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Membrane lipids are involved in plant response to oxygen deprivation
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ABSTRACT
Membrane lipids change drastically in plants when they suffered from hypoxia (oxygen deficiency) stress. 
Overall, hypoxia stress lowers the contents of total lipids, inhabits lipid biosynthesis, and stimulates lipid 
degradation, leading to the accumulation of free fatty acids. Lipid alterations include changes in the 
contents of lipid classes, the extent of saturation, and the length of acyl chains. But the detail and 
systematic studies about lipid changes, as well as the function mechanism in hypoxia stress are poorly 
understood. Here, the major unanswered questions and suggestions on the study of the function of lipid 
in hypoxia stress were provided.
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The galactolipids, phospholipids, and sphingolipids 
compositions are involved in hypoxia stress

Membrane lipids change drastically in plants when they suffered 
from hypoxia stress and the lipid contents variation under 
hypoxia stress is our first concern.1 We focus on the changes in 
galactolipids, phospholipids, and sphingolipids compositions with 
significant abundance and importance. The photosynthetic mem
branes of higher plant chloroplast consist of four main classes of 
glycerolipids: monogalactosyldiacylglycerol (MGDG), digalacto
syldiacylglycerol (DGDG), the phospholipid phosphatidylglycerol 
(PG), and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). 
Phospholipids and galactolipids of photosynthetic membranes in 
plastids are synthesized by the prokaryotic pathway, while lipids of 
extraplastidic membranes are produced in the endoplasmic reti
culum by the eukaryotic pathway.2

In Arabidopsis, a significant decrease in the total amount of 
DGDG and MGDG was reported under hypoxia stress,3,4 and 
it was also supported by our previous findings in wheat.5 

MGDG and DGDG are closely related to thylakoid membrane 
structure and photosynthetic properties of plants. Besides, the 
changed abundance of galactolipids may be responsible for 
altered photosynthetic membranes.6 Klecker et al. reported 
that a 24 h hypoxia treatment induced the transcript levels of 
two MGDG synthases genes MGD2 and MGD3, as well as the 
major DGDG synthase DGD1 gene in Arabidopsis. However, 
the total galactolipid contents were not severely affected and 
the phenotype of mgd2, mgd3, and mgd2/mdg3 mutants was 
similar to wild type under hypoxia stress.7 In contrast, DGDG 
accumulated in Amaranthus paniculatus upon mild hypoxia 
(4% O2) for an extended period of 21 d.8

Except for the absolute contents, the molecular species of 
DGDG and MGDG as well as DGDG: MGDG ratio are also 
involved in hypoxia stress. For instance, the content of 34:6 

(18:3, 16:3) MGDG slightly increased during submergence, 
accompanied by a decrease in 36:6 (18:3, 18:3) MGDG, while 
DGDG showed an inverse trend. Two pathways are employed 
for galactolipid synthesis in Arabidopsis: 36:6 molecular species 
are ER derived and 34:6/34:3 molecular species are chloroplast 
derived.7 These changes in galactolipid composition suggest 
a redistribution of lipid species originating from the ER and 
the chloroplast during hypoxia stress. In addition, the increase 
of DGDG: MGDG ratio may alter membrane permeability and 
fluidity in abiotic stress like drought and copper tolerance.6,9 The 
DGDG: MGDG ratio also increases under hypoxia stress.3,4

The content and composition of sulfolipid SQDG did not change 
during submergence, though light-exposed Arabidopsis seedlings 
showed an increased expression of SQD2 gene involved in sulfolipid 
metabolism during hypoxia treatment.7

Membrane phospholipids also underwent very rapid and 
severe deterioration during hypoxia stress. Researches in 
Arabidopsis thaliana showed that a short-term hypoxic treat
ment induced a significant increase in the total amounts of 
phosphatidylserine (PS) and phosphatidic acid (PA), together 
with a significant decrease in the total amounts of phosphatidyl
choline (PC), phosphatidylethanolamine (PE), and other species 
of phospholipids. The accumulation of PA species was correlated 
with the decline in other species (PC, PE, etc.), indicating the 
enhanced role of phospholipase D (PLD), which hydrolyzes 
phospholipids into PA and a head group. This mechanism is 
similar to desiccation, freezing, and salt stress.10–14 Moreover, 
knockout mutants of PLDδ displayed more sensitive to hypoxic 
stress than the wild type (unpublished data). Studies in 
Arabidopsis have revealed that only small differences existed in 
lipid contents between the control and submerged plants for 1 d, 
but dramatic degradation occurred after 3 d of submergence 
which is in line with the phenotype.4
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Furthermore, studies in Arabidopsis have reported 
a significant increase in the polyunsaturated molecular species 
of PC, PE, and phosphatidylinositol (PI) and a decline in their 
saturated and monounsaturated molecular species, suggesting 
that lipid desaturation occurs when plants are exposed to 
hypoxia.7,15 The higher proportions of unsaturated fatty acid 
compositions of the wax esters, triglycerides, and steryl esters 
were also present in submerged mangrove plants.16 However, 
Wang et al. reported submergence did not affect membrane 
fluidity based on the evidence obtained from the double bond 
index.4 Whether the desaturation of fatty acid compositions of 
lipids was involved in hypoxia stress remains to be answered.

Lyso-phospholipids are derived from phospholipase 
A-mediated hydrolysis at the sn-1 or sn-2 position of 
phospholipids.17 The lysophospholipids exhibited various pat
terns of changes induced by submergence and it is different 
from the findings obtained from freezing and dehydration 
stress.4 Basically, it is difficult to quantify the contents of 
lysophospholipids accurately due to their low concentrations.

We summarized the lipid profiling (galactolipids and phos
pholipids) results in researches published recently including 
our previous data in Supplementary Table 1. Based on the 
common trend, the possible changes in these lipids during 
submergence treatment could be predicted.

As for the sphingolipid, the modification of the very long- 
chain unsaturated ceramides is a protective strategy for hypoxic 
tolerance through the modulation of CTR1-mediated ethylene 
signaling, which was reported for the first time in Arabidopsis.3 

Ceramide and hydroxyceramide levels increased significantly 
under hypoxia stress. The Arabidopsis ceramide synthase loh 
mutants exhibit enhanced sensitivity to dark submergence due 
to their low levels of ceramide species containing VLCFAs (very 
long-chain fatty acids, 22:1, 24:1, and 26:1), and myb30 knockout 
mutants (MYB30 is responsible for the regulation of VLCFA 
biosynthesis) show hypersensitivity to submergence with light.3

Submergence triggered a significant decrease of wax and 
cutin compounds in rosettes. Deletion of Arabidopsis long- 
chain acyl-CoA synthetases 2 (LACS2) resulted in reduced 
cuticular wax and thinner cutin layer and attenuated plant 
resistance to submergence stress.18

Possible mechanism of changes in lipid composition 
under hypoxia stress

Lipids store energy, form cell membranes, and modulate 
plants’ responses to abiotic and biotic stress. Lipids and lipid- 
derived metabolites interact with proteins to regulate enzyme 
activity and/or transcription. These changes have the potential 
to mediate and/or modulate plants’ responses to stress.

The reduced rate of lipid turnover under anoxia is pre
sumably due to the inhibition or low activities of lipases. The 
falling ATP concentration under anoxia has been shown to 
act as a threshold regulatory switch for membrane integrity: 
when ATP concentration decreases below a certain value, the 
integrity of membrane lipids is no longer preserved and they 
are hydrolyzed to free fatty acid. The liberation of free fatty 
acids is an indicator of severe membrane damage and man
ifests as cell death.19

Lipids possess two major roles in plants’ response to stress. 
Firstly, they act as signaling mediators including PA, PIs, sphingo
lipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty 
acids, and others.20–24 Signaling lipids often occur at very low levels 
and display a quick turnover upon stimulation. Among them, PA is 
the most versatile one, and more than 20 PA binding proteins were 
involved in diverse cellular processes like lipid metabolism/trans
port, phytohormones signaling.25 PA contents were significantly 
induced under hypoxia stress similar to other stresses.3,4,15

Secondly, membrane lipids remodeling maintains lipid 
dynamics and membrane protein functionality in response to 
abiotic stresses.26–28 Types of lipid alteration include changes 
in the contents of lipid classes as well as the degree of unsa
turation (number of double bonds) in the fatty acyl groups. 
These changes directly affect membrane fluidity and 
integrity.29 Different lipid classes have varied potential to 
form hexagonal II (HII) phase or maintain bilayer structure. 
Lipids such as MGDG and PE tend to form HII phase or other 
non-bilayer phases, whereas DGDG, SQDG, PC, and PG form 
bilayers.30–33 Plants try to decrease the degree of unsaturation 
at high temperatures while the trend was opposite under freez
ing stress to maintain optimal fluidity and integrity of 
membranes.29,34 Whether the same or similar mechanism was 
involved in hypoxia stress response like well-studied freezing 
and drought stress remains to be solved.

Conclusions and perspectives

Although we are sure that lipid changes were involved in 
hypoxic tolerance in plants, the exact details of lipid remodeling, 
regulatory network, and mechanisms remain to be further inves
tigated. We have summarized the unsolved problems as follows:

The details of the responses of membrane lipid and the 
changes in membrane structure to hypoxia stress are still 
unknown. An integrated lipidomic and transcriptomic analysis 
can be conducted to investigate the regulation of lipids meta
bolism at both biochemical and molecular biological levels in 
plants to obtain better understandings of the roles played by 
lipid remodeling in hypoxia response.

The exact underlying mechanisms of membrane lipid remo
deling in mediating hypoxia response also need better answers. 
Plants’ responses to different abiotic stresses are often very 
specific, but signal transduction pathways could partially or 
completely overlap. Lipid signaling under drought, salt, cold, 
nitrogen, phosphorus deficiency, and heavy metal stress has 
been extensively studied. The core difference at the cellular 
level between submergence and other stresses is water potential. 
The different water potentials influence the hydrophobic force of 
lipids, making them form laminar membranes. Whether the 
signaling roles of lipids or the intermediates in plant hypoxia 
stress response were the same with extensively studied stress like 
freezing and drought stress remains to be answered.

Collectively answering these questions will allow us to iden
tify the key lipids and pathways responsible for resilience, 
enabling the improvement of crop tolerance to hypoxia stress. 
We also offer some suggestions for further study based on 
current knowledge about the lipid remodeling mechanism 
under low oxygen stress.
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It is obvious that the contents, species, and degree of satura
tion of different lipids in plants varied during hypoxia treatment. 
When using different treatment methods (waterlogging, sub
mergence, and gas control to mimic the hypoxic conditions),35 

harsh extent, and short or long durations, different phenomena 
and responses of membrane lipids were observed. The develop
ment stage of plants, the growth and treatment conditions (light 
and temperature), etc. may also lead to different responses in 
plants. All these factors should be taken into consideration.

In addition, the response pattern may vary among different 
plant species, and it even could be different in sensitive and 
tolerant plants of the same species. The extent of anoxia- 
induced lipid loss is lower in resistant genotypes than in non
resistant genotypes. For plants with a library of mutants like 
rice and Arabidopsis, we should make full use of mutants in 
lipid pathway, and for those species without ample mutants, it 
is preferred to use varieties with distinct tolerance of the similar 
genetic background (at least two pairs). In addition, technolo
gies such as genome editing (e.g. CRISPR/Cas9) can be utilized 
to modify the gene of interest in a precise manner.36,37

The oxidative modifications of lipids are the main cause of 
membrane destabilization and injury, indicated by increased elec
trolyte leakage under a range of stimuli including hypoxia stress.38 

Anoxic stress may induce qualitative changes in membrane lipids, 
as indicated by lipid peroxidation after the restoration of aerobic 
conditions. A burst of reactive oxygen species may be formed 
immediately after oxygen reenters the tissues. Besides, the degra
dation of lipids and free fatty acids facilitated by lipid peroxidation 
is activated mainly after reoxygenation.38 Most recent studies have 
focused on the hypoxia stage, while the reoxygenation stage has 
been largely ignored, which deserves more attention.

Reoxygenation in Arabidopsis results in increased transcript 
levels of jasmonic acid (JA) biosynthesis genes and the rapid 
accumulation of jasmonates, and JA signaling interacts with 
the antioxidant pathway to regulate reoxygenation responses.39 

The free fatty acids produced by phospholipase A are the 
precursors for the synthesis of oxylipins such as JA and 12- 
oxo-phytodienoic acid. And there is also a strong link between 
galactolipid generation and JA accumulation.40 The crosstalk 
between lipid metabolism and phytohormones (esp. lipid- 
derived ones) may be a promising direction.
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