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Abstract

Transformers have emerged as a powerful tool for a broad range of natural language processing 

tasks. A key component that drives the impressive performance of Transformers is the self-

attention mechanism that encodes the influence or dependence of other tokens on each specific 

token. While beneficial, the quadratic complexity of self-attention on the input sequence length 

has limited its application to longer sequences – a topic being actively studied in the community. 

To address this limitation, we propose Nyströmformer – a model that exhibits favorable scalability 

as a function of sequence length. Our idea is based on adapting the Nyström method to 

approximate standard self-attention with O(n) complexity. The scalability of Nyströmformer 

enables application to longer sequences with thousands of tokens. We perform evaluations on 

multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence 

length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly 

better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) 

benchmark, Nyströmformer performs favorably relative to other efficient self-attention methods. 

Our code is available at https://github.com/mlpen/Nystromformer.

Introduction

Transformer-based models, such as BERT (Devlin et al. 2019) and GPT-3 (Brown et 

al. 2020), have been very successful in natural language processing (NLP), achieving 

state-of-the-art performance in machine translation (Vaswani et al. 2017), natural language 

inference (Williams, Nangia, and Bowman 2018), paraphrasing (Dolan and Brockett 2005), 

text classification (Howard and Ruder 2018), question answering (Rajpurkar et al. 2016) 

and many other NLP tasks (Peters et al. 2018; Radford et al. 2018). A key feature of 

transformers is what is known as the self-attention mechanism (Vaswani et al. 2017), 

where each token’s representation is computed from all other tokens. Self-attention enables 

interactions of token pairs across the full sequence and has been shown quite effective.
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Despite the foregoing advantages, self-attention also turns out to be a major efficiency 

bottleneck since it has a memory and time complexity of O(n2) where n is the length of 

an input sequence. This leads to high memory and computational requirements for training 

large Transformer-based models. For example, training a BERT-large model (Devlin et al. 

2019) will need 4 months using a single Tesla V100 GPU (equivalent to 4 days using a 

4×4 TPU pod). Further, the O(n2) complexity makes it prohibitively expensive to train large 

Transformers with long sequences (e.g., n = 2048).

To address this challenge, several recent works have proposed strategies that avoid incurring 

the quadratic cost when dealing with longer input sequences. For example, (Dai et al. 2019) 

suggests a trade-off between memory and computational efficiency. The ideas described 

in (Child et al. 2019; Kitaev, Kaiser, and Levskaya 2019) decrease the self-attention 

complexity to O(n n) and O(n log n) respectively. In (Shen et al. 2018b; Katharopoulos 

et al. 2020; Wang et al. 2020), self-attention complexity can be reduced to O(n) with various 

approximation ideas, each with its own strengths and limitations.

In this paper, we propose a O(n) approximation, both in the sense of memory and time, 

for self-attention. Our model, Nyströmformer, scales linearly with the input sequence 

length n. This is achieved by leveraging the celebrated Nyström method, repurposed 

for approximating self-attention. Specifically, our NyströmFormer algorithm makes use 

of landmark (or Nyström) points to reconstruct the softmax matrix in self-attention, 

thereby avoiding computing the n × n softmax matrix. We show that this yields a good 

approximation of the true self-attention.

To evaluate our method, we consider a transfer learning setting using Transformers, where 

models are first pretrained with a language modeling objective on a large corpus, and then 

finetuned on target tasks using supervised data (Devlin et al. 2019; Liu et al. 2019; Lewis 

et al. 2020; Wang et al. 2020). Following BERT (Devlin et al. 2019; Liu et al. 2019), we 

pretrain our proposed model on English Wikipedia and BookCorpus (Zhu et al. 2015) using 

a masked-language-modeling objective. We observe a similar performance to the baseline 

BERT model on English Wikipedia and Book-Corpus. We then finetune our pretrained 

models on multiple downstream tasks in the GLUE benchmark (Wang et al. 2018) and 

IMDB reviews (Maas et al. 2011), and compare our results to BERT in both accuracy and 

efficiency. Across all tasks, our model compares favorably to the vanilla pretrained BERT 

with significant speedups.

Finally, we evaluate our model on tasks with longer sequences from the Long Range Arena 

benchmark (Tay et al. 2020). NyströmFormer performs well compared to several recent 

efficient self-attention methods, including Reformer (Kitaev, Kaiser, and Levskaya 2019), 

Linformer (Wang et al. 2020), and Performer (Choromanski et al. 2020), by margin of ~ 

3.4% in average accuracy. We believe that the idea is a step towards resource efficient 

Transformers.
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Related Work

We briefly review relevant works on efficient Transformers, linearized Softmax kernels and 

Nyström-like methods.

Efficient Transformers.

Weight pruning (Michel, Levy, and Neubig 2019), weight factorization (Lan et al. 2020), 

weight quantization (Zafrir et al. 2019) or knowledge distillation (Sanh et al. 2019) are 

several strategies that have been proposed to improve memory efficiency in Transformers. 

The use of a new pretraining objective in (Clark et al. 2019), product-key attention in 

(Lample et al. 2019), and the Transformer-XL model in (Dai et al. 2019) have shown 

how the overall compute requirements can be reduced. In (Child et al. 2019), a sparse 

factorization of the attention matrix was used for reducing the overall complexity from 

quadratic to O(n n) for generative modeling of long sequences. In (Kitaev, Kaiser, and 

Levskaya 2019), the Reformer model further reduced the complexity to O(n log n) via 

locality-sensitive-hashing (LSH). This relies on performing fewer dot product operations 

overall by assuming that the keys need to be identical to the queries. Recently, in (Wang 

et al. 2020), the Linformer model suggested the use of random projections based on the 

JL lemma to reduce the complexity to O(n) with a linear projection step. The Longformer 

model in (Beltagy, Peters, and Cohan 2020) achieved a O(n) complexity using a local 

windowed attention and a task-motivated global attention for longer documents, while 

BIGBIRD (Zaheer et al. 2020) used a sparse attention mechanism. There are also other 

existing approaches to improve optimizer efficiency, such as micro-batching (Huang et al. 

2019) and gradient checkpointing (Chen et al. 2016). Concurrently with our developments, 

the Performer model proposed in (Choromanski et al. 2020) made use of positive orthogonal 

random features to approximate softmax attention kernels with O(n) complexity.

Linearized Softmax.

In (Blanc and Rendle 2018), an adaptive sampled softmax with a kernel based sampling was 

shown to speed up training. It involves sampling only some of the classes at each training 

step using a linear dot product approximation. In (Rawat et al. 2019), the Random Fourier 

Softmax (RF-softmax) idea uses random Fourier features to perform efficient sampling 

from an approximate softmax distribution for normalized embedding. In (Shen et al. 2018b; 

Katharopoulos et al. 2020), linearizing the softmax attention in transformers was based on 

heuristically separating keys and queries in a linear dot product approximation. While the 

idea is interesting, the approximation error to the softmax matrix in self-attention can be 

large in some cases. The lambda layers in (Bello 2021), can also be thought of as an efficient 

relative attention mechanism.

Nyström-like methods.

Nyström-like methods sample columns of the matrix to achieve a close approximation 

to the original matrix. The Nyström method (Baker 1977) was developed as a way of 

discretizing an integral equation with a simple quadrature rule and remains a widely used 

approach for approximating the kernel matrix with a given sampled subset of columns 

(Williams and Seeger 2001). Many variants such as Nyström with k-means (Zhang, Tsang, 
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and Kwok 2008; Zhang and Kwok 2010), randomized Nyström (Li, Kwok, and Lü 2010), 

Nyström with spectral shift (Wang et al. 2014), Nyström with pseudo landmarks, prototype 

method (Wang and Zhang 2013; Wang, Zhang, and Zhang 2016), fast-Nys (Si, Hsieh, 

and Dhillon 2016), and MEKA (Si, Hsieh, and Dhillon 2017), ensemble Nyström (Kumar, 

Mohri, and Talwalkar 2009) have been proposed for specific improvements over the basic 

Nyström approximation. In (Nemtsov, Averbuch, and Schclar 2016), the Nyström method 

was extended to deal with a general matrix (rather than a symmetric matrix). The authors in 

(Musco and Musco 2017) introduced the RLS-Nyström method, which proposes a recursive 

sampling approach to accelerate landmark points sampling. (Fanuel, Schreurs, and Suykens 

2019) developed DAS (Deterministic Adaptive Sampling) and RAS (Randomized Adaptive 

Sampling) algorithms to promote diversity of landmarks selection.

The most related ideas to our development are (Wang and Zhang 2013; Musco and Musco 

2017). These approaches are designed for general matrix approximation (which accurately 

reflects our setup) while only sampling a subset of columns and rows. However, directly 

applying these methods to approximate a softmax matrix used by self-attention does not 

directly reduce the computational complexity. This is because that even accessing a subset of 

columns or rows of a softmax matrix will require the calculation of all elements in the full 

matrix before the softmax function. And calculating these entries will incur a quadratic cost. 

Nonetheless, inspired by the key idea of using a subset of columns to reconstruct the full 

matrix, we propose a Nyström approximation with O(n) complexity tailored for the softmax 

matrix, for approximating self-attention efficiently.

Nyström-Based Linear Transformers

In this section, we start by briefly reviewing self-attention, then discuss the basic idea of 

Nyström approximation method for the softmax matrix in self-attention, and finally adapting 

this idea to achieve our proposed construction.

Self-Attention

What is self-attention?—Self-attention calculates a weighted average of feature 

representations with the weight proportional to a similarity score between pairs of 

representations. Formally, an input sequence of n tokens of dimensions d, X ∈ Rn×d, is 

projected using three matrices W Q ∈ Rd × dq, W K ∈ Rd × dk, and W V ∈ Rd × dv to extract feature 

representations Q, K, and V, referred to as query, key, and value respectively with dk = dq. 

The outputs Q, K, V are computed as

Q = XW Q, K = XW K, V = XW V . (1)

So, self-attention can be written as,

D(Q, K, V ) = SV = softmax QKT

dq
V , (2)

where softmax denotes a row-wise softmax normalization function. Thus, each element in 

the softmax matrix S depends on all other elements in the same row.
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Compute cost of self-attention.—The self-attention mechanism requires calculating n2 

similarity scores between each pair of tokens, leading to a complexity of O(n2) for both 

memory and time. Due to this quadratic dependence on the input length, the application of 

self-attention is limited to short sequences (e.g., n < 1000). This is a key motivation for a 

resource-efficient self-attention module.

Nyström Method for Matrix Approximation

The starting point of our work is to reduce the computational cost of self-attention 

in Transformers using the Nyström method, widely adopted for matrix approximation 

(Williams and Seeger 2001; Drineas and Mahoney 2005; Wang and Zhang 2013). Following 

(Wang and Zhang 2013), we describe a potential strategy and its challenges for using the 

Nyström method to approximate the softmax matrix in self-attention by sampling a subset of 

columns and rows.

Denote the softmax matrix used in self-attention S = softmax QKT
dq

∈ Rn × n . S can be 

written as

S = softmax QKT

dq
= AS BS

FS CS
, (3)

where AS ∈ Rm×m, BS ∈ Rm×(n−m), FS ∈ R(n−m)×m and CS ∈ R(n−m)×(n−m). AS is designated 

to be our sample matrix by sampling m columns and rows from S.

Quadrature technique.—S can be approximated via the basic quadrature technique of 

the Nyström method. It begins with the singular value decomposition (SVD) of the sample 

matrix, AS = UΛVT, where U, V ∈ Rm×m are orthogonal matrices, Λ ∈ Rm×m is a diagonal 

matrix. Based on the out-of-sample columns approximation (Wang and Zhang 2013), the 

explicit Nyström form of S can be reconstructed with m columns and m rows from S,

S =
AS BS

FS FSAS
+BS

= AS

FS
AS

+ AS BS , (4)

where AS
+ is the Moore-Penrose inverse of AS. CS is approximated by FSAS

+BS. Here, (4) 

suggests that the n × n matrix S can be reconstructed by sampling m rows (AS, BS) and m 
columns (AS, FS) from S and finding the Nyström approximation S.

Nyström approximation for softmax matrix.—We briefly discuss how to construct 

the out-of-sample approximation for the softmax matrix in self-attention using the standard 

Nyström method. Given a query qi and key kj, let

KK qi = softmax qiKT
dq

; KQ kj = softmax Qkj
T

dq

where KK qi ∈ R1 × n and KQ kj ∈ Rn × 1. We can then construct
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ϕK qi = Λ− 1
2V T KK

T qi m × 1

ϕQ kj = Λ− 1
2UT KQ kj m × 1

where [·]m×1 refers to calculating the full n × 1 vector and then taking the first m × 1 entries. 

With ϕK(qi) and ϕQ(kj) available in hand, the entry of S for standard Nyström approximation 

is calculated as,

Sij = ϕK qi
TϕQ kj , ∀i = 1, …, n, j = 1, …, n (5)

In matrix form, S can be represented as,

S = softmax QKT

dq n × m

AS
+ softmax QKT

dq m × n

(6)

where [·]n×m refers to taking m columns from n × n matrix and [·]m×n refers to taking m 
rows from n × n matrix. This representation is the application of (4) for softmax matrix 

approximation in self-attention. 
AS

FS
 in (4) corresponds to the first n × m matrix in (6) and 

[AS BS] in (4) corresponds to the last n × m matrix in (6). More details of the matrix 

representation is available in the appendix.

A key challenge of Nyström approximation.—Unfortunately, (4) and (6) require 

calculating all entries in QKT due to the softmax function, even though the approximation 

only needs to access a subset of the columns of S, i.e., 
AS

FS
. The problem arises due to 

the denominator within the row-wise softmax function. Specifically, computing an element 

in S requires a summation of the exponential of all elements in the same row of QKT. 

Thus, calculating 
AS

FS
 needs accessing the full QKT, shown in Fig. 1, and directly applying 

Nyström approximation as in (4) is not attractive.

Linearized Self-Attention via Nyström Method

We now adapt the Nyström method to approximately calculate the full softmax matrix S. 

The basic idea is to use landmarks K and Q from key K and query Q to derive an efficient 

Nyström approximation without accessing the full QKT. When the number of landmarks, m, 

is much smaller than the sequence length n, our Nyström approximation scales linearly w.r.t. 

input sequence length in the sense of both memory and time.

Following the Nyström method, we also start with the SVD of a smaller matrix, AS, 

and apply the basic quadrature technique. But instead of subsampling the matrix after the 

softmax operation – as one should do in principle – the main modification is to select 
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landmarks Q from queries Q and K from keys K before softmax and then form a m × m 
matrix AS by applying the softmax operation on the landmarks. We also form the matrices 

corresponding to the left and right matrices in (4) using landmarks Q and K. This provides a 

n × m matrix and m × n matrix respectively. With these three n × m, m × m, m × n matrices 

we constructed, our Nyström approximation of the n × n matrix S involves the multiplication 

of three matrices as in (4).

In the description that follows, we first define the matrix form of landmarks. Then, based on 

the landmarks matrix, we form the three matrices needed for our approximation.

Definition 1.—Let us assume that the selected landmarks for inputs Q = [q1; …; qn] and 

K = [k1; …; kn] are qj j = 1
m  and kj j = 1

m
 respectively. We denote the matrix form of the 

corresponding landmarks as

 For  qj j = 1
m , Q = q1; …; qm ∈ Rm × dq

 For  kj j = 1
m , K = k1; …; km ∈ Rm × dq

The corresponding m × m matrix is generated by

AS = softmax QKT
dq

 where AS = Um × mΛm × mV m × m
T

Note that in the SVD decomposition of AS, Um×m and Vm×m are orthogonal matrices.

Similar to the out-of-sample approximation procedure for the standard Nyström scheme 

described above, given a query qi and key kj, let

KK qi = softmax qiK
T

dq
; KQ kj = softmax Qkj

T

dq
,

where KK qi ∈ R1 × m and KQ kj ∈ Rm × 1. We can then construct,

ϕK qi = Λm × m
− 1

2 V m × m
T KK

T qi

ϕQ kj = Λm × m
− 1

2 Um × m
T KQ kj

So, the entry for S depends on landmark matrices K and Q and is calculated as,

Sij = ϕK qi
TϕQ kj , ∀i = 1, …, n, j = 1, …, n, (7)
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To derive the explicit Nyström form, S, of the softmax matrix with the three n × m, m 
× m, m × n matrices, we assume that AS is non-singular first to guarantee that the above 

expression to define ϕK and ϕQ is meaningful. We will shortly relax this assumption to 

achieve the general form as (4).

When AS is non-singular,

Sij = ϕK qi
TϕQ kj (8)

= KK qi V m × mΛm × m
−1 Um × m

T KQ kj . (9)

Let W m = V m × mΛm × m
−1 Um × m

T . Recall that a SVD of AS is Um × mΛm × mV m × m
T , and so, WmAS = Im×m. 

Therefore,

Sij = KK qi AS
−1KQ kj (10)

Based on (10), we can rewrite it to have a similar form as (4) (i.e., not requiring that AS is 

non-singular) as

Sij = KK qi
TAS

+KQ kj , (11)

where AS
+ is a Moore-Penrose pseudoinverse of AS. So,

Sij = softmax qiK
T

dq
AS

+softmax Qkj
T

dq
, (12)

for i, j = {1, …, n}. The Nyström form of the softmax matrix, S = softmax QKT
dq

 is thus 

approximated as

S = softmax QKT

dq
softmax QKT

dq

+
softmax QKT

dq

(13)

Note that we arrive at (13) via an out-of-sample approximation similar to (4). The difference 

is that in (13), the landmarks are selected before the softmax operation to generate the 

out-of-sample approximation. This is a compromise but avoids the need to compute the full 

softmax matrix S for a Nyström approximation. Fig. 2 illustrates the proposed Nyström 

approximation and Alg. 1 summarizes our method.

We now describe (a) the calculation of the Moore-Penrose inverse and (b) the selection of 

landmarks.

Moore-Penrose inverse computation.—Moore-Penrose pseudoinverse can be 

calculated by using singular value decomposition. However, SVD is not very efficient on 
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GPUs. To accelerate the computation, we use an iterative method from (Razavi et al. 2014) 

to approximate the Moore-Penrose inverse via efficient matrix-matrix multiplications.

Lemma 1.—For AS ∈ Rm×m, the sequence Zj j = 0
j = ∞ generated by (Razavi et al. 2014),

Zj + 1 = 1
4Zj 13I − ASZj 15I − ASZj 7I − ASZj (14)

converges to the Moore-Penrose inverse AS
+ in the third-order with initial approximation Z0 

satisfying ‖ASAS
+ − ASZ0‖ < 1.

We select Z0 by Z0 = AS
T / AS 1 AS ∞  where

AS 1 = max
j

∑
i = 1

m
| AS ij|; AS ∞ = max

j
∑

j = 1

n
| AS ij|,

based on (Pan and Schreiber 1991). This choice ensures that ||I − ASZ0||2 < 1. When AS is 

non-singular,

ASAS
+ − ASZ0 2 = I − ASZ0 2 < 1.

Without the non-singular constraint, the choice of initializing Z0 provides a good 

approximation in our experiments. For all our experiments, we need to run about 6 iterations 

in order to achieve a good approximation of the pseudoinverse.

Let AS
+ be approximated by Z⋆ with (14). Our Nyström approximation of S can be written as

S = softmax QKT

dq
Z⋆softmax QKT

dq
. (15)

Here, (15) only needs matrix-matrix multiplications, thus the gradient computation is 

straight-forward.

Landmarks selection.—Landmark points (inducing points (Lee et al. 2019)) can be 

selected by using K-means clustering (Zhang, Tsang, and Kwok 2008; Vyas, Katharopoulos, 

and Fleuret 2020). However, the EM style of updates in K-means is less desirable during 

mini-batch training. We propose to simply use Segment-means similar to the local average 
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pooling previously used in the NLP literature (Shen et al. 2018a). Specifically, for input 

queries Q = [q1; …; qn], we separate the n queries into m segments. As we can pad inputs to 

a length divisible to m, we assume n is divisible by m for simplicity. Let l = n/m, landmark 

points for Q are calculated as shown in (16). Similarly, for input keys K = [k1;…;kn], 

landmarks are computed as shown below in (16).

qj = ∑
i = (j − 1) × l + 1

(j − 1) × l + m qi

m , kj = ∑
i = (j − 1) × l + 1

(j − 1) × l + m ki

m , (16)

where j = 1, ⋯, m. Segment-means requires a single scan of the sequence to compute 

the landmarks leading to a complexity of O(n). We find that using 64 landmarks is often 

sufficient to ensure a good approximation, although this depends on the application. More 

details regarding the landmark selection is provided in the appendix.

Approximate self-attention.—With landmark points and pseudoinverse computed, the 

Nyström approximation of the softmax matrix can be calculated. By plugging in the 

Nyström approximation, we obtain a linearized version SV , to approximate the true self-

attention SV,

SV = softmax QKT

dq
Z⋆softmax QKT

dq
V . (17)

Fig. 3 presents an example of the fidelity between Nyström approximate self-attention 

versus true self-attention.

Complexity analysis.—We now provide a complexity analysis of the Nyström 

approximation which needs to account for landmark selection, pseudoinverse calculation, 

and the matrix multiplications. Landmark selection using Segment-means takes O(n). 

Iterative approximation of the pseudoinverse takes O(m3) in the worst case. The matrix 

multiplication first calculates softmax QKT / dq × Z⋆ and QKT / dq × V , and then 

calculates the product softmax QKT / dq × Z⋆ × softmax QKT / dq × V . This costs O(nm2 

+ mndv + m3 + nmdv). The overall time complexity is thus O(n + m3 + nm2 + mndv + m3 

+ nmdv). In terms of memory, storing the landmarks matrix Q and K involves a O(mdq) cost 

and storing four Nyström approximation matrices has a O(nm + m2 + mn + ndv) cost. Thus, 

the memory footprint is O(mdq + nm + m2 + mn + ndv). When the number of landmarks 

m ≪ n, the time and memory complexity of our Nyström approximation is O(n), i.e., scales 

linearly w.r.t. the input sequence length n.

Analysis of Nyström Approximation

The following simple result analyzes an idealized setting and states that the Galerkin 

discretization of ϕK(q)TϕQ(k) with the same set of landmark points, induces the same 

Nyström matrix, in particular, the same n × n Nyström approximation Sij. This result agrees 

with the discussion in (Bremer 2012).
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Lemma 2.—Given the input data set Q = qi i = 1
n  and K = ki i = 1

n , and the corresponding 

landmark point set Q = qj j = 1
m  and Kj = k j = 1

m
. Using (17), the Nyström approximate self-

attention converges to true self-attention if there exist landmarks points qp and kt such that 

qp = qi and kt = kj, ∀i = 1, …, n, j = 1, …, n.

Lemma 2 suggests that if the landmark points overlap sufficiently with the original data 

points, the approximation to self-attention will be good. While the condition here is problem 

dependent, we note that it is feasible to achieve an accurate approximation without using 

a large number of landmarks. This is because (Oglic and Gärtner 2017) points out that the 

error of Nyström approximation depends on the spectrum of the matrix to be approximated 

and it decreases with the rank of the matrix. When this result is compared with the 

observation in (Wang et al. 2020) where the authors suggest that self-attention is low-rank, 

stronger guarantees based on structural properties of the matrix that we wish to approximate 

are possible.

Our Model: Nyströmformer

Architecture.—Our proposed architecture is shown in Fig. 4. Each box represents an 

input, output, or intermediate matrix. The variable name and the size of the matrix are 

inside box. × denotes matrix multiplication, and + denotes matrix addition. The orange 

colored boxes are those matrices used in the Nyström approximation. The green boxes 

are the skip connection added in parrallel to the approximation. The dashed bounding box 

illustrates the three matrices of Nystroöm approximate softmax matrix in self-attention in 

Eq. 15. sMEANS is the landmark selection using Segment-means (averaging m segments 

of input sequence). pINV is the iterative Moore-Penrose pseudoinverse approximation. And 

DConv denotes depthwise convolution. Given the input key K and query Q, our model 

first uses Segment-means to compute landmark points as matrices K and Q. With the 

landmark points, our model then calculates the Nyström approximation using approximate 

Moore-Penrose pseudoinverse. A skip connection of value V, implemented using a 1D 

depthwise convolution, is also added to the model to help the training.

Experiments

We now present our experiments and results. Our experiments follow a transfer learning 

setting that consists of two stages. In the first stage, we train Nyströmformer on a large-scale 

text corpus, and report the language modeling performance of our model on a hold-out 

validation set. In the second stage, we fine-tune the pre-trained Nyströmformer across 

several different NLP tasks in GLUE benchmarks (Wang et al. 2019) and IMDB reviews 

(Maas et al. 2011), and report the performance on individual dataset for each task. In both 

stages, we compare our results to a baseline Transformer model (BERT). In addition to 

language modeling, we also conduct experiments on long range context tasks in the Long 

Range Arena (LRA) benchmark.

(Pre-)training of Language Modeling

Our first experiment evaluates if our model can achieve similar performance with reduced 

complexity compared to a standard Transformer on language modeling. We introduce the 
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dataset and evaluation protocol, describe implementation details, and finally present the 

results of our model.

Dataset and metrics.—We consider BookCorpus plus English Wikipedia as the training 

corpus, which is further split into training (80%) and validation (20%) sets. Our model 

is trained using the training set. We report the masked-language-modeling (MLM) and 

sentence-order-prediction (SOP) accuracy on the validation set, and compare the efficiency 

(runtime/memory) to a baseline.

Baselines.—Our baseline is the well-known Transformer based model – BERT (Devlin et 

al. 2019). Specifically, we consider two variants of BERT:

• BERT-small is a light weighted BERT model with 4 layers. We use BERT-

small to compare to linear Transformers, including ELU linearized self-attention 

(Katharopoulos et al. 2020) and Linformer (Wang et al. 2020).

• BERT-base is the base model from (Devlin et al. 2019). We use this model as 

our baseline when fine-tuning on downstream NLP tasks.

Our Nyströmformer replaces the self-attention in BERT-small and BERT-base using the 

proposed Nyström approximation. We acknowledge that several very recent articles (Zaheer 

et al. 2020; Beltagy, Peters, and Cohan 2020), concurrent with our work, have also 

proposed efficient O(n) self-attention for Transformers. An exhaustive comparison to a 

rapidly growing set of algorithms is prohibitive unless extensive compute resources are 

freely available. Thus, we only compare runtime performance and the memory consumption 

of our method to Linformer (Wang et al. 2020) and Longformer (Beltagy, Peters, and Cohan 

2020) in Table 1.

Implementation details.—Our model is pre-trained with the masked-language-modeling 

(MLM) and sentence-order-prediction (SOP) objectives (Lan et al. 2020). We use a batch 

size of 256, Adam optimizer with learning rate 1e-4, β1 = 0.9, β2 = 0.999, L2 weight decay 

of 0.01, learning rate warm-up over the first 10,000 steps, and linear learning rate decay to 

update our model. Training BERT-base with 1M update steps takes more than one week on 

8 V100 GPUs. To keep compute costs reasonable, our baseline (BERT-base) and our model 

are trained with 0.5M steps. We also train our model with ~0.25M steps, initialized from 

pre-trained BERT-base for speed-up. For BERT-small, we train for 0.1M steps. More details 

are in the appendix.

Results on accuracy and efficiency.—We report the validation accuracy and inference 

efficiency of our model and compare the results to transformer based models. In Fig. 

5 and 6, we plot MLM and SOP pre-training validation accuracy, which shows that 

Nyströformer is comparable to a standard transformer and outperforms other variants of 

efficient transformers. We also note the computation and memory efficiency of our model 

in Table 1. To evaluate the inference time and memory efficiency, we generate random 

inputs for self-attention module with sequence length n ∈ [512, 2048, 8192]. All models 

are evaluated on the same machine setting with a Nvidia 1080Ti and we report the 

improved inference speed and memory savings. In Table 1, Nyströmformer-64 denotes 
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Nystr omformer self-attention module using 64 landmarks and Nyströmformer-32 denotes 

Nyströmformer module using 32 landmarks. Linformer-256 denotes Linformer self-attention 

module using linear projection dimension 256. Longformer-257 denotes Longformer self-

attention using sliding window size 257(128 × 2 + 1). It shows that our Nyström self-

attention offers favorable memory and time efficiency over standard self-attention and 

Longformer self-attention. With a length of 8192, our model offers 1.2× memory saving 

and 3× speed-up over Longformer, and 1.7× memory saving over Linformer with similar 

running time.

Fine-tuning on Downstream NLP tasks

Our second experiment is designed to test the generalization ability of our model on 

downstream NLP tasks. To this end, we fine-tune the pretrained model across several NLP 

tasks.

Datasets and metrics.—We consider the datasets of SST-2 (Socher et al. 2013), MRPC 

(Dolan and Brockett 2005), QNLI (Rajpurkar et al. 2016), QQP (Chen et al. 2018), and 

MNLI (Williams, Nangia, and Bowman 2018) in GLUE benchmark and IMDB reviews 

(Maas et al. 2011). We follow the standard evaluation protocols, fine-tune the pre-trained 

model on the training set, report the results on the validation set, and compare them to our 

baseline BERT-base.

Implementation details.—We fine-tune our pre-trained model on GLUE benchmark 

datasets and IMDB reviews respectively and report its final performance. For larger datasets 

(SST-2, QNLI, QQP, MMNL, IMDB reviews), we use a batch size of 32 and the AdamW 

optimizer with learning rate 3e-5 and fine-tune our models for 4 epochs. For MRPC, due 

to the sensitivity of a smaller dataset, we follow (Devlin et al. 2019) by performing a 

hyperparameter search with candidate batch size [8, 16, 32] and learning rate [2e-5, 3e-5, 

4e-5, 5e-5], and select the best validation result. As these downstream tasks do not exceed 

the maximum input sequence length 512, we fine-tune our model trained on an input 

sequence length of 512.

Results.—Table 2 presents our experimental results on natural language understanding 

benchmarks with different tasks. Our results compares favorably to BERT-base across all 

downstream tasks. Further, we also experiment with fine-tuning our model using longer 

sequences (n = 1024), yet the results remain almost identical to n = 512, e.g. 93.0 vs. 93.2 

accuracy on IMDB reviews. These results suggest that our model is able to scale linearly 

with input length. Additional details on longer sequences is in the appendix.

Long Range Arena (LRA) Benchmark

Our last experiment evaluates our model on tasks with longer sequence lengths. We follow 

the LRA benchmark (Tay et al. 2020) and compare our method against other efficient 

self-attention variants.

Datasets and metrics.—We consider the LRA benchmark (Tay et al. 2020) with tasks of 

Listops (Nangia and Bowman 2018), byte-level IMDb reviews text classification (Maas et al. 

Xiong et al. Page 13

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2021 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2011), byte-level document retrieval (Radev et al. 2013), image classification on sequences 

of pixels (Krizhevsky, Hinton et al. 2009), and Pathfinder (Linsley et al. 2018). We follow 

the evaluation protocol from (Tay et al. 2020), including the train/test splits, and report the 

classification accuracy for each task, as well as the average accuracy across all tasks.

Baselines.—We compare different self-attention methods using a same Transformer 

model. Our baselines consist of the vanilla self-attention (Vaswani et al. 2017), and several 

recent efficient self-attention variants, including Reformer (Kitaev, Kaiser, and Levskaya 

2019), Linformer (Wang et al. 2020), and Performer (Choromanski et al. 2020).

Implementation details.—The official LRA benchmark (Tay et al. 2020) is implemented 

in Jax/Flax (Frostig, Johnson, and Leary 2018). To achieve a fair comparison to our 

baselines implemented in PyTorch, we reimplemented the benchmark in PyTorch and 

verified the results. All our experiments, including our method and all baselines, use a 

Transformer model with 2 layers, 64 embedding dimension, 128 hidden dimension, 2 

attention heads. Mean pooling is used for all tasks. The number of hashes for Reformer is 2, 

the projection dimension for Linformer is 256, and random feature dimension for Performer 

is 256.

Results.—Table 3 compares our method to baselines. While we achieve consistent 

results reported in (Tay et al. 2020) for most tasks in our PyTorch reimplementation, the 

performance on Retrieval task is higher for all models following the hyperparameters in (Tay 

et al. 2020). In Table 3, our results are on par with the vanilla self-attention (Vaswani et 

al. 2017) for all tasks, with comparable average accuracy (+0.18%) but are more efficient 

(see Table 1). Importantly, our method outperforms other efficient self-attention methods, 

with +3.91%, +3.36%, +5.32% in average accuracy against Reformer (Kitaev, Kaiser, and 

Levskaya 2019), Linformer (Wang et al. 2020), and Performer (Choromanski et al. 2020), 

respectively. We find that the model behaves favorably relative to the concurrent work of 

Performer across all tasks, and in general, provides a good approximation to self-attention 

for longer sequences.

Conclusion

Scaling Transformer based models to longer sequences is desirable in both NLP as well as 

computer vision, and it will involve identifying ways to mitigate its compute and memory 

requirements. Within the last year, this need has led to a number of results describing 

how randomized numerical linear algebra schemes based on random projections and low 

rank assumptions can help (Katharopoulos et al. 2020; Wang et al. 2020; Beltagy, Peters, 

and Cohan 2020; Zaheer et al. 2020). Here, we approach this task differently by showing 

how the Nyström method, a widely used strategy for matrix approximation, can be adapted 

and deployed within a deep Transformer architecture to provide an efficient approximation 

of self attention. We show that our design choices and modifications enable all key 

operations to be mapped to popular deep learning libraries conveniently. The algorithm 

maintains the performance profile of other self-attention approximations in the literature but 

offers additional benefit of resource utilization, and is a step towards building Transformer 
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models on very long sequences. Our code/appendix is available at https://github.com/mlpen/

Nystromformer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A key challenge of Nyström approximation. The orange block on the left shows a n × m 
sub-matrix of S used by Nyström matrix approximation in (4). Computing the sub-matrix, 

however, requires all entries in the n × n matrix before the softmax function (QKT). 

Therefore, a direct application of Nyström approximation is problematic.
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Figure 2: 
Illustration of a Nyström approximation of softmax matrix in self-attention. The left image 

shows the true softmax matrix used in self-attention and the right images show its Nyström 

approximation. Our approximation is computed via multiplication of three matrices.
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Figure 3: 
An example of Nyström approximation vs. ground-truth self-attention. Top: standard self-

attention computed by (2). Bottom: self-attention from our proposed Nyström approximation 

in (17). We see that the attention patterns are quite similar.
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Figure 4: 
The proposed architecture of efficient self-attention via Nyström approximation. Each box 

represents an input, output, or intermediate matrix. The variable name and the size of the 

matrix are inside each box.
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Figure 5: 
Results on masked-language-modeling (MLM) and sentence-order-prediction (SOP). 

On BERT-small, our Nyström self-attention is competitive to standard self-attention, 

outperforming Linformer and other linear self-attentions.
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Figure 6: 
Results on MLM and SOP. We report MLM and SOP validation accuracy for each training 

step. BERT-base (from scratch) is trained with 0.5M steps, our Nyström (from scratch) 

is trained with 0.5M steps as BERT-base (from scratch), and our Nyströmformer (from 

standard) is trained with ~0.25M steps initialized from pretrained BERT-base.
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