for 

covariates; this significance can disappear when including the random intercept term—

possibly indicative of a false positive due to failing to account for within-sample correlation. 

For example, gene RPS29 demonstrates this pattern in alpha cells. Table 3 shows that 

failing to include random effects—and thereby assuming independence of all single cells—

can lead to vastly underestimated standard errors. T2D status and age change from highly 

significant to insignificant when including a random intercept term. The standard error for 

the coefficient of T2D increases by a factor of 9 from 0.032 to 0.292, and the magnitude of 

the point estimate is halved from −0.605 to −0.349. Individual covariates such as T2D can 

thus exhibit dramatically increased type-I error when random effects are incorrectly ignored. 

In contrast, the coefficient and associated standard error for the cellular detection rate (CDR) 

are nearly identical in the two models. This result is expected given that CDR is a cell-level 

covariate and shows that including sample-specific random effects leads to very minor 

changes in the estimation of any covariates that are not sample-specific. Our emphasis in this 

section is not to draw conclusions about any association between RPS29 and T2D, but rather 

to illustrate that ignoring random effects has the potential to alter scientific conclusions.

3.4.2 Cell-type specific genes often show a need for random effect inclusion
—We matched 234 and 120 genes in our data that were identified in previous studies as 

cell-type specific in alpha or beta cells, respectively. ([13], supplementary table 10). After 

stratifying the data by cell type and removing genes with more than 90% or less than 

10% zeros, we fit TWO-SIGMA (excluding ai as mentioned previously) to the remaining 

222 alpha cell-specific and 111 beta cell-specific genes to alpha cells and beta cells, 
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respectively. Of these, 93 alpha cell-specific genes and 85 beta cell-specific genes had 

statistically significant variance components σb. This suggests that non-negligible between­

sample variation—not attributable to cell-type—is present for these cell-type specific genes. 

As discussed in [13], cell-type specific expression profiles are often of primary interest to 

study (dis)function at the cellular level and reveal novel approaches to treat and manage 

diseases such as T2D. Thus, it is critical to have reliable inference for these genes. As 

seen in the previous section, incorrectly excluding random effect terms can provide very 

misleading results and can thereby misdirect attempts to understand disease etiology at a 

cellular level.

We also used alpha cells to test the overall effect of T2D using both TWO-SIGMA to 

MAST. Table 4 shows that MAST rejects in many more instances than TWO-SIGMA. 

Of the 273 genes that were rejected with MAST but not with TWO-SIGMA, 234 have 

statistically significant variance components in TWO-SIGMA. This further illustrates the 

possibility that fixed effect coefficients can be mistakenly deemed significant in the presence 

of within-sample correlation.

3.4.3 The ad hoc method successfully separates genes that need random 
effects—Finally, we used all 1,290 genes from the islet dataset to demonstrate the 

usefulness of the ad hoc method to determine the need for the random effects terms bi. 

Figure 3 shows that likelihood ratio statistics from formal testing of bi are consistently larger 

for genes selected by the procedure than those not selected. This pattern suggests that the 

ad hoc procedure described earlier can effectively identify genes that will exhibit non-zero 

variance components in real data.

4 Discussion

We have developed TWO-SIGMA, a two-component zero-inflated negative binomial model 

with random effects for association analysis of scRNA-seq data. The model builds on the 

well-established literature in both zero-inflated models and generalized linear mixed models. 

It keeps the data on the original scale while simultaneously allowing for zero-inflation, 

overdispersion, and random effects to account for within-sample correlation. As compared 

to existing methods, its flexibility is demonstrated both in the use of random effect terms 

and the ability to test any hypothesis of DE that can be expressed as a contrast of regression 

coefficients while controlling for multiple sample-level and individual-level covariates. To 

our knowledge, TWO-SIGMA is the only method for scRNA-seq DE analysis that accounts 

for within-sample dependency to protect type-I error given the presence of many cells 

sequenced from the same sample.

Including random effects explicitly controls for within-sample correlation, and can improve 

mean parameter and standard error estimates. Given that many scRNA-seq studies have few 

samples, it would be reasonable to consider controlling for sample as a fixed effect rather 

than a random effect. However, there are two reasons to prefer incorporating a random 

effect to a fixed effect approach. First, we are interested in estimating a variance component 

that can apply to all samples in the population. Second, the random intercepts explicitly 

control for the within-sample correlation, rather than only providing adjusted parameter 
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estimates for included covariates. An alternative approach to accounting for such sample­

level repeated measures would be to fit a marginal model with the generalized estimating 

equations (GEE) approach instead of a mixed effects model [1]. We chose not to do so for 

two main reasons: first, we retain the flexibility for sample-level prediction. Second, given 

that many scRNA-seq experiments are conducted over a small number of samples, it is likely 

that the empirical (sandwich) covariance estimate would underestimate the true standard 

errors [1].

Incorrectly excluding random effects and assuming independence of cells can lead to 

underestimated standard errors of fixed effects and can therefore increase the type-I error 

of hypothesis tests relating to fixed effects parameters. See table 3 for an example. If the 

random effect terms do not contribute to the model fit, as judged by a statistical test or 

practical significance, they can be removed easily within the general framework of TWO­

SIGMA. Random intercepts can also be useful even when they are not of direct interest: 

they often capture the effects of omitted sample-specific covariates, and can limit the bias 

of fixed effect coefficients caused by misspecification. For example, if cell-type information 

is missing, and varies between individuals, a random intercept term can limit the resulting 

bias and p-value inflation observed in fixed effects parameters. Our ad hoc method proves to 

be a useful tool to both select genes that could benefit from including random effect terms 

and reduce overall computation time by suggesting genes that do not need to be fit including 

random effect terms.

Because we expect a priori that zero-inflation will occur in scRNA-seq, it is beneficial 

to include a component dedicated to it. The zero-inflation component in TWO-SIGMA 

is flexible in that it allows for a different set of covariates from the mean model or no 

covariates at all. For example, one might be interested in using zero-inflation only to 

improve mean parameter estimation. In this scenario, a constant probability of drop-out 

could be assumed via an intercept-only regression model. This would prevent coefficient 

estimates in the mean model from being overly shrunk towards zero, as would occur 

if drop-out was not accounted for, but would also limit the total number of parameters 

estimated and maximize model parsimony. Even if the data are not truly generated from a 

zero-inflated process, or if drop-out is viewed as a “nuisance,” using the two component 

model in equation (2) can be a convenient choice to improve model fit and fixed effect 

parameter estimation. See section 6 of the supplement and supplementary figure S10 for 

more discussion regarding the zero-inflation component.

Finally, our experience suggests that variance component estimates are often much smaller 

in the zero-inflation component than in the mean component. Therefore, as we did in 

the real data analysis, it might be a pragmatic choice to exclude random effects from 

the zero-inflation component of TWO-SIGMA. A key strength of TWO-SIGMA is the 

flexibility to easily customize the model within the general framework either a priori or via 

iterative removal based on statistical hypothesis tests of features such as random effects, 

overdispersion, or the drop-out component.
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Figure 1: 
Power evaluations in simulated data: Shows the power to test H0 : α1 = β1 = 0 by varying 

the effect size with 500 cells from each of 100 individuals. Values of ϕ, σa, and σb were all 

set to 0.1 to mimic the “Small R.E.” section of table 1 and 10,000 genes were simulated. 

Because of the type-I error inflation from the ZINB model and MAST seen in table 1, 

true power was calculated and plotted for these methods using the empirical significance 

threshold from the corresponding setting under the null. TWO-SIGMA can bypass the need 

for computationally expensive resampling procedures needed to generate true power because 

it preserves the type-I error as seen in table 1. See the discussion at the beginning of section 

4 of the supplement for more details about computing true power and discussion regarding 

power trends across the different methods.
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Figure 2: 
Presence of overdispersion in real data: Shows the need of a non-linear mean-variance 

relationship in the pancreatic islet data. Each point represents the mean-variance relationship 

for one gene. In the legend ϕ represents the overdispersion parameter of the negative 

binomial distribution and p represents the drop-out probability.
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Figure 3: 
Ability of the ad hoc method to identify genes in need of random effects: Shows boxplots of 

the LR statistics from the joint test of the need for random effects, H0 : σa = σb = 0, using 

TWO-SIGMA. Genes that our ad hoc procedure suggests need random effects (“Need RE”) 

and genes the procedure suggests do not (“Don’t Need RE”) are compared. Both panels 

were created using TWO-SIGMA as specified in equation (2) but with no zero-inflation 

variance component (no ZIVC).
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Table 1:

Type-I error evaluations in simulated data: Shows type-I error using the LRT to test the joint null hypothesis of 

a simulated binary disease status indicator, H0 : α1 = 0, β1 = 0 versus Ha : α1 ≠ 0 or β1 ≠ 0, with a significance 

level of 0.05. “T-S” refers to TWO-SIGMA, ZINB “refers to a zero-inflated negative binomial model without 

random effects and MAST refers to the model described in [5]. 10,000 genes were simulated.

Case 1 in Supplement: Case 3 in Supplement: Case 4 in Supplement:

Sim Params 50 Cells per 1000 Ind. 500 Cells per 100 Ind. 2000 Cells per 25 Ind.

ϕ σ a σ b T-S ZINB MAST T-S ZINB MAST T-S ZINB MAST

No
R.E.

10 0 0 0.049 0.051 0.089 0.042 0.050 0.090 0.041 0.052 0.090

2 0 0 0.048 0.051 0.080 0.038 0.044 0.079 0.041 0.052 0.086

1 0 0 0.048 0.052 0.081 0.044 0.051 0.087 0.042 0.051 0.090

Small
R.E.

10 0.1 0.1 0.051 0.132 0.144 0.056 0.534 0.313 0.077 0.795 0.487

2 0.1 0.1 0.051 0.078 0.089 0.057 0.323 0.176 0.072 0.643 0.361

1 0.1 0.1 0.049 0.066 0.095 0.053 0.224 0.174 0.075 0.548 0.361

Large
R.E.

10 0.5 0.5 0.051 0.621 0.290 0.055 0.941 0.716 0.076 0.984 0.875

2 0.5 0.5 0.053 0.505 0.275 0.056 0.909 0.685 0.076 0.974 0.857

1 0.5 0.5 0.050 0.404 0.247 0.053 0.873 0.649 0.074 0.964 0.827
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Table 2:

Rejection summaries from the pancreas data: Shows the proportion of genes in the pancreatic islet data with 

rejected nulls for various hypotheses related to T2D. The TWO-SIGMA model as specified in equation (2) 

was fit with no zero-inflation variance component (no ZIVC).

Hypothesis Alpha Cells Beta Cells

No ZIVC No ZIVC

Overall Disease Status 0.161 0.111

Overall R.E. Test 0.738 0.724

NB vs. Poisson 0.627 0.555

Genet Epidemiol. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buren et al. Page 20

Table 3:

Influence of failing to include needed random effects: Gives mean component estimates for gene RPS29 with 

(top panel) and without (bottom panel) random effects.

Effect Estimate Std. Error z value p-value

Intercept 0.521 0.207 2.515 0.012

T2D −0.349 0.292 −1.197 0.231

age −0.284 0.256 −1.109 0.267

CDR 0.394 0.011 36.284 <.001

σ b 0.490

Intercept 0.833 0.021 40.094 <.001

T2D −0.605 0.032 −19.090 <.001

age −0.057 0.017 −3.324 <.001

CDR 0.390 0.015 26.611 <.001
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Table 4:

Agreement between TWO-SIGMA and MAST: Shows the agreement in rejecting the omnibus null hypothesis 

of an association between T2D status and gene expression in alpha cells using a Bonferroni adjusted 

significance level of 5 × 10−5.

TWO-SIGMA MAST

No Reject Reject

No Reject 1013 273

Reject 1 3
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