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Abstract

Introduction: The purpose of this study is to examine the predictive utility of polygenic risk scores 
(PRSs) for smoking behaviors.
Aims and Methods: Using summary statistics from the Sequencing Consortium of Alcohol and 
Nicotine use consortium, we generated PRSs of ever smoking, age of smoking initiation, cigarettes 
smoked per day, and smoking cessation for participants in the population-based Atherosclerosis 
Risk in Communities (ARIC) study (N  =  8638), and the Collaborative Genetic Study of Nicotine 
Dependence (COGEND) (N = 1935). The outcomes were ever smoking, age of smoking initiation, 
heaviness of smoking, and smoking cessation.
Results: In the European ancestry cohorts, each PRS was significantly associated with the cor-
responding smoking behavior outcome. In the ARIC cohort, the PRS  z-score for  ever smoking 
predicted smoking (odds ratio [OR]: 1.37; 95% confidence interval [CI]: 1.31, 1.43); the PRS z-score 
for age of smoking initiation was associated with age of smoking initiation (OR: 0.87; 95% CI: 0.82, 
0.92); the PRS z-score for cigarettes per day was associated with heavier smoking (OR: 1.17; 95% CI: 
1.11, 1.25); and the PRS z-score for smoking cessation predicted successful cessation (OR: 1.24; 95% 
CI: 1.17, 1.32). In the African ancestry cohort, the PRSs did not predict smoking behaviors.
Conclusions: Smoking-related PRSs were associated with smoking-related behaviors in European 
ancestry populations. This improvement in prediction is greatest in the lowest and highest genetic 
risk categories. The lack of prediction in African ancestry populations highlights the urgent need to 
increase diversity in research so that scientific advances can be applied to populations other than 
those of European ancestry.
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Implications: This study shows that including both genetic ancestry and PRSs in a single model 
increases the ability to predict smoking behaviors compared with the model including only demo-
graphic characteristics. This finding is observed for every smoking-related outcome. Even though 
adding genetics is more predictive, the demographics alone confer substantial and meaningful 
predictive power. However, with increasing work in PRSs, the predictive ability will continue to 
improve.

Introduction

Cigarette smoking is a complex and multifaceted behavior. Key mile-
stones include smoking initiation, regular use, heavy consumption, 
and cessation, and both genetic and environmental factors contribute 
to each step in this behavioral cascade. Though the prevalence of 
cigarette smoking has decreased in the United States1 through both 
reduced initiation and increased cessation, it remains a leading cause 
of preventable death2 and a major contributor to cancer, cardiovas-
cular disease, and lung disease.3 In the United States, approximately 
34 million adults smoke,4 despite approximately two-thirds of cur-
rent smokers reporting a desire to quit.5

Cigarette smoking behaviors are heritable,6,7 and several gen-
etic studies have  examined smoking-related phenotypes.8 The lar-
gest genome-wide association study (GWAS) of smoking-related 
phenotypes to date was performed by the GWAS and Sequencing 
Consortium of Alcohol and Nicotine use (GSCAN) consortium (N 
up to 1.2 million).9 GSCAN found hundreds of genetic variants, both 
known and novel, associating with ever smoking, age of smoking 
initiation, cigarettes smoked per day, and smoking cessation.9 This 
work has created an extensive catalog of genetic associations for 
smoking-related behaviors.

These GWAS results now provide the opportunity to develop 
polygenic risk scores (PRSs) by combining summary single nu-
cleotide polymorphism (SNP) statistics from a GWAS into a single 
risk variable that can then be tested for its predictive ability for 
an individual to develop a trait or disease. PRSs have successfully 
been applied to predict many disorders including breast cancer,10 
obesity,11 prostate cancer,12 and schizophrenia.13 A study by Belsky 
et al. created an early smoking-related PRS based on GWAS results 
from three meta-analyses of cigarettes smoked per day and exam-
ined the association of the PRS with smoking transitions observed 
in 1037 participants in a 38-year prospective study conducted in 
New Zealand.14 The authors observed that smokers who had a high 
smoking-related PRS were more likely to progress to heavy smoking 
and were less likely to quit.14

With the availability of GWAS results from the large-scale 
GSCAN consortium and thus more statistical power to capture gen-
etic signals, our goal was to more comprehensively test the utility 
of genetic variables to predict different steps in smoking behaviors: 
ie, ever smoking, early versus late smoking initiation, heaviness of 
smoking, and smoking cessation—in a population-based study and 
a selected sample.

Materials and Methods

Demographics Data
The Atherosclerosis Risk in Communities Study
The Atherosclerosis Risk in Communities (ARIC) study is a pro-
spective epidemiologic study focusing on understanding athero-
sclerosis.15 In 1987, approximately 16 000 participants ages 45–64 

were recruited from four US communities: Forsyth County, NC; 
Jackson, MS; Minneapolis, MN; and Washington County, MD.15 
A  subset of the ARIC participants underwent genetic testing, and 
the dataset was divided into two samples by ancestry: one dataset 
consisted of 8638 European American individuals with a mean age 
of 54.3 ± 6 (Supplementary Table 1); the second dataset consisted 
of 2412 African American individuals with a mean age of 53.4 ± 6 
(Supplementary Table 2). Because the main GSCAN results were gen-
erated in those of European ancestry,9 we focused our primary ana-
lyses of ARIC to participants of European descent with genetic data.

Smoking history was assessed via self-report.15 An individual was 
considered an ever smoker (compared with a never smoker) if the in-
dividual had smoked. Age of smoking initiation was reported as the 
age of first regularly smoking cigarettes. Age of smoking initiation 
was transformed into a binary outcome by stratifying individuals 
into one of two groups: early initiation (those who initiated smoking 
at <18 years old) and later initiation (those who initiated smoking 
at ≥18 years old) based on a median split. Individuals who had ever 
smoked regularly were also asked the average number of cigarettes 
smoked per day. The cigarettes smoked per day measure was con-
structed from the maximum of lifetime number of cigarettes smoked 
per day. Cigarettes smoked per day was then dichotomized into two 
levels (heavier (≥21 cigarettes smoked per day) versus lighter (≤20 
cigarettes smoker per day) smoking). Finally, of those individuals 
who had smoked, successful smoking cessation was defined in those 
who reported no smoking at the last assessment. All smoking-related 
phenotypes were dichotomized to assist in interpretability of re-
sults. For information on the distribution of these key variables, see 
Supplementary Tables 1 and 2. This study had Institutional Review 
Board (IRB) approval.

The Collaborative Genetic Study of Nicotine Dependence
The purpose of the Collaborative Genetic Study of Nicotine 
Dependence (COGEND) was to study genetic contributions to the 
development of nicotine dependence. The COGEND study included 
individuals ages 25–44 who were recruited by telephone screening in 
Detroit, Minneapolis, and St. Louis.16 Extremes in smoking behavior 
were recruited into the study. Current nicotine dependent cases 
were defined as having a Fagerström Test for Nicotine Dependence 
(FTND) score of 4–10 while controls were defined as having an 
FTND score of 0–1 while having smoked at least 100 cigarettes 
lifetime.17 The COGEND individuals in this study self-identified as 
European ancestry, which was confirmed genetically18 (N  = 1935) 
(Supplementary Table 3). All participants were ever smokers. Age of 
smoking initiation was reported as the age of first regularly smoking 
cigarettes. Age of smoking initiation was transformed into a binary 
outcome by stratifying individuals into one of two groups: early 
initiation (those who initiated smoking at <14 years old) and later 
initiation (those who initiated smoking at ≥14 years old) based on 
a median split. Participants were also asked the number of cigar-
ettes smoked per day when smoking the most. Cigarettes smoked 
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per day was then dichotomized into two levels (heavier (≥21 cigar-
ettes smoked per day) versus lighter (≤20 cigarettes smoked per day) 
smoking). Finally, successful smoking cessation was defined in those 
who reported no smoking at the last assessment. This study had IRB 
approval at each data collection site, and participants gave informed 
consent prior to enrolling.

Genotyping
ARIC participants were genotyped at the Broad Institute on the 
Affymetrix 6.0 chip. Data for ARIC participants were obtained from 
the National Center for Biotechnology Information database of 
Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/
sites/entrez?db=gap) under accession number (phs000090.p5.v1). 
COGEND data were genotyped using Illumina HumanOmni2.5 
from the Genetic Architecture of Smoking and Smoking Cessation 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000404.v1.p1&phv=162951&phd=3684&pha=&pht=23
69&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1) 
under accession number (phs000404.v1.p1) and using Illumina 1M 
from the Study of Addiction: Genetics and Environment (SAGE) 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000092.v1.p1) under accession number (phs000092.v1.p1). 
Additional data on how COGEND individuals were genotyped 
can be found on the  dbGaP repository (https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000092.
v1.p1&amp;phd=2274) under accession number (phd002274.1).

GWAS Quality Control and Imputation
Standard GWAS Quality Control (QC) was applied using PLINK 
software,19 and SNPs were aligned to the + strand of the 1000 
Genomes (build 37, 2013). Genotyped SNPs were imputed on the 
University of Michigan Imputation server using the 1000 Genomes 
build 37 phase 5 as the reference panel.20 Imputed SNPs were filtered 
for an info score of ≥0.9 and a minor allele frequency ≥1%. Included 
SNPs were converted to hard calls.

Statistical Analyses
We used Stata/SE (College Station, TX) to summarize demographic 
and covariate data and to perform regression analyses. Principal 
components (PCs) of genetic ancestry for ARIC were downloaded 
from the dbGaP repository (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gap). We generated PCs for genetic ancestry for COGEND 
using EIGENSTRAT4.2.21

Four smoking-related PRSs were generated from the GWAS 
summary statistics of ever smoking, age of smoking initiation, cig-
arettes smoked per day, and smoking cessation from GSCAN9 using 
PRSice software.22 Because GSCAN included individuals from the 
ARIC and COGEND cohorts, we received updated GSCAN GWAS 
summary statistics excluding these two studies to preserve independ-
ence between generating and applying the PRSs. SNPs were clumped 
by PRSice.22 PRSs were created by PRSice.22 One of the most docu-
mented SNPs of smoking, rs16969968,8 was forced into the creation 
of each PRS. We included this SNP because rs16969968 confers a 

Table 1. Models Predicting Each Smoking Phenotype Within European Americans in the ARIC Dataset

Exposures

Demographics only Demographics plus genetic ancestry and PRS

OR [95% CI] OR [95% CI]

Ever smoking
 Age 1.00 [0.99, 1.01] 1.00 [0.99, 1.01]
 Sex—female 0.39 [0.35, 0.42] 0.37 [0.34, 0.41]
 PRS—ever smoking  1.37 [1.31, 1.43]
 Model prediction Pseudo R2 = 0.068 Pseudo R2 = 0.107a

Early age of smoking initiation (<18 years)
 Age 0.99 [0.98, 1.00] 0.99 [0.98, 1.00]
 Sex—female 0.42 [0.38, 0.48] 0.42 [0.37, 0.47]
 PRS—age of smoking initiation  0.87 [0.82, 0.92]
 Model prediction Pseudo R2 = 0.056 Pseudo R2 = 0.067b

Heavier smoking (≥21 cigarettes smoked per day)
 Age 0.97 [0.96, 0.98] 0.97 [0.96, 0.98]
 Sex—female 0.43 [0.38, 0.48] 0.42 [0.37, 0.47]
 PRS—cigarettes smoked per day  1.17 [1.11, 1.25]
 Model prediction Pseudo R2 = 0.056 Pseudo R2 = 0.066c

Smoking cessation
 Age 0.97 [0.96, 0.98] 0.97 [0.96, 0.98]
 Sex—female 2.00 [1.79, 2.24] 2.01 [1.79, 2.25]
 PRS—smoking cessation  1.24 [1.17, 1.32]
 Model prediction Pseudo R2 = 0.047 Pseudo R2 = 0.069d

ARIC = Atherosclerosis Risk in Communities, CI = confidence interval, OR = odds ratio, PRS = polygenic risk score. The reference for sex is male. The PRSs are in 
z-scores. The reference group for each PRS is a z-score of 0. Each OR represents a 1 standard deviation increase in PRS z-score.
aThe Χ2 statistic from the likelihood ratio test when comparing to the demographics only model is 264.80 with 11 degrees of freedom and a corresponding p value 
of <0.0001.
bThe Χ2 statistic from the likelihood ratio test when comparing to the demographics only model is 44.19 with 11 degrees of freedom and a corresponding p value 
of <0.0001.
cThe Χ2 statistic from the likelihood ratio test when comparing to the demographics only model is 38.11 with 11 degrees of freedom and a corresponding p value 
of 0.0001.
dThe Χ2 statistic from the likelihood ratio test when comparing to the demographics only model is 85.21 with 11 degrees of freedom and a corresponding p value 
of <0.0001.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1&phv=162951&phd=3684&pha=&pht=2369&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1&phv=162951&phd=3684&pha=&pht=2369&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000404.v1.p1&phv=162951&phd=3684&pha=&pht=2369&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000092.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000092.v1.p1&amp;phd=2274
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000092.v1.p1&amp;phd=2274
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000092.v1.p1&amp;phd=2274
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap


2113Nicotine & Tobacco Research, 2021, Vol. 23, No. 12

change in amino acid within the CHRNA5 gene which alters the 
nicotinic receptor function and likely is a functional SNP associ-
ated with heaviness of smoking.8,23 For each of the smoking-related 
phenotypes, PRSs were generated for various p value thresholds 
and for each p value threshold we examined that model’s predictive 
ability for that phenotype. Consistent with other studies,22,24,25 the 
percentage of the variance explained generally increased when using 
PRSs developed from the larger number of SNPs included with the 
lower p value thresholds (Supplementary Figures 1–4). Because there 
were only minor differences in the selection of the more generous p 

value thresholds, we adopted the PRSs generated from the p value 
threshold of 5.0 × 10−1 for each phenotype for all subsequent ana-
lyses for consistency. The final number of independent SNPs com-
piling each PRS is shown in Supplementary Table 4. Lastly, PRSs 
were standardized to z-scores for ease of interpretability. The refer-
ence group for PRS z-scores was 0.

Logistic regression models were created for the following out-
comes: ever smoking, early versus late age of smoking initiation, 
heaviness of smoking (dichotomized cigarettes smoked per day), and 
smoking cessation. For each outcome, two main models were com-
pared: the baseline demographics only model—adjusting for age, 
sex; and the baseline model plus genetic ancestry and the matching 
smoking-related PRS for the outcome (ie, ever smoking PRS for ever 
smoking outcome) in addition to the predictors age and sex. Then 
to more comprehensively assess the contribution of genetic ancestry 
and PRS, four models were evaluated: the baseline demographics 
only model—adjusting for age, sex; the baseline model plus gen-
etic ancestry (which added 10 PCs) in addition to the predictors 
age and sex; the baseline model plus the matching smoking-related 
PRS for the outcome (ie, ever smoking PRS for ever smoking out-
come) in addition to the predictors age and sex; and the baseline 
model plus genetic ancestry and the matching smoking-related PRS 
for the outcome (ie, ever smoking PRS for ever smoking outcome) 
in addition to the predictors age and sex. The pseudo R2 represents 
the Nagelkerke R2. The effectiveness of each model was compared 
with each other via the likelihood ratio test. In addition, we cre-
ated receiver operating characteristic (ROC) curves for outcome, 
and the area under the ROC curve (AUC) values were estimated. 
When examining the prevalence of each smoking-related behavior, 
we assigned each individual a predicted probability of a smoking-
related outcome from the corresponding regression analyses. This 
predicted probability was stratified into deciles, and the prevalence 
of each outcome was determined within each decile. The prevalence 
of each outcome within each decile was then plotted for interpret-
ability purposes.

Results

Multiple PRSs and Genetic Ancestry Are Associated 
With Smoking Behaviors
Smoking-related PRS was significantly associated with each smoking 
behavior in both the ARIC and COGEND cohorts. For example, in 
the ARIC cohort, the ever smoking PRS z-score was significantly 
associated with the ever smoking behavior (odds ratio [OR]: 1.37; 
95% confidence interval [CI]: 1.31, 1.43), and the age of smoking 
initiation PRS z-score was significantly associated with early age of 
smoking initiation (OR: 0.87; 95% CI: 0.82, 0.92) after adjusting 
for demographic covariates (age and sex) and genetic ancestry. 
Adding the PRS z-score corresponding to the outcome substantially 
increases the predictive ability as measured by pseudo R2 (ie, for 
ever smoking, demographics only—pseudo R2  =  0.068 vs. demo-
graphics plus genetic ancestry PCs and one PRS model—pseudo 
R2 = 0.107) (Table 1 and Supplementary Table 5). Each of the other 
smoking-related outcomes showed statistically significant improve-
ment in model fit. Similar results were seen in the COGEND sample 
(Supplementary Table 6).

Interestingly, in addition to the increase in predictive ability 
based on the PRSs, we found that genetic ancestry independently 
improved the fit of the models. Though all participants were of 
European ancestry, there were statistically significant genetic differ-
ences within European ancestry populations defined by PCs. These 
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Figure 1. Mean prevalence of ever smoking stratified by deciles of risk within 
European Americans in the ARIC dataset. The demographics only model 
included age and sex only. The demographics plus genetic ancestry and 
one PRS includes age, sex, 10 PCs, and the ever smoking PRS. The decile 
of risk was estimated for each individual for each model. The prevalence 
of ever smoking was calculated within each decile independently. The 95% 
confidence interval was estimated from the prevalence and sample size of 
each decile. ARIC  =  Atherosclerosis Risk in Communities, PCs  =  principal 
components, PRS = polygenic risk score.
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Figure 2. Mean prevalence of early age of smoking initiation (<18  years) 
stratified by deciles of risk within European Americans in the ARIC dataset. 
The demographics only model included age and sex only. The demographics 
plus genetic ancestry and one PRS includes age, sex, 10 PCs, and the age of 
smoking initiation PRS. The decile of risk was estimated for each individual 
for each model. The prevalence of ever smoking was calculated within each 
decile independently. The 95% confidence interval was estimated from the 
prevalence and sample size of each decile. ARIC  =  Atherosclerosis Risk in 
Communities, PCs = principal components, PRS = polygenic risk score.
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PCs were also associated with ever smoking, age of smoking initi-
ation, and smoking cessation. The addition of PCs to the model of 
heavier smoking did not statistically significantly improve the fit of 
the model (Supplementary Table 5).

PRSs Modestly Improve Model Prediction Measured 
by AUC
The baseline model of age and sex has substantial predictive power 
(Supplementary Figures 5–8). The addition of PCs and PRS further 

significantly improves model fit for all smoking behaviors (ever 
smoking—baseline model = 0.617 and full genetics model = 0.665; 
early vs. late smoking initiation—baseline model  =  0.609 and 
full genetics model  =  0.629; heaviness of smoking—baseline 
model = 0.618 and full genetics model = 0.630; smoking cessation—
baseline model  = 0.610 and full genetics model  = 0.631). Similar 
results were seen in COGEND (Supplementary Figures 9–12).

Improvement in Prediction in Seen in the Lowest 
and Highest Deciles of Risk
Though the increase in the AUC is modest, the full genetic model 
which includes genetic ancestry and PRS better differentiates indi-
viduals at highest decile and lowest decile risk for a behavior when 
compared with the baseline model of age and sex only (Figures 1–4 
and Supplementary Figures 13–16). For example, the mean preva-
lence of ever smoking in the highest risk decile as defined by age, sex, 
genetic ancestry, and PRS is 80.5% compared with 37.9%, the mean 
prevalence of ever smoking in the lowest decile of risk. In contrast, 
the highest decile of risk as defined by age and sex alone is 66.6% 
and the mean prevalence of ever smoking in the lowest decile of risk 
defined by age and sex is 46.1% (Figure 1). Similarly, the differen-
tiation between models with sex and age only compared with the 
models which also included genetic ancestry and PRS were greatest 
in the highest and lowest deciles for the other smoking behaviors. 
Again, similar results were seen in COGEND (Supplementary 
Figures 17–20).

Smoking-Related PRSs From European Populations 
Did Not Predict Smoking Behaviors Among African 
American Individuals
As expected, the PRSs generated from European ancestry populations 
have little predictive value in an African American population. No 
smoking-related PRSs were significantly associated with any smoking 
behavior among the African American sample (Supplementary Table 7). 
While the pseudo R2 improved for each outcome (ever smoking: 0.090–
0.101; early age of smoking initiation: 0.038–0.046; heavier smoking: 
0.045–0.064; smoking cessation: 0.016–0.034), none reached statis-
tical significance in part because of the reduced predictive ability and 
also because of reduced power with a smaller sample.

Discussion

Genetic predictors using smoking-related PRSs and markers of gen-
etic ancestry statistically improve the prediction of multiple smoking 
behaviors compared with predictive models that include age and 
sex only. This result was observed for every outcome studied: ever 
smoking, early age of smoking initiation, heaviness of smoking, and 
smoking cessation. This finding is seen in both a population-based 
cohort and replicated in a sample selected for smoking behaviors.

This project builds on the ongoing efforts to predict risk for ad-
verse health outcomes. Recent work has shown the potential im-
pact that PRSs can have. For example, Khera et  al. examined the 
impact that genetics has on body mass index (BMI).26 The authors 
observed that adults in the top PRS decile had an average BMI of 
30  kg/m2, while adults in the bottom PRS decile had an average 
BMI of 25.2 kg/m2.26 The difference between the top and bottom 
PRS deciles was 13.0 kg in average weight.26 In another study by 
Maas et al., the authors generated a PRS examining breast cancer 
risk and presented the combined environmental and genetic risks.10 
The authors observed that women in the highest decile for breast 
cancer, which included genetic risk, had a 23.5% mean risk of breast 
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Figure 3. Mean prevalence for heavier smoking (≥21 cigarettes smoked 
per day) stratified by deciles of risk within European Americans in the ARIC 
dataset. The demographics only model included age and sex only. The 
demographics plus genetic ancestry and one PRS includes age, sex, 10 PCs, 
and the cigarettes smoked per day PRS. The decile of risk was estimated 
for each individual for each model. The prevalence of ever smoking was 
calculated within each decile independently. The 95% confidence interval 
was estimated from the prevalence and sample size of each decile. 
ARIC = Atherosclerosis Risk in Communities, PCs = principal components, 
PRS = polygenic risk score.
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cancer compared with a mean risk of 4.4% in the lowest decile.10 
The authors also found that if women in the highest decile of risk 
for breast cancer reduced their modifiable risk factors (ie, obtained 
low BMI and reduced alcohol consumption), these women’s mean 
risk would drop to the risk level of an average woman in the general 
population.10 The authors observed that epidemiologic risk factors 
had an AUC value of 0.588 when predicting breast cancer. When 
incorporating the breast cancer PRS with the epidemiologic risk 
factors into one model, the AUC value increased to 0.648,10 a 0.06 
difference which is in the range of what we have seen with the im-
provement of AUC with the different smoking behaviors.

This work also highlights the potential power of using the upper 
and lower deciles in stratifying risk groups for smoking-related be-
haviors. For instance, using the PRS predicting ever smoking, genetic 
ancestry, and demographic variables of age and sex, only 37.9% of 
the lowest decile of predicted risk smoked compared with 80.5% 
of those in the highest decile of predicted risk. Across the other 
smoking-related phenotypes there is also large differentiation be-
tween the lowest and highest deciles of risk. With the use of demo-
graphic factors along with genetic risk factors, groups at the highest 
risk can be identified and potentially targeted for more intensive 
interventions to most efficiently utilize public health resources. For 
example, increased prevention efforts may be focused on those at 
highest risk of initiating smoking. Earlier and more aggressive 
smoking cessation interventions may be targeted for those at highest 
risk of heavier smoking and failed smoking cessation.

However, we must interpret this differentiation using PRSs with 
caution. Even though models utilizing PRSs to predict smoking-
related behaviors were statistically more predictive than models 
without adjusting for PRS, the utility of adding PRSs for these out-
comes was modest when defined by the measures such as AUC. For 
example, the addition of genetics increased the predictive ability 
from 0.617 to 0.665 with the ever smoking phenotype. Graphically, 
we can see that there is little differentiation of those with inter-
mediate risk whether using demographic predictors alone or with 
the addition of genetic risk. The greatest change in risk prediction is 
at the lowest and highest deciles of risk.

Lastly, these smoking-related PRSs were tailored from indi-
viduals of European ancestry.9 When we applied these smoking-
related PRS to individuals of African American ancestry, the PRS 
did not predict any smoking behavior. This finding is consistent 
with other work that notes that European-derived PRSs lose 
their usefulness when applied to non-European populations.27 
These results once again highlight the urgent need to develop new 
methods to improve PRSs so that they can be applied to other 
populations. To address this disparity, we need to engage popula-
tions of non-European ancestry so that the upcoming benefits of 
genomic studies can be applied to all regardless of each person’s 
ancestry. In the future, we hope that PRSs can be predictive and 
personally tailored for each individual, regardless of their ances-
tral background.

With the growing efforts in genomics, we anticipate that the 
power of genetics through the use of PRSs and genetic ancestry will 
continue to increase and individuals will be genetically screened 
in the future to determine their propensity to multiple illnesses. 
Those individuals at highest risk could then be counseled on their 
predispositions to diseases and be advised about behavioral and 
environmental changes that  can reduce this risk. As with most 
interventions, those at greatest risk will likely benefit the most. In 
the context of predicting smoking behaviors, we can improve the 
predictive ability of the model in terms of statistical significance 

with PRS, but the utility of this improvement remains modest at 
this time. However, with the increasing amount of GWAS summary 
statistics available from larger cohort sizes and focusing on gen-
etic variation that results in the biologic changes that alters risk 
of disease, these models will improve, and we should prepare for 
the near future when genetic predictors along with demographic 
predictors will impart clinically meaningful prediction of risk for 
smoking behaviors and we can then better tailor prevention and 
treatment interventions for individuals.
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