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Abstract

Although many experimental and theoretical studies on natural selection have been carried out in a constant environment, as natural envi-
ronments typically vary in time, it is important to ask if and how the results of these investigations are affected by a changing environment.
Here, we study the properties of the conditional fixation time defined as the time to fixation of a new mutant that is destined to fix in a fi-
nite, randomly mating diploid population with intermediate dominance that is evolving in a periodically changing environment. It is known
that in a static environment, the conditional mean fixation time of a co-dominant beneficial mutant is equal to that of a deleterious mutant
with the same magnitude of selection coefficient. We find that this symmetry is not preserved, even when the environment is changing
slowly. More generally, we find that the conditional mean fixation time of an initially beneficial mutant in a slowly changing environment
depends weakly on the dominance coefficient and remains close to the corresponding result in the static environment. However, for an ini-
tially deleterious mutant under moderate and slowly varying selection, the fixation time differs substantially from that in a constant environ-
ment when the mutant is recessive. As fixation times are intimately related to the levels and patterns of genetic diversity, our results sug-
gest that for beneficial sweeps, these quantities are only mildly affected by temporal variation in environment. In contrast, environmental
change is likely to impact the patterns due to recessive deleterious sweeps strongly.
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Introduction
In a finite, recombining population where a selected locus is
linked to neutral loci, if a new advantageous mutation fixes faster
than the time it takes for neutral loci to get dissociated via re-
combination, the neutral genetic diversity in the neighborhood of
the selected locus is reduced (beneficial sweep) (Maynard Smith
and Haigh 1974; Stephan 2016); a similar pattern arises when a
mildly deleterious mutation reaches fixation due to genetic drift
(deleterious sweep). Thus, the time of fixation is intimately re-
lated to the level and patterns of neutral diversity (Tajima 1990).
It is important to note that the fixation time under discussion
here is obtained from a stochastic process that is conditioned on
fixation. At the end of a selective sweep, one is observing only
those trajectories of the new allele in which fixation has oc-
curred, and not those in which the allele is lost due to drift and/
or selection (Ewens 1973; Zhao et al. 2013).

Theoretical models of sweeps and their genomic applications
assume the selective environment to be constant in time; how-
ever, environmental variation is ubiquitous in nature, and may
potentially affect the fixation time. For example, suppose a mu-
tant arises while selection is positive and increasing. In this case,
the mean fixation time, conditional on fixation, is expected to be
smaller than when the selection pressure remains the same as
that when the mutant arose, and can result in a larger reduction
in neutral diversity. One may then ask: how much does the

fixation time in a changing environment (especially, if it varies
slowly) differ from that in a static environment?

Furthermore, in static environments, the conditional mean fixa-
tion time has the important property of being the same for a mutant
with selection coefficient s and dominance coefficient h and a mu-
tant with respective parameters, – s and 1� h (Maruyama 1974;
Maruyama and Kimura 1974), as a result of which it may be difficult
to distinguish between diversity patterns due to positive and nega-
tive selection (Johri et al. 2020). In a changing environment, on gen-
eral grounds, this symmetry can be expected to be absent, and one
may delineate the parameter space where the lack of this symmetry
has a strong effect on variability patterns.

As a first step toward an understanding of selective sweeps in
changing environments, here we study the properties of the con-
ditional fixation time of a mutant in a finite, diploid population
when the selection coefficient is time-dependent. To the best of
our knowledge, except for a preliminary study (Uecker and
Hermisson 2011), the fixation time in a changing environment
has not been investigated in detail. We consider evolution in an
environment that changes periodically due to, for example, sea-
sonal cycles (Williams et al. 2017), and study how the fixation
time is affected by the rate of environmental change, the time of
appearance of the mutant, the strength of selection and the dom-
inance coefficient. Throughout the article, we assume random
mating and autosomal inheritance.
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Our results are obtained analytically using a diffusion theory
for time-inhomogeneous processes when selection of either sign
is weak or moderate and a semi-deterministic theory for strongly
selected beneficial mutants, and are supplemented and checked
by numerical simulations. Our main finding is that in slowly
changing environments, the conditional mean fixation time of an
initially beneficial mutant with intermediate dominance is well-
approximated by that in a static environment, and the same
holds true for an initially deleterious dominant mutant under
moderate selection. However, if an initially deleterious mutant is
recessive, its conditional mean fixation time is considerably lon-
ger or shorter in a slowly changing environment than in a static
environment. In other words, the symmetry property for the con-
ditional mean fixation time mentioned above (Maruyama 1974;
Maruyama and Kimura 1974) does not hold between recessive
deleterious and dominant beneficial mutants. Since by virtue of
Haldane’s sieve, which operates in both static (Haldane 1927) and
slowly varying environments (Devi and Jain 2020), most deleteri-
ous mutations are recessive and beneficial ones are dominant,
the results obtained here are relevant to an understanding of se-
lective sweeps in changing environments (see Discussion for
details).

Model
We consider the model in Devi and Jain (2020) that deals with a
randomly mating population of size N. We assume that a single
biallelic locus is under selection and the three genotypes, aa, Aa
and AA have the fitness 1þ sðtÞ; 1þ hsðtÞ and 1, respectively.
Here, 0 < h < 1 is the dominance parameter and sðtÞ ¼
s þ r sinðxtþ hÞ; t � 0 is the time-dependent selection coefficient
that varies periodically with cycling frequency x. Without loss of
generality, we assume that the oscillation amplitude r > 0 but
the time-averaged selection coefficient s is arbitrary, and the ini-
tial phase 0 � h < 2p.

For large population size and small selection coefficient, in-
stead of genotypic frequencies, we can work with the allelic fre-
quencies (Nagylaki 1992). We start with a single mutant allele in
the population and ignore any further mutations. The evolution
of the population under selection and random genetic drift is
modeled by a continuous time birth-death process [Chapter 4,
Karlin and Taylor (1975)] in which the number i of alleles a in-
crease or decrease by one at rate rbðtÞ or rdðtÞ, respectively. These
rates are given by

rbðtÞ ¼
2NiwaðtÞ

iwaðtÞ þ ð2N� iÞwAðtÞ
� 2N� i

2N
(1)

rdðtÞ ¼
2Nð2N� iÞwAðtÞ

iwaðtÞ þ ð2N� iÞwAðtÞ
� i

2N
(2)

where waðtÞ ¼ ð1þ sðtÞÞiþ ð1þ hsðtÞÞð2N� iÞ and wAðtÞ ¼
ð2N� iÞ þ ð1þ hsðtÞÞi are, respectively, the marginal fitness of al-
lele a and A. The allele numbers at time t are updated at time tþ
dt where the interval dt is chosen from the probability distribution

pðdtÞ ¼ rðtþ dtÞe�
Ð tþdt

t
dt0rðt0 Þ with rðtÞ ¼ rbðtÞ þ rdðtÞ being the total

rate at which either birth or death events occur.
For computational efficiency, numerical simulations of the

above model were carried out assuming that the birth and death
rates remain constant at r(t) during the interval dt. Then it follows
that dt obeys an exponential distribution with rate r(t); however,
we have checked that our results do not change if we relax this
assumption. In our simulations, 106 � 108 independent

trajectories of the mutant allele were generated, but the data for
the fixation time were averaged over only those trajectories that
lead to the fixation of the mutant. The conditional mean fixation
time was thus obtained by averaging over about 103 and 104 fixa-
tion events for deleterious and beneficial mutants, respectively.
The standard error on the conditional mean fixation time was
also calculated for some representative parameters and found to
be at most 2% of the mean value.

Conditional fixation time in changing
environments
In a constant environment, the expected fixation time of a new
mutant that is destined to fix decreases with the magnitude of its
selection coefficient s, since a strongly deleterious mutant fixes
soon to avoid extinction, whereas a strongly beneficial mutant
that has a low chance of extinction grows fast (Kimura and Ohta
1969; Teshima and Przeworski 2006; Charlesworth 2020). In a
population of size N, this result holds only for a strongly selected
mutant (Njsj � 1) but for weak selection (Njsj � 1), the condi-
tional mean fixation time can vary nonmonotonically with s
(Mafessoni and Lachmann 2015). Interestingly, for any selection
strength, diffusion theory predicts that the conditional mean fix-
ation time of a single mutant has a remarkable property: it is the
same for a beneficial mutant with selective coefficient s and
dominance coefficient h and a deleterious mutant with respective
parameters – s and 1� h (Maruyama 1974; Maruyama and
Kimura 1974). For a codominant mutant (h¼ 1/2), this symmetry
is even stronger in that it holds for any initial mutant number
0 < i < 2N (Ewens 2004, p. 170).

In order to test whether the Maruyama-Kimura symmetry
mentioned above also holds in a periodically changing environ-
ment, we need to compare the fixation time of mutants whose
selection coefficients are of opposite sign at all times. Figure 1A
shows the conditional mean fixation time Tc of mutants with
dominance parameter h and 1� h and selection coefficient s(t)
and �sðtÞ, respectively, when they are under moderate selection
and on-average neutral (for nonzero average selection coefficient,
see Supplementary Figure S1). It is clear from these figures that
the Maruyama–Kimura symmetry does not hold when selection
is time-dependent.

To understand the qualitative behavior of the conditional
mean fixation time Tc in Figure 1A, we first consider the fixation
time of the initially deleterious mutant in a slowly deteriorating
environment. If this mutant segregates in the population for too
long, it is at a risk of extinction even if it manages to reach a high
allele frequency (see mutant allele trajectory for cycling fre-
quency x ¼ 5� 10�4 in Figure 1B). For this reason, in Figure 1A,
below x � p=ð4� 900Þ ¼ 8� 10�4, the fixation time is smaller
than the corresponding result in the static environment. The fix-
ation time of the initially beneficial mutant in a slowly improving
environment is also smaller than that in the constant environ-
ment, but for a different reason: here, as exemplified by the allele
trajectories for x¼ 0 (static environment) and 5� 10�4 in
Figure 1C, the mutant in the latter case, by virtue of its larger se-
lection coefficient, grows faster than the one in the static envi-
ronment; therefore, for frequencies below
x � p=ð2� 900Þ ¼ 2� 10�3, the fixation time decreases.

However, if the environment changes fast enough
(x > 8� 10�4 in Figure 1A) so that an initially deleterious mutant
experiences a relatively better environment (jds=dtj > 0) on reach-
ing a high frequency, fixation can occur at a later time than in a
static environment (see allele trajectory for x ¼ 2� 10�3 in
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Figure 1B). For a further increase in cycling frequency
(x > 2� 10�3 in Figure 1A), the mutant can experience
strong positive selection at late times (refer to allele trajectory for

x ¼ 4� 10�3 in Figure 1B), which, as explained above, results in a
faster growth and a decrease in the fixation time. For the initially
beneficial mutant, as the cycling frequency increases
(x > 8� 10�4), the mutant allele experiences decreasing selection
and must fix soon to avoid extinction (see allele trajectory for x ¼
2� 10�3 in Figure 1C). As the cycling frequency is further in-
creased (x > 2� 10�3), the mutant population sees negative but
improving selection at late time, and hence runs a lower risk of
extinction, which results in an increase of the conditional mean
fixation time. At even higher frequencies, as selection changes
sign and direction several times during the fixation process, the
fixation time for both mutants approaches the value in the time-
averaged environment.

We also note that in Figure 1A, an extremum in the fixation
time occurs at the resonance frequency, xr ¼ 2� 10�3 which is de-
fined as the cycling frequency at which the environment changes
at a rate proportional to a frequency scale in the population
when the oscillation amplitude r¼ 0. In Figure 1A, the resonance
frequency xr is proportional to the reciprocal of the fixation time
2 N in the neutral environment (Kimura and Ohta 1969). Whether
this extremum in the fixation time is a maximum or a minimum
is determined by the initial phase h [for a discussion of the reso-
nance frequency for fixation probability in changing environ-
ments, refer to Devi and Jain (2020)].

Diffusion theory in slowly changing
environments
To explore and better understand the qualitative observations
discussed above, we now develop a diffusion theory for time-
dependent selection coefficients. As explained in Appendix A, the
probability distribution Ubðx; tjp; t0Þ that the mutant frequency is
x at time t, given that it was p at time t0 < t obeys the following
backward Kolmogorov equation (Risken 1996):

� oUbðx; tjp; t0Þ
ot0

¼ sðt0ÞgðpÞ
oUbðx; tjp; t0Þ

op
þ pq

2N
o2Ubðx; tjp; t0Þ

op2 (3)

where sðt0Þ ¼ s þ r sinðxt0 þ hÞ and gðpÞ ¼ pqðpþ hð1� 2pÞÞ. Using
(3), it can be shown that the unconditional mean fixation time
Tðp; t0Þ and the eventual fixation probability uðp; t0Þ, respectively,
obey (A.4) and (A.5). But, unfortunately, these equations do not
appear to be solvable for the full range of parameters. For slow
and fast-changing environments, simple expressions for the
eventual fixation probability have been obtained in Devi and Jain
(2020) using a perturbation theory. Below, using the same
method, we find the mean fixation time in slowly changing envi-
ronments.

In environments that change at a rate x� N�1; sð0Þ with ar-
bitrary Nsð0Þ, the unconditional mean fixation time T �
T0 þ NxT1 and the eventual fixation probability, u � u0 þNxu1,
where the subscripts 0 and 1 denote quantities in a static and
slowly changing environment, respectively. As described in
Appendix B, u1 and t1 ¼ T1=ð2NÞ obey the following ordinary dif-
ferential equations,

pq
2

u001 þ ag pð Þu01 ¼ �
ou0

oh
(4)

pq
2

t001 þ ag pð Þt01 ¼ �Nu1 �
ot0

oh
(5)

and the quantities u0 and t0 ¼ T0=ð2NÞ in the static environment
obey (Kimura and Ohta 1969)

(a)

(b)

(c)

Figure 1 Top panel: Conditional mean fixation time Tc of a dominant
mutant ðh ¼ 0:7;�Þ and a recessive mutant (h ¼ 0:3;�) with selection
coefficient sðtÞ ¼ r sinðxtþ p=4Þ and �sðtÞ, respectively [see inset for s(0)]
to show that the symmetry between the conditional mean fixation time
for dominant beneficial and recessive deleterious mutant in static
environments is not preserved in changing environments. The data are
obtained by numerical simulations (closed symbols) and numerically
integrating the diffusion theory Equations (4) and (5) (open symbols) for
small cycling frequencies in a population of size N. The conditional
mean fixation time in the static environment with selection jsð0Þj (solid
line) and in the neutral environment, given by 2 N, (dashed line) are
obtained from diffusion theory and shown for comparison. Middle and
Bottom panel: Mutant allele trajectories for (b) the initially deleterious
mutant (h¼ 0.3) and cycling frequencies,
x ¼ 5� 10�4ðblackÞ; 2� 10�3ðmagentaÞ, and 4� 10�3ðblueÞ, and (c) the
initially beneficial mutant (h¼ 0.7) for x ¼ 0ðblueÞ; 5� 10�4ðblackÞ, and
2� 10�3ðmagentaÞ. The allele trajectories in each panel are almost same
at short times as they were started with the same random seed in the
computer simulation. The smooth curves show the selection coefficient
for the corresponding cycling frequency. In all the panels, r ¼ 0:01 and
N¼ 500 so that a ¼ Njsð0Þj � 3:5.
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pq
2

u000 þ ag pð Þu00 ¼ 0 (6)

pq
2

t000 þ ag pð Þt00 ¼ �Nu0 (7)

In the above equations, prime denotes the derivative with re-
spect to p and a ¼ Nsð0Þ is the scaled selection strength.
Equations (4)–(7) are subject to boundary conditions u0ð1; t0Þ ¼ 1
and uið0; t0Þ ¼ tið0; t0Þ ¼ tið1; t0Þ ¼ 0; i ¼ 0; 1. The conditional
mean fixation time Tc scaled by the mean fixation time 2 N in the
neutral environment is then given by

Tc

2N
¼ T

2Nu
� t0

u0
þ Nx

t1

u0
� t0;c

u1

u0

� �
(8)

where t0;c ¼ t0=u0 (see Appendix B for details).
Although a formal solution of (4)–(7) can be written down, it

appears difficult to obtain a simple analytical expression for the
fixation time by using these results in (8). However, (4)–(7) can be
easily integrated numerically, and as attested by Figure 1A, these
numerical results are in good agreement with those obtained
from the simulations at small cycling frequencies.

Weak selection
In a static environment, the conditional mean fixation time of a
beneficial mutant under weak selection (Njsj � 1) and with domi-
nance coefficient h> 1=2 increases with the selection pressure and
can be larger than the fixation time of a neutral mutant. This
may be understood by noting that although the mutant popula-
tion is subject to strong random fluctuations, the fixation proba-
bility of a beneficial mutant increases with the level of
dominance (Kimura 1957) and therefore a beneficial dominant
mutant can counter the risk of extinction at late times. By the
Maruyama-Kimura symmetry, an analogous result is obtained
for a deleterious mutant with dominance coefficient h< 1=2
(Mafessoni and Lachmann 2015).

To see this result quantitatively, for small a ¼ Ns, we expand
the fixation probability u0 and the fixation time t0 in a power se-
ries about a¼ 0 up to order a2, and substitute them in (6) and (7).
Collecting terms with the same power of a on both sides of these
equations, we get a set of second order ordinary differential equa-
tions which can be solved straightforwardly, and we finally ob-
tain

t0;c � 1þ aH
9
� a2

72
(9)

where H ¼ h� ð1=2Þ is the deviation from codominance. The
above result shows that the conditional mean fixation time (rela-
tive to the neutral fixation time) is a nonmonotonic function of a

with a maximum at a	 ¼ 4H and the value at the maximum,
t0;cða	Þ ¼ 1þ ð2H2=9Þ. As H2 < 1=4, the conditional mean fixation
time of the selected mutant can exceed that of the neutral mu-
tant at most by 
5%, as observed numerically in Mafessoni and
Lachmann (2015).

In a slowly changing environment, unlike in the last section
where a > 1, the fixation time of an initially beneficial (deleteri-
ous) mutant in an improving (deteriorating) environment
increases (decreases) with selection strength when a� 1; this is
due to a slight increase (decrease) in the fixation probability from
the neutral value (see Figure 2). But with increasing selection
strength, the fixation time in either case eventually decreases.
Proceeding in a similar fashion as for the static environment, we
expand u1ðpÞ and t1ðpÞ in a power series in a to quadratic orders,

and plug them in (4) and (5). We then find the change in the fixa-
tion time due to slowly changing environment to be

t1;c �
a

54
½ð70� 6p2ÞHþ 9ðp2 � 9Þ�coth

þ a2

108
ð3p2 � 38Þcoth

(10)

for h 6¼ 0; p. Using this result, the maximum in the total condi-
tional mean fixation time is found to occur at

a	 � 4Hþ 2
3

Nxcoth½ð6p2 � 82ÞHþ 9p2 � 81� (11)

Equations (9) and (10) and also Figure 2 show that the condi-
tional mean fixation time continues to be a nonmonotonic func-
tion of the selection coefficient in changing environments. But,
for a codominant mutant, while t0;c is symmetric about a¼ 0 in a
constant environment [see (9)], due to the lack of the Maruyama-
Kimura symmetry in the changing environment, the maximum
in the fixation time occurs at a nonzero a	, as predicted by (11).
For small a, from (10), we have t1;c � 0:2hacoth which shows that
the changing environment has the strongest effect when the mu-
tant of either sign is dominant; however, the magnitude of these
effects is quite small, see inset of Figure 2.

Moderate selection
We now consider the parameter regime where selection is mod-
erately strong and the deleterious mutant has a significant
chance of fixation (1� jaj�20). As in the last subsection, one
would like to obtain simple analytical expressions for the time Tc

but, unfortunately, it is generally not possible to develop consis-
tent approximations when the parameters are of moderate size.
Below, we therefore discuss the results obtained by numerically
integrating (4)–(7).

To understand the results shown in Figure 3, we first consider
the fixation time of the initially deleterious mutant in a deterio-
rating environment and the initially beneficial mutant in an im-
proving environment (both denoted by open symbols) for a given
dominance coefficient. On account of larger scaled selection
strength, the former has a lower fixation probability than a dele-
terious mutant in the constant environment, and therefore
should fix sooner to avoid extinction; the initially beneficial mu-
tant, on the other hand, grows faster in an improving environ-
ment than in the corresponding static environment. In either
case, the fixation time is smaller than that in the static environ-
ment. For similar reasons, the fixation time of the initially benefi-
cial (deleterious) mutant in a deteriorating (improving)
environment is larger than that in the static environment.

Crucially, however, as Figure 3 shows, the magnitude of the
deviation between the fixation time in the changing and the con-
stant environment is larger for the initially deleterious mutant
than for the initially beneficial mutant. The reason underlying
this behavior is the strong asymmetry between the fixation prob-
abilities of beneficial and deleterious mutants. In a static envi-
ronment, for moderate-to-strong selection, a small change in the
selection coefficient affects the chance of fixation of a beneficial
mutant only by a small amount, but the fixation probability of a
deleterious mutant changes by an exponential factor (Kimura
1957). This strong asymmetry holds even in slowly changing
environments [refer to Figure 2 for moderate selection and
Equation (11) for strong selection of Devi and Jain (2020)]. As a re-
sult, the fixation time of an initially deleterious mutant is more
strongly affected by a changing environment.
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Although a strongly deleterious mutation has a negligible
chance of fixation, it is possible to obtain some analytical under-
standing of its fixation time. In Appendix S1, we find that v1;c

which captures the effect of changing environment on the fixa-
tion time decays slowly, as jaj�1 for a deleterious mutant, while
as shown in the following section for a mutant under strong posi-
tive selection, t1;c 
 a�2 [see (20)]. These results again emphasize
that the changing environment has a much stronger impact on
deleterious mutations (see also Supplementary Figure S2).

To understand the dominance-dependence of the fixation
time, we first recall that in the static environment, the fixation
probability increases (decreases) with the dominance level for
mutants under positive (negative) selection. This result known as
Haldane’s sieve (Haldane 1927) operates in slowly changing envi-
ronments also (Devi and Jain 2020), and explains the increasing
(decreasing) fixation time of the initially beneficial (deleterious)
mutant with increasing h. For the initially deleterious mutant,
since the recessive mutant (as compared to the dominant mu-
tant) spends more time in the varying environment, its trajecto-
ries are more influenced by the changing selection coefficient,
and the fixation time differs considerably from that in the static
environment.

Semi-deterministic theory for on-average
beneficial mutants in a large population
In the preceding discussion, we assumed the mutant to be under
weak-to-moderate selection, as strongly deleterious mutations
are unlikely to fix (Kimura 1957). Here, we study the conditional
mean fixation time of a mutant that is under strong positive se-
lection (jaj � 102) at all times. Since the frequency of a mutant
will rise faster (slower) if its selection coefficient remains larger
(smaller) than s(0) until it fixes, the fixation time shown in
Figure 4A initially decreases, then increases and finally
approaches the fixation time in the time-averaged environment,
exhibiting oscillations with decreasing amplitude. For nonzero s,
the resonance frequency xr is inversely proportional to the fixa-
tion time when the selection coefficient is jsj [which, for strong

positive selection, is given by (19) on replacing s(0) by s], and we
verify that the data in Figure 4A is consistent with this assertion.

Below we study the dependence of Tc on the dominance
coefficient and the rate of environmental change within a semi-
deterministic theory (Cohn and Jagers 1994). This approach has
been recently used to find the distribution of the conditional fixa-
tion time in a constant environment (Martin and Lambert 2015);
here, we are interested in generalizing these results to time-
dependent environments.

Starting at a low initial frequency, if it escapes stochastic loss, the
mutant population evolves stochastically until a time t1 when it
reaches a finite frequency (phase A). For such allele trajectories, it is
a good approximation to treat the further evolution of the mutant
population deterministically (phase B). However, at a time t2ð> t1Þ,
when the mutant frequency is close to one, as the wildtypes are in
low number, they are subject to stochastic fluctuations and go ex-
tinct at a time Tc (phase C). The stochastic phases A and C can be de-
scribed by a Feller process, as discussed below.

Time-inhomogeneous Feller process
In a time-dependent environment, the allele frequency distribu-
tion Ufðp; tjp0; 0Þ which describes the probability that the mutant
frequency is p given that its initial frequency was p0 obeys the fol-
lowing forward Kolmogorov equation (Risken 1996),

oUfðp; tjp0; 0Þ
ot

¼ �s tð Þ o

op
g pð ÞUf p; tjp0; 0ð Þ
� �

þ o2

op2

pqUfðp; tjp0; 0Þ
2N

� �
(12)

where, as before, gðpÞ ¼ pqðpþ hð1� 2pÞÞ and
sðtÞ ¼ s þ r sinðxtþ hÞ; t � 0. At short times where the mutant fre-
quency is low (p! 0), the frequency distribution Uf ! F , and (12)
reduces to

oFðp; tjp0; 0Þ
ot

¼ �hs tð Þ o

op
pF p; tjp0; 0ð Þ½ � þ 1

2N
o2

op2 pF p; tjp0; 0ð Þ½ � (13)

where Fðp; tjp0; 0Þ is the probability distribution of a Feller process
(Feller 1951a, 1951b). This process describes the mutant

Figure 2 Scaled conditional mean fixation time, tc ¼ Tc=2N for a co-
dominant mutant under weak selection in slowly changing, on-average
neutral environment in which the selection coefficient
sðtÞ ¼ r sinðxtþ hÞ. The parameter a ¼ Njsð0Þj was varied with selection
amplitude r, keeping the population size N and the initial phase h ¼ p=4
(for positive a) and 5p=4 (for negative a) fixed. The inset shows the
variation of the conditional mean fixation time with dominance in static
environment (solid) and slowly varying environment for initial phase
h ¼ p=4 (dotted) and 5p=4 (dashed), and r ¼ 0:000158. In both plots,
N ¼ 2� 103 and Nx ¼ 0:08, and the lines show the analytical expressions
(9) and (10) and the points show the numerical solution of (4)–(7).

Figure 3 Conditional mean fixation time Tc for moderate selection in
static (•) and slowly changing environment with selection coefficient
sðtÞ ¼ r sinðxtþ hÞ (diamonds) and �sðtÞ (squares) for different
dominance coefficients and the initial phase h ¼ p=4 (open symbols) and
3p=4 (closed symbols) in a population of size N. The other parameters are
N ¼ 2� 103;Nx ¼ 0:05 and r ¼ 0:01. The inset depicts the arrival time of
the mutant in all the cases. The data are obtained within the framework
of diffusion theory by numerically solving (4)–(7).
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frequency dynamics when the lineages can be assumed to grow
independently, and is a continuous analog of classical branching
process that is defined in discrete time and deals with the num-
ber of individuals. The Feller diffusion equation above can be eas-
ily generalized to include mutations and time-dependent
population size (Cattiaux et al. 2009; Masoliver and Perelló 2012;
Gan and Waxman 2015; Masoliver 2016). In the later discussion,
we will use the Feller process to describe the wildtype dynamics
also at large times where the wildtype frequency is low. As de-
tailed in Appendix C, the exact solution of (13) is given by (C.4).

Fixation probability
Since the probability that the mutant dies out by time t is equal
to 1�

Ð1
0 dpFðp; tÞ, its eventual fixation probability, u ¼

Limt!1
Ð1
0 dpFðp; tÞ (see also Appendix C); using (C.4), we then ob-

tain

u p0; 0ð Þ ¼ 1� exp � 2Np0Ð1
0 dte�h

Ð t

0
dt0sðt0 Þ

" #
(14)

The above equation shows that u is nonzero provided the inte-
gral J ¼

Ð1
0 dte�h

Ð t

0
dt0sðt0 Þ is finite. We verify that for constant selec-

tion and single initial mutant, (14) gives u ¼ 1� e�hs � hs; h > 0
for a beneficial mutant (Haldane 1927).

Before proceeding further, we compare the result (14) with
that obtained using a birth-death process in earlier studies
(Kendall 1948; Uecker and Hermisson 2011; Devi and Jain 2020).
While uðFellerÞ ¼ 1� e�1=J, the probability uðbirth�deathÞ ¼ ð1þ JÞ�1

[refer to (4) of Devi and Jain (2020)] for a single mutant. For small
selection coefficients, as the fixation probability is expected to
be small, J must be large. Then, it follows that to leading order in
1=J, both processes yield the fixation probability to be 1=J.

Mean fixation time in slowly changing
environments
As described in Appendix D, the distribution of the conditional
fixation time for a mutant with initial phase h is given by

PðTc; hÞ ¼
h!A

h� 1
d!C

dTc

ð1
0

dqq�
h

1�he�!Cqe�!Aq�
h

1�h (15)

where

!C ¼
2NÐ Tc

0 dteð1�hÞ
Ð t

0
dt0sðt0 Þ

(16)

!A ¼ 2Ne
1�2h
1�h ln h

1�hð ÞuðhÞ (17)

and the eventual fixation probability u is given by (14) for a sin-
gle mutant. Supplementary Figure S3 shows a comparison be-
tween the expression (15) and the results obtained using
numerical simulations when the cycling frequency is below,
above, and close to the resonance frequency xr, and we find a
good agreement in all the three cases. For constant selection, we
find that the generating function for the conditional fixation
time obtained using (15) reduces to (A.11) of Martin and Lambert
(2015).

Figure 4A shows that, except for strongly recessive or domi-
nant mutants, the conditional mean fixation time Tc ¼Ð1
0 dTcTcPðTcÞ depends weakly on dominance for arbitrary rates of

environmental change. Figure 4A also suggests that for small and
large cycling frequencies, the conditional mean fixation time
Tcðh; sÞ � Tcð1� h; sÞ. To understand this result, using (15), we re-
write the time Tc as

Tc ¼
h!A

h� 1

ð1
0

dqe�!Aq�
h

1�h q�
h

1�h

ð1
0

d!CTcð!CÞe�!Cq (18)

and analyze it for slowly changing environments using a pertur-
bation theory. As explained in Appendix E, for x� sð0Þ, we get
Tc � T0;c þ ðx=sð0ÞÞT1;c where,

T0;c

2N
� lnð2aÞ

2hð1� hÞaþ
cþ ð2� 3hÞlnhþ ð3h� 1Þlnð1� hÞ

2hð1� hÞa (19)

T1;c

2N
� � r cos hðlnaÞ2

4h2ð1� hÞ2sð0Þa

� 1þ 2ðln2� hþ cþ ð2� 3hÞlnhþ ð3h� 1Þlnð1� hÞÞ
lna

� �
(20)

(a)

(b)

Figure 4 Top panel: Conditional mean fixation time Tc for a mutant
under strong positive selection at all times with selection coefficient
sðtÞ ¼ s þ r sinðxtþ hÞ when the mutant is beneficial at all times to show
that, except for strongly recessive or dominant mutations, it depends
weakly on the dominance coefficient h. The points are obtained by
numerically calculating (18) for dominance coefficient
h ¼ 0:1ð�Þ; 0:3ð	Þ; 0:5ð�Þ; 0:7ð�Þ; 0:9ð•Þ in a population of size N. The
other parameters are N ¼ 105; s ¼ 0:01;r ¼ 0:007; h ¼ p=4. The bottom
panel shows the comparison between (18) (points) and (20) (line) for the
deviation in the conditional mean fixation time in a slowly changing
environment where x� sð0Þ � 0:014.
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In the above equations, c � 0:577 is the Euler constant and, as
before, a ¼ Nsð0Þ. Note that while the fixation time Tc was ex-
panded in powers of Nx in the last section, here the expansion
parameter is x=sð0Þ.

The semi-deterministic theory described in this section is not
a systematic, controlled approximation (unlike various perturba-
tion theories) and it is not clear how good this approximation is;
however, here we find that (19) matches exactly with (4.2) of
Ewing et al. (2011) (on replacing N in the above expression by 2 N),
which is obtained using a diffusion theory, and shows that the
conditional mean fixation time in a population with dominance
coefficient h is approximately equal to that in a population with
the corresponding parameter 1� h. Note that this result holds for
large a ð� 103Þ, while as shown in Figure 3 for moderate selection,
the dominant mutant takes longer than the recessive one to fix
[see also Teshima and Przeworski (2006)].

Equation (20) captures the effect of a slowly changing environ-
ment on the conditional mean fixation time and matches well
with the data obtained by numerically integrating (18) as shown
in Figure 4B. The leading term on the right-hand side (RHS) of (20)
is symmetric about h¼ 1/2, pointing to the approximate symme-
try, Tcðh; sÞ � Tcð1� h; sÞ discussed above. While the subleading
correction does not have h$ 1� h symmetry, its effect is small
compared to the leading term for intermediate dominance.
Supplementary Figure S4 further suggests that the distribution of
the fixation time has h$ 1� h approximate symmetry for small
cycling frequencies but not for frequencies close to the resonance
frequency, in accordance with the behavior of the mean fixation
time shown in Figure 4A.

Equation (20) also shows that the mean fixation time
decreases (increases) if the beneficial allele arises when the selec-
tion gradient (in time) is positive (negative), as intuitively
expected; furthermore, both T0;c and T1;c decay with increasing
selection. Finally, we mention that at the beginning of this sec-
tion, we had assumed that r < s. But in a slowly changing envi-
ronment, the semi-deterministic approximation may be expected
to work for r > s and 0 < h < p; this is indeed confirmed in
Supplementary Figure S4.

Discussion
In this study, we have investigated how a selective environment
that is varying periodically and predictably in time affects the fix-
ation time of a mutant in a finite, diploid population.

Effect of the environmental parameters
We find that if the environment changes fast, the fixation time in
the temporally varying environment differs considerably from
that in the static environment, as can be seen in Figures 1A and
4A at intermediate cycling frequencies. But for a meaningful
comparison with the body of work on the fixation time in con-
stant environments (Charlesworth 2020), most of our analysis
has focused on the effect of slowly changing environments.

It should be noted that for time-dependent selection coeffi-
cients, the stochastic process is time-inhomogeneous and there-
fore the fixation time depends on the time at which the mutant
arose and whether the environment is improving or deteriorating
(Uecker and Hermisson 2011; Devi and Jain 2020). If an initially
deleterious mutant on the way to fixation experiences a more fa-
vorable environment, its chance of extinction reduces and such a
mutant can be expected to have a larger time of fixation than in
an environment that remained unfavorable. On the other hand,
if an initially deleterious (or beneficial) mutant faces an even

more unfavorable environment, due to the higher risk of extinc-
tion at late times, the mutant is likely to fix sooner. The dynamics
of an initially beneficial mutant that remains beneficial until fix-
ation are, however, less affected by random genetic drift—if se-
lection increases, due to the higher growth rate, the mutant fixes
sooner than in an environment that had remained constant.

Selection regimes
In static environments, the qualitative behavior of the condi-
tional mean fixation time of a mutant depends on the sign and
strength of the scaled selection coefficient, a ¼ Ns. For a benefi-
cial mutant, if selection is weak (0 < a� 1), the fixation time
increases with the dominance coefficient h and selection strength
a, and can even exceed the fixation time of a neutral mutant
(Mafessoni and Lachmann 2015). But for moderately strong selec-
tion (1� a� 100), the conditional mean fixation time decreases
with a and increases with h (Teshima and Przeworski 2006;
Charlesworth 2020). For stronger selection, it decreases with a

and is approximately identical for two mutants with the same se-
lection coefficient but dominance coefficients h and 1� h (van
Herwaarden and van der Wal 2002; Ewing et al. 2011). The pat-
terns for deleterious mutations follow on realizing that the condi-
tional fixation time for a beneficial mutant with dominance
coefficient h and a deleterious mutant with the same magnitude
of selection but dominance level 1� h are equal (Maruyama
1974; Maruyama and Kimura 1974).

Here, we find that all the qualitative patterns described above
continue to hold when the environment changes slowly, but
there are quantitative differences. While a slowly changing envi-
ronment has only a mild effect on the conditional mean fixation
if the mutant is beneficial, its impact is much stronger for delete-
rious mutants. This asymmetry can be traced back to the fact
that the fixation probability of a deleterious mutant is much
more sensitive to a change in selection than the fixation probabil-
ity of a beneficial mutant. Furthermore, for initially deleterious
mutants, as the fixation probability of the recessives is higher
than the dominants, the former can segregate in the population
for a longer time and are therefore exposed to the changing envi-
ronment for a longer duration, resulting in a fixation time which
is substantially different from that in a constant environment.

Implications
In a constant environment, due to the Maruyama-Kimura symmetry
for the conditional mean fixation time (Maruyama 1974; Maruyama
and Kimura 1974), similar diversity patterns for beneficial and dele-
terious sweeps may be generated (Johri et al. 2020). But in a changing
environment, due to the lack of the Maruyama-Kimura symmetry, a
beneficial mutant in a slowly improving (deteriorating) environment
can generate a diversity pattern different from that due to the fixa-
tion of a deleterious mutant under the same selection pressure but
in a slowly deteriorating (improving) environment.

To ascertain this effect, we have conducted a preliminary
study of the effect of hard sweep on linked neutral variation in a
two-locus model of a finite, diploid population in which the first
locus is modeled as in the Model section but the second biallelic
locus is neutral. Recombination is assumed to occur with a prob-
ability c� 1 but recurrent mutations are not allowed. As a result
of genetic hitchhiking, the heterozygosity Hfix at the neutral locus
following the fixation event (relative to the heterozygosity H0 be-
fore the new mutant appeared) is expected to decrease (Maynard
Smith and Haigh 1974). Figure 5 shows the relative heterozygosity
as a function of the cycling frequency for the parameters in
Figure 1A, and we find that its qualitative behavior is the same as
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that of the conditional mean fixation time (Tajima 1990). The inset
of Figure 5 emphasizes that the slowly changing selective environ-
ment only mildly influences the heterozygosity of an initially bene-
ficial dominant mutant but has a strong effect on the
heterozygosity of an initially deleterious recessive mutant. A more
detailed study of the effect of environmental variation on various
measures of genetic diversity will be taken up in a future work.

As already mentioned, although the qualitative patterns for
the fixation time in a static environment are robust with respect
to a slow change in the environment, there are quantitative dif-
ferences. As a consequence, the effect of varying environment
may be interpreted as an effective selection coefficient or domi-
nance parameter. For example, in Figure 3, the fixation time in
slowly changing environment, and for dominance coefficient
h¼ 1/2 and selection strength a ¼ �14:14 (initial phase h ¼ 5p=4)
is about 1691. But if one assumes a constant environment, the
same fixation time is obtained for a ¼ �15:27 which implies an
8% increase in the selection coefficient.

We therefore suggest to include the effect of changing envi-
ronment in theoretical models of selective sweeps as this can po-
tentially allow one to distinguish between the sign of selection,
detect deleterious sweeps and correctly estimate the model
parameters. Generalizing the above results to include the effect
of inbreeding and sex-linked inheritance (Glémin 2012; Hartfield
and Bataillon 2020) could also help to assess the importance of
changing environment in evolutionary dynamics.

Data availability
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clusions presented in the article are represented fully within the

article. Supplemental material including the simulation program
and a Mathematica notebook are available at GENETICS online.
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Appendix A: Diffusion theory for
time-inhomogeneous process
For a large finite population with small selection coefficient, the
average fixation time can, in principle, be studied using the back-
ward Fokker-Planck equation with time-dependent selection co-
efficient. The probability distribution Ubðx; tjp; t0Þ obeys the
following partial differential equation:

� oUbðx; tjp; t0Þ
ot0

¼ sðt0ÞgðpÞ
oUbðx; tjp; t0Þ

op
þ pq

2N
o2Ubðx; tjp; t0Þ

op2 (A1)

where sðt0Þ ¼ s þ r sinðxt0 þ hÞ and gðpÞ ¼ pqðpþ hð1� 2pÞÞ. In the
above equation, the first term on the RHS is obtained on using
that the deterministic rate of change of the mutant allele fre-
quency is given by dp=dt ¼ sðtÞgðpÞ, and the second term is due to
the sampling noise in a finite population. In (A1), the probability
distribution is assumed to be a function of the initial time t0 and
the final time t. But one can also consider the variables t0 and the
time interval t� t0 which leads to (S5) in Uecker and Hermisson
(2011). However, as the formulation (A1) is much easier to han-
dle, we work with it in the rest of the article.

The (unconditional) mean fixation time for a mutant arising at
time t0 can be written as

Tðp; t0Þ ¼
ð1

t0

dtðt� t0ÞUbðx! 1; tjp; t0Þ (A2)

Using Leibniz integral rule,

ð1
t0

dt t� t0ð Þ oUbðx; tjp; t0Þ
ot0

¼ o

ot0

ð1
t0

dt t� t0ð ÞUb x; tjp; t0ð Þ

þ
ð1

t0

dtUb x; tjp; t0ð Þ; (A3)

and (A.1), we then obtain

� oTðp; t0Þ
ot0

� uðp; t0Þ ¼ sðt0ÞgðpÞ
oTðp; t0Þ

op
þ pq

2N
o2Tðp; t0Þ

op2 (A4)

where the eventual fixation probability uðp; t0Þ ¼
Ð1
t0

dtUbðx!
1; tjp; t0Þ obeys (Uecker and Hermisson 2011; Devi and Jain
2020)

� ouðp; t0Þ
ot0

¼ sðt0ÞgðpÞ
ouðp; t0Þ

op
þ pq

2N
o2uðp; t0Þ

op2 (A5)

We verify that (A4) and (A5) reduce to the corresponding equa-
tions for the time-homogenous process where the fixation proba-
bility and the fixation time are independent of the initial time
(Ewens 2004). The partial differential Equations (A4) and (A5)
along with the boundary conditions

uð0; t0Þ ¼ 0;uð1; t0Þ ¼ 1 ; Tð0; t0Þ ¼ Tð1; t0Þ ¼ 0 (A6)

can, in principle, be used to find the mean fixation time for either
sign of selection. However, these equations do not appear to be
solvable, even for the dominance parameter h¼ 1/2, as the eigen-
function expansion method commonly employed for solving par-
tial differential equations with time-dependent coefficients
requires the eigenfunctions of the problem with constant selec-
tion that are, unfortunately, not known in a closed form (Jain and
Devi 2020).

Appendix B: Mean fixation time in slowly
changing environments

In slowly changing environments where x� N�1; sð0Þ and Nsð0Þ
is arbitrary, the eventual fixation probability and the mean fixa-
tion time can be expanded in a power series in the small, dimen-

sionless parameter Nx, that is, u ¼
P1

i¼0 ðNxÞiui;T ¼
P1

i¼0 ðNxÞiTi.
But for small enough Nx, it is a good approximation to terminate
this series at i¼ 1.

To find the equation satisfied by ui, it is useful to rewrite (A5)
for the fixation probability as

�Nx
ouðp; t0Þ

oH
¼ Ns Hð Þg pð Þ

ouðp; t0Þ
op

þ pq
2

o2uðp; t0Þ
op2 (B1)

where H ¼ xt0 þ h. Substituting the power series expansion for u
on both sides of the above equation, collecting terms with the
same power of Nx and taking H! h (that is, x! 0), we obtain
(4) and (6) in the main text for u1 and u0, respectively. The fixa-
tion probability in a static environment obeys the boundary
conditions, u0ð0; t0Þ ¼ 0;u0ð1; t0Þ ¼ 1. Therefore, due to (A6),
u1ð0; t0Þ ¼ u1ð1; t0Þ ¼ 0. In a similar fashion, the Equations (5)
and (7) for the mean fixation time and the corresponding
boundary conditions can be derived.

The conditional mean fixation time in slowly changing envi-
ronment can be written as

Tc ¼
T
u
� T0

u0

1þ Nx T1

T0

1þ Nx u1
u0

0
@

1
A (B2)

from which (8) follows on using ð1þ e1Þ=ð1þ e2Þ � 1þ e1 � e2 for
small e1; e2.

Appendix C: Feller process with
time-dependent coefficients
Taking the Laplace transform on both sides of (13), we find that
~F ðj; sÞ ¼

Ð1
0 dpe�jpFðp; sÞ obeys a first order differential equation,

o ~F
os
¼ ðj� j2‘ðsÞÞo

~F
oj

(C1)

where sðtÞ ¼ h
Ð t
0 dt0sðt0Þ and ‘ðsÞ ¼ ð2NhsðtÞÞ�1. The above differen-

tial equation can be solved using the method of characteristics
for the initial condition Fðp; 0Þ ¼ dðp� p0Þ, and we obtain (Feller
1951b; Masoliver 2016)

~F j; sð Þ ¼ exp � p0jes

1þ jes
Ð s
0 ds0e�s0 ‘ðs0Þ

" #
(C2)

¼ e
� p0Ð s

0
ds0e�s0 ‘ðs0 Þ

�
X1
n¼0

1
n!

p0Ð s
0 ds0e�s0 ‘ðs0Þ

� �n 1
ð1þ j

Ð s
0 ds0es�s0 ‘ðs0ÞÞn

(C3)

Taking the inverse Laplace transform of the summand in the
last expression and then carrying out the sum over n, we get

F p; tð Þ ¼
1
hpi

ffiffiffiffiffiffiffi
hpi
p

s
2Np0e

�
2Np0 1þ p

hpi

	 
Ð s

0
ds0 e�s0 ðhsðt0 ÞÞ�1Ð s

0 ds0e�s0 ðhsðt0ÞÞ�1 I1

4Np0

ffiffiffiffiffi
p
hpi

q
Ð s
0 ds0e�s0 ðhsðt0ÞÞ�1

0
@

1
A (C4)

where InðzÞ is modified Bessel function of the first kind. In (C4),
hpðtÞi ¼

Ð1
0 dpFðp; tÞp ¼ p0es is the expected mutant allele
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frequency at time t, as can also be checked using (13); however,
when conditioned on fixation, this frequency grows as p0es=u
which is faster than hpi (Uecker and Hermisson, 2011). We also
note that the eventual fixation probability (14) can also be written
as u ¼ Limj;s!1 ~F ðj; sÞ.

Appendix D: Distribution of the fixation time
of on-average beneficial mutant
In the stochastic phase A, although the expected mutant fre-
quency grows exponentially with time, (C4) and (14) show that at
large times [where s!1, since s(t) > 0 at all times], the random
variable y ¼ p=hpi, conditioned on fixation, has a stationary distri-
bution,

F cðy; tÞ ¼
Fðyhpi; tÞhpi
1� Fð0; tÞ !

s!1
ue�uy (D1)

[see also Uecker and Hermisson (2011)]. Furthermore, in the vi-
cinity of time t1, the mutant frequency in the stochastic phase A
is given by p ¼ ðp0yÞesðtÞ; t�t1 and in the deterministic phase B, the
average mutant frequency grows as pðtÞ � pðt1ÞesðtÞ�sðt1Þ; t � t1.
Thus the initial mutant frequency in the deterministic phase is
given by pðt1Þ ¼ p0yesðt1Þ, and from (D1), it follows that the random
variable pðt1Þe�sðt1Þ is exponentially distributed with mean
ð2NuÞ�1.

In the deterministic phase B that begins at time t1 and ends at
time t2, the average mutant frequency obeys dp=dt ¼ sðtÞgðpÞ; in-
tegrating this equation over time from t1 to t2, we get
sðt2Þ � sðt1Þ ¼ h½Dðpðt2ÞÞ � Dðpðt1ÞÞ�, where

DðpÞ ¼ lnp
h
� lnq

1� h
þ 2h� 1

hð1� hÞ lnðhþ ð1� 2hÞpÞ: (D2)

But as the frequency pðt1Þ ! 0; qðt2Þ ! 0, the initial frequency
qðt2Þ in phase C is related to pðt1Þ as

h
h� 1

ln½qðt2Þe
1�h

h sðt2Þ� � ln½pðt1Þe�sðt1Þ� � 1� 2h
1� h

ln
h

1� h

� �
(D3)

In the stochastic phase C, the wildtype population evolves sto-
chastically from time t2 until it goes extinct at time Tc. The wild-
type frequency can be described by a Feller process that obeys
(12) for the distribution F̂ ðq; tÞ when p! q; sðtÞ ! �sðtÞ; h! 1� h.
For constant selection, it has been claimed that looking backward
in time (that is, t! Tc � t), the wildtype frequency obeys the
same dynamics as the mutant frequency with h! 1� h but s
unchanged (Martin and Lambert 2015); however, this prescription
results in a forward Kolmogorov equation with negative

population size which is clearly absurd. Therefore, we will work
always looking forward in time.

Proceeding in a manner similar to that for stochastic phase A,
the distribution F̂ ðq; tÞ for the wildtype frequency subject to the
initial condition qðt2Þ can be found for t > t2. Then the probability
that the wildtype goes extinct by time Tc is given by [refer to (14)
for a comparison]

1�
ð1

0
dqF̂ q;Tcð Þ ¼ exp � 2Nqðt2ÞÐ Tc

t2
dte
ð1�hÞ

Ð t

t2
dt0sðt0 Þ

2
4

3
5 (D4)

�Tc�t2
exp � 2Nq t2ð Þe

1�h
h s t2ð ÞÐ Tc

0 dteð1�hÞ
Ð t

0
dt0sðt0 Þ

2
4

3
5 (D5)

On taking the derivative of the above cumulative distribution
with respect to Tc and averaging over the distribution of qðt2Þ
which can be found using (D1) and (D3), we finally arrive at (15) in
the main text.

Appendix E: Mean fixation time of on-
average beneficial mutant
To find the conditional mean fixation time given by (18), we need
to express Tc as a function of !C using (16) which is given by

2N
!C
¼
ðT

0
dt0eð1�hÞst0e�

ð1�hÞr
x cos xt0þhð Þ�cos hð ÞÞð (E1)

For small x, we first expand the exponent of the integrand on
the RHS to linear order in cycling frequency to obtain

2N
!C
�
ðT

0
dt0es0t0 es1x cos ht02

2 �
ðT

0
dt0es0t0 1þ s1x cos h

t02

2

� �
(E2)

where s0 ¼ ð1� hÞsð0Þ and s1 ¼ ð1� hÞr. On carrying out the inte-
grals and taking the logarithm on both sides, to order x, we get

ln
2Ns0

!C

� �
¼ s0T þ s1x cos h

s2
0

1� s0T þ s2
0

2
T2

� �
(E3)

which can be inverted to finally give

s0T ¼ Aþ xs1 cos h

s2
0

A� 1�A2

2

� �
(E4)

where A ¼ ln 2Ns0
!C

� �
. Using this expression in the inner integral of

(18) and carrying out the integrals, to leading and subleading
orders in a, we obtain (19) and (20) in the main text.
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