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Abstract

The Beavis effect in quantitative trait locus (QTL) mapping describes a phenomenon that the estimated effect size of a statistically signifi-
cant QTL (measured by the QTL variance) is greater than the true effect size of the QTL if the sample size is not sufficiently large. This is a
typical example of the Winners’ curse applied to molecular quantitative genetics. Theoretical evaluation and correction for the Winners’
curse have been studied for interval mapping. However, similar technologies have not been available for current models of QTL mapping
and genome-wide association studies where a polygene is often included in the linear mixed models to control the genetic background ef-
fect. In this study, we developed the theory of the Beavis effect in a linear mixed model using a truncated noncentral Chi-square distribu-
tion. We equated the observed Wald test statistic of a significant QTL to the expectation of a truncated noncentral Chi-square distribution
to obtain a bias-corrected estimate of the QTL variance. The results are validated from replicated Monte Carlo simulation experiments. We
applied the new method to the grain width (GW) trait of a rice population consisting of 524 homozygous varieties with over 300 k single nu-
cleotide polymorphism markers. Two loci were identified and the estimated QTL heritability were corrected for the Beavis effect. Bias cor-
rection for the larger QTL on chromosome 5 (GW5) with an estimated heritability of 12% did not change the QTL heritability due to the ex-
tremely large test score and estimated QTL effect. The smaller QTL on chromosome 9 (GW9) had an estimated QTL heritability of 9%
reduced to 6% after the bias-correction.
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Introduction
In quantitative trait locus (QTL) linkage mapping and genome-
wide association studies (GWAS), an important step is to evaluate
the estimated magnitude of the genetic effect at a detected QTL.
The estimated magnitude of a QTL is often measured by the vari-
ance of the QTL or the proportion of phenotypic variance
accounted for by associated variability of allelic effects at the
QTL. The latter is also called the QTL heritability. The estimated
QTL effect can be positive or negative, but the effect squared is al-
ways positive. This squared QTL effect represents the QTL vari-
ance. The estimated QTL variance is often biased for two reasons:
(1) Wrong statistical models may be used (Allison et al. 2002; Luo
et al. 2003; Weller et al. 2005) or (2) Reported QTLs are associated
with significance tests (Beavis 1994; Otto and Jones 2000; Goring
et al. 2001; Xu 2003). Reporting only significant QTLs is a selection
process. The selected QTLs represent a censored “population”
and thus the expectation is higher than that of an uncensored
population, generating an upward bias in estimates of QTL vari-
ance, a phenomenon called the Winners’ curse or the Beavis effect

(Beavis 1994; Otto and Jones 2000; Xu 2003; Sun and Bull 2005;
Zollner and Pritchard 2007; Zhong and Prentice 2008). The bias can
be reduced with an increased sample size, which may not be realis-
tic in practice. The optimal strategy is to correct the bias via statis-
tical treatments, rather than by increasing resources.

Three factors must coexist to generate the Beavis effect: (1)
Stringent criterion of significance tests, (2) Small QTL effects, and
(3) Small sample sizes. The three factors causing the Beavis effect
make the three S property of the Beavis effect. If a reported QTL
is very large, the Beavis effect will not take place. Likewise, if the
threshold of a test statistic for QTL detection is low (a liberal
test), the Beavis effect is also not likely to occur. The Beavis effect
cannot be used as a reason to criticize QTLs detected from small
samples. Any statistically significant QTLs are legitimate. The
very reason we perform statistical tests is to show that a detected
QTL is most likely true (with a small P-value). Therefore, a signifi-
cant QTL is significant, regardless of the sample size. It is the esti-
mated effects of statistically significant QTL that should be
carefully examined when the sample size is small. The Beavis
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effect provides a guideline for a follow-up study in terms of
choosing the appropriate sample size to achieve a predetermined
statistical power (Huang et al. 2018). The estimated size of a
reported QTL may be substantially biased upward if the QTL is
detected with an extremely stringent threshold in the test statis-
tic, especially after Bonferroni correction for millions of single-
nucleotide polymorphisms (SNPs). The estimated QTL size is of-
ten treated as the true QTL size in power calculation and sample
size determination for a potential follow-up study. If the sample
size is indeed calculated based on the biased QTL size in the fol-
low-up study, the experiment is most likely to fail because the ac-
tual true QTL size is smaller. The Beavis effect may have
explained many failed follow-up studies in QTL mapping and
GWAS (Huang et al. 2018). Therefore, correction for the Beavis ef-
fect is an important subject in QTL mapping and association
studies.

Goring et al. (2001) suggested that the only way to obtain unbiased
estimates of QTL effects is through a validation study that separates
the effect estimation stage from the QTL detection stage. Estimation
of QTL sizes from an independent sample is not a cost-effective ap-
proach. There are alternative approaches that do not need addi-
tional experiments. These cost-effective approaches are statistical
methods for bias correction. Typical statistical methods include
parametric and nonparametric methods. Parametric approaches re-
quire knowledge of truncated distributions of the test statistics.
Nonparametric approaches, however, are empirical and they mimic
the two-stage validation method proposed by Goring et al. (2001). We
first review the nonparametric approaches, which were mainly de-
veloped by Sun and Bull (2005) and Sun et al. (2011) for QTL detection
and extended by Huang et al. (2018) for expression QTL (eQTL) map-
ping. These methods are called the bootstrap resampling bias reduc-
tion (BR-squared) methods. Each bootstrap sample is a subsample
randomly extracted with replacement from the full sample. This
means that some individuals may occur multiple times while others
may not be present at all in a bootstrap sample. QTL are detected
from the bootstrap sample. Individuals not selected in the bootstrap
sample form an estimation sample from which effects of the
detected QTL are estimated. The average estimated QTL effects
from a large number of estimation samples (say 1000) are the bias
reduced QTL effects. The estimation sample was called the “out-of-
sample” in the original publication (Sun and Bull 2005; Sun et al.
2011). The estimation sample mimics an independent validation
sample because the observations from the estimation sample are
those not included in the bootstrap sample. The estimated QTL ef-
fect from the estimation sample serves as an estimated QTL effect
from an independent sample. Wu et al. (2005) performed a large
scale Monte Carlo simulation experiment to evaluate three boot-
strap estimators of QTL effect sizes. Wu et al. (2006) later extended
the simulation experiment by directly treating the QTL heritability
as the parameter of interest.

The difference between the estimated QTL variances from the
bootstrap samples and the estimation samples is the bias. The
original estimated QTL variance is subtracted by the bias to give
a bias reduced estimate of the QTL variance. The original esti-
mated QTL variance can also be combined with the estimate
from the estimation sample to produce a weighted estimate (Sun
and Bull 2005; Wu et al. 2005, 2006; Sun et al. 2011). Massive simu-
lation studies showed that the bootstrap estimators correct the
bias more efficiently than the cross-validation method (Wu et al.
2005, 2006). The bootstrap methods are computationally chal-
lenging if all markers are corrected for the bias. Fortunately, only
significant markers need to be corrected for the bias. Sun and
Bull (2005) and Sun et al. (2011) published a software package for

the BR-squares method. The program was coded in Cþþ and can
easily handle a GWAS with one million SNP markers for a sample
as large as 2000 individuals. More applications of the bootstrap
methods can be found in the human genetics literature, e.g.,
GWAS for the time to event trait of Type 1 diabetes (Poirier et al.
2015) in which the authors modified the bootstrap estimators by
adjusting for the minor allele frequency of the detected locus.

The parametric methods require the distribution of an esti-
mated QTL effect or a test statistic. If the QTL effect (not the QTL
variance) is the parameter to be estimated, a normal distribution
is often assumed (Xu 2003; Palmer and Pe’er 2017; Panigrahi et al.
2021). The effect of a detected QTL is considered to be sampled
from a truncated normal distribution. The effect that maximizes
the truncated normal density is the bias corrected maximum
likelihood estimate of the QTL effect (Palmer and Pe’er 2017;
Panigrahi et al. 2021). Xiao and Boehnke (2009, 2011) proposed a
truncated noncentral t distribution to evaluate and correct the
bias of an estimated QTL effect. Xiao and Boehnke (2009) called
the method an ascertainment-corrected maximum likelihood
method. They developed the method for binary trait QTL map-
ping first (case-control studies) and then extended the method to
QTL mapping for quantitative traits (Xiao and Boehnke 2011).

Within the array of parametric methods, some investigators
used the moment method, i.e., equating the expectation of a trun-
cated normal distribution to the observed (estimated) QTL effect or
equating the expectation of a truncated noncentral t distribution to
the observed t-test statistic (Xu 2003; Xiao and Boehnke 2009, 2011;
Palmer and Pe’er 2017; Panigrahi et al. 2021). Other investigators
used a conditional maximum likelihood method. For example,
Xiao and Boehnke (2009, 2011) maximized the conditional likeli-
hood function to estimate the QTL effect, where the conditional
likelihood is the truncated noncentral t probability density. In a
case-control study, Zhong and Prentice (2008) presented three esti-
mators for a QTL effect under the truncated normal distribution:
(1) the conditional maximum likelihood, (2) the moment method,
and (3) the median method. They found that none of the three
methods are satisfactory. Therefore, they recommended a
weighted approach taking into account the naı̈ve estimate (the
original biased estimate) and one of the three estimators.

The actual size of the QTL variance does not tell us whether
the QTL is “large or small.” It is the relative size that is more infor-
mative. This relative size is the QTL heritability. We cannot di-
rectly evaluate the bias in the estimated QTL heritability, but we
can evaluate the bias in the estimated QTL variance. Correcting
the bias in the estimated QTL heritability has not been studied,
although the bootstrap estimators have automatically corrected
the biases for any parameters. In this study, we will model the
QTL variance and directly correct the QTL variance using a trun-
cated noncentral Chi-square distribution.

Bias correction is available in many previous studies (Luo et al.
2003; Xu 2003; Sun and Bull 2005; Zollner and Pritchard 2007;
Zhong and Prentice 2008; Xiao and Boehnke 2009, 2011; Sun et al.
2011; Poirier et al. 2015; Palmer and Pe’er 2017; Huang et al. 2018;
Panigrahi et al. 2021), but only for simple models like interval
mapping and marker scanning that does not take into account
the population structural or the polygenic effect. The current
QTL mapping procedures often include a polygenic component to
control the genetic background effect (Xu 2013). GWAS methods
use linear mixed models (LMM), which include a polygenic com-
ponent to capture cryptic relationships among individuals (Yu et
al. 2006; Kang et al. 2008, 2010; Zhang et al. 2010; Lippert et al.
2011; Zhou and Stephens 2012). Alternative methods for correct-
ing the Beavis effect with complicated models include Monte
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Carlo simulations and nonparametric methods (Goring et al.
2001; Allison et al. 2002; Sun and Bull 2005; Sun et al. 2011; Poirier
et al. 2015; Palmer and Pe’er 2017; Huang et al. 2018). It has been
suggested that correction for the bias is unsatisfactory and a
point estimate from an independent study is the only reliable
way to obtain an unbiased estimate of a locus-specific effect
(Goring et al. 2001). Conducting more experiments using lines
sampled from the same population is a more accurate way to
correct the bias (Melchinger et al. 1998), but that approach is not
cost effective.

In this study, we propose a new statistical method to correct
for the Beavis effect resulting from complicated models that in-
clude a polygenic component as a random effect in the linear
mixed models. Once again, correcting for the Beavis effect cannot
make a significant QTL insignificant; it only changes the esti-
mated QTL variances.

Methods
Following the conventional notation for variables, we use bold
face letters to indicate matrices and vectors, and plain face let-
ters to indicate scalars.

The variance of a quantitative trait locus
The single marker model
The simplest model for QTL mapping and GWAS is

y ¼ Xbþ Zcþ e (1)

where y is an n� 1 vector of phenotypic values of a quantitative
trait and n is the sample size, X is an n� p design matrix for p sys-
tematic environmental effects (fixed effects, including the inter-
cept) not related to genes and b is a p� 1 vector of the fixed effects,
Z is an n� 1 vector of genotype indicator variable for a locus of in-
terest and c is the effect of this locus (QTL effect). This QTL effect
is a scalar, but this model can be extended to multiple effects. In
that case, the QTL effect can be a vector with the number of ele-
ments equal to the number of columns in Z. The last term, e, is an
n� 1 vector of residual errors with an assumed Nð0; Ir2Þ distribu-
tion, where r2 is the residual variance. Model (1) assumes that the
trait is controlled by a single locus. Models including multiple loci
captured by a polygenic effect will be discussed later. The QTL ef-
fect (c) is the most important parameter in QTL mapping and
GWAS, but it can be negative or positive, depending on how Z is
coded. The absolute value or square of c is a better measurement
of the QTL effect size. Ultimately, the size of a QTL must be
expressed relative to the residual variance or the phenotypic vari-
ance of the trait. Following the classical definition of the QTL effect
(Lander and Botstein 1989; Zeng 1994; Falconer and Mackay 1996;
Lynch and Walsh 1998; Yu et al. 2006), we treat it as a fixed effect.
This makes model (1) a fixed effect model. As a fixed effect model,
the expectation and variance are

EðyÞ ¼ Xbþ Zc (2)

and

varðyÞ ¼ varðeÞ ¼ Ir2; (3)

respectively. The phenotypic variance defined this way does not
contain the QTL variance, because the QTL effect is treated as a
fixed effect in the linear model. Following the suggestion from

the associate editor and a reviewer, we consider Z as a random
variable so that the product Zjc remains a variable. This allows
us to define the variance of yj, i.e., the phenotypic value, by

varðyjÞ ¼ varðZjÞc2 þ varðejÞ ¼ r2
Zc2 þ r2 (4)

The QTL variance is defined as

r2
QTL ¼ r2

Zc2 (5)

The total phenotypic variance is r2
QTL þ r2 so that the propor-

tion of the phenotypic variance contributed by the QTL, i.e., the
QTL heritability, is

h2
QTL ¼

r2
QTL

r2
QTL þ r2

(6)

The polygenic model
The single marker model is flawed because it considers only one
marker and ignores other QTLs throughout the genome. In QTL
mapping, effects of other QTL are captured by selected co-
factors. Such a method is called composite interval mapping
(Jansen and Stam 1994; Zeng 1994). However, fitting a polygenic
effect to the model will serve the same purpose as the co-factors
in the composite interval mapping (Xu 2013). Fitting a polygene is
the common practice in GWAS (Yu et al. 2006). The polygenic
model for QTL mapping and GWAS is

y ¼ Xbþ Zcþ nþ e (7)

where n � Nð0;K/2Þ is an n� 1 vector of polygenic effects with an
assumed multivariate normal distribution, K is an n� n normal-
ized covariance structure and /2 is the polygenic variance. By
normalization, we mean that the sum of the diagonal elements
of matrix K equals n, denoted by trðKÞ ¼ n, i.e., the trace of K is n.
For this model, the phenotypic variance is

varðyjÞ ¼ varðZjÞc2 þ n�1trðKÞ/2 þ varðejÞ ¼ r2
Zc2 þ /2 þ r2 (8)

Again we define r2
QTL ¼ r2

Zc2 as the QTL variance. The total
phenotypic variance is expressed by r2

QTL þ /2 þ r2 so that the
QTL heritability is defined as

h2
QTL ¼

r2
QTL

r2
QTL þ /2 þ r2

(9)

The genotype indicator variable (Z) is often standardized prior
to the data analysis so that lZ ¼ 0, r2

Z ¼ 1 and

h2
QTL ¼

r2
QTL

r2
QTL þ /2 þ r2

¼ c2

c2 þ /2 þ r2
(10)

Hereafter, we assume that a standardized Z is used to simplify
the presentation of the QTL variance. If the original Z variable is
denoted by Z�, the standardized Z variable is defined as
Z ¼ ðZ� � lZ� Þ=rZ� , where lZ� and rZ� are the sample mean and
sample standard deviation of Z�.

Estimation of QTL variance
Although we define r2

QTL ¼ c2, we cannot estimate the QTL variance
by ĉ2, i.e., r̂2

QTL 6¼ ĉ2, which would be a biased estimate. An unbiased

F. Xie et al. | 3



estimate is obtained by treating c as a random effect with a normal
distribution, c � Nð0;r2

cÞ, where r2
c is the variance of that distribu-

tion. For a single random effect, c, the variance is defined as r2
c ¼ c2.

Therefore, an estimated variance of gamma should be r̂2
c ¼ ĉ2 ,

which is not ĉ2. When r2
Z ¼ 1, the estimated QTL variance is

r̂2
QTL ¼ r̂2

c ¼ ĉ2 . We now propose a moment method (MM) of estima-
tion. Let ĉ be the best linear unbiased estimate (BLUE) of c from
model (7) and let s2

ĉ ¼ varðĉjcÞ be the squared estimation error for ĉ.
We describe ĉ conditional on c by the following linear model,

ĉ ¼ cþ eĉ (11)

where c � Nð0;r2
cÞ and eĉ � Nð0; s2

ĉ Þ. Both ĉ and s2
ĉ are estimated

from the data (treated as observed quantities) so that we can
evaluate the quadratic form

ĉ2 ¼ ðcþ eĉ Þ2 ¼ c2 þ 2ceĉ þ e2
ĉ (12)

The expectation of equation (12) is

Eðĉ2jcÞ ¼ c2 þ 2cEðeĉ Þ þ Eðe2
ĉ Þ ¼ r2

c þ s2
ĉ (13)

where r2
c ¼ c2, Eðeĉ Þ ¼ 0 and Eðe2

ĉ Þ ¼ varðĉjcÞ ¼ s2
ĉ . The moment

method of estimation for the variance of gamma is obtained by
replacing Eðĉ2jcÞ by the observed statistic (ĉ2) in Equation (13) so that

ĉ2 ¼ r2
c þ s2

ĉ (14)

whose solution for the QTL variance is

r̂2
c ¼ ĉ2 � s2

ĉ (15)

A negative estimate is allowed in MM of a variance compo-
nent. If preferred, we can truncate a negative estimate of the QTL
variance at zero, as shown below,

r̂2
c ¼

�
ĉ2 � s2

ĉ
0

if
if

ĉ2 > s2
ĉ

ĉ2 � s2
ĉ

(16)

A statistically more elegant expression of Equation (16) is

r̂2
c ¼ ðĉ

2 � s2
ĉ Þ
þ (17)

We already assumed that r2
Z ¼ 1 after standardization and

thus

r̂2
QTL ¼ r2

Zr̂2
c ¼ r̂2

c ¼ ðĉ
2 � s2

ĉ Þ
þ (18)

Thus, the estimated QTL heritability is rewritten as

ĥ
2
QTL ¼

r̂2
c

r̂2
c þ /̂

2 þ r̂2
¼

ðĉ2 � s2
ĉ Þ
þ

ðĉ2 � s2
ĉ Þ
þ þ /̂

2 þ r̂2
(19)

In the next section, we will define s2
c as a theoretical value of

s2
ĉ while the latter is obtained from the data.

The Beavis effect
An alternative moment estimate of QTL variance
Let ĉ be the estimated QTL effect and define the variance of the
estimated effect (squared error) by

varðĉjcÞ ¼ s2
ĉ ¼

r̂2

nZr2
Z

¼ r̂2

nZ
(20)

where r̂2 is the estimated residual variance, r2
Z ¼ 1 is the vari-

ance of the genotype indicator variable (already standardized
prior to the data analysis), and nZ is defined as

nZ ¼ ZTPZ ¼ ZT½I� XðXTXÞ�1XT�Z (21)

and

P ¼ I� XðXTXÞ�1XT (22)

We often take the expectation of nZ with respect to Z so that

n0 ¼ EðnZÞ ¼ EðZTPZÞ ¼ EðZTÞPEðZÞ þ tr½varðZÞP� ¼ trðPÞ ¼ n� rðXÞ
¼ n� p

(23)

where n is the actual sample size and rðXÞ ¼ p is the column rank
of matrix X. Equation (24) holds because EðZÞ ¼ 0 and varðZÞ ¼ I
(Z is a standardized variable). Note that n0 can be interpreted as
the residual degree of freedom. When the sample size is suffi-
ciently large, n0 � n, we may also call n0 the effective sample size.
The Wald test statistic is defined as

W ¼ ĉ2

s2
ĉ

¼ n0ĉ
2

r̂2 (24)

Under the null model (the QTL effect is zero), the Wald test
statistic follows a Chi-square distribution with k ¼ 1 degree of
freedom. Under the alternative model (QTL effect is different
from zero), however, the Wald test follows a noncentral Chi-
square distribution with a noncentrality parameter d, which is
just the Wald test statistic with the estimated parameters
replaced by the true parameters, i.e.,

d ¼ c2

s2
c
¼ n0c2

r2 (25)

where

s2
c ¼

r2

n0

is the theoretical value of the squared estimation error of ĉ.
Define the QTL variance by r2

c ¼ c2. The noncentrality parameter
is rewritten as

d ¼ n0c2

r2 ¼
n0r2

c

r2 (26)

Under the alternative hypothesis, the expectation of the Wald
test statistics (noncentral Chi-square variable) is

EðWÞ ¼ E½v2
kðdÞ� ¼ dþ k ¼ n0r

2
c=r

2 þ k (27)

where k ¼ 1 and v2
kðdÞ is an alternative notation for v2ðk; dÞ, a non-

central Chi-square distribution with k ¼ 1 degrees of freedom and
a noncentrality parameter d. Equation (28) allows us to estimate
the QTL variance using the moment method, which is obtained
by substituting the expectations of variables in an equation by

4 | GENETICS, 2021, Vol. 219, No. 3



the observations of the variables and solving for the parameter of
interest. The moment estimate of the QTL variance is obtained
by solving the following equation

W ¼
n0r2

c

r̂2 þ 1 (28)

The solution for r2
c is

r̂2
c ¼

r̂2

n0
W � 1Þ
�

(29)

If a negative estimate is not allowed, we simply truncate the
negative estimate at zero. This is an alternative moment method
of estimation for the QTL variance. Further simplification shows
that Equation (30) is identical to Equation (17),

r̂2
c ¼

r̂2

n0
ðW � 1Þþ ¼ s2

ĉ
ĉ2

s2
ĉ

� 1

 !þ
¼ ðĉ2 � s2

ĉ Þ
þ (30)

Theoretical bias in QTL variance after application of a
significance test
QTLs not detected are excluded and thus reported QTLs form a
hypothetical sample of censored data. Equation (30) is the key to
evaluate the bias in the estimated QTL variance. Let us replace W
by the expectation of a truncated noncentral Chi-square distribu-
tion with one degree of freedom,

r2ðBIASEDÞ
c ¼ r2

n0
½EðWjW > tWÞ � 1� (31)

where tW is the critical value of the Wald test above which the lo-
cus is claimed to be significant. The estimated QTL variance of a
reported QTL should be biased upward because W > tW follows a
truncated noncentral Chi-square distribution (Marchand 1996; Li
and Yu 2009). Let us replace W by v2

kðdÞ, a variable from a noncen-
tral Chi-square distribution with a degree of freedom k ¼ 1 and a
noncentrality parameter of d. We now have

r2ðBIASEDÞ
c ¼ r2

n0
fE½v2

1ðdÞjv2
1ðdÞ > tW� � 1g (32)

Recall that d ¼ n0r2
c=r

2. The noncentral Chi-square variable is
a function of the true QTL variance,

v2
1ðdÞ ¼ v2

1ðn0r
2
c=r

2Þ (33)

Substituting this variable into Equation (33) leads to

r2ðBIASEDÞ
c ¼ r2

n0
fE½v2

1ðn0r
2
c=r

2Þjv2
1ðn0r

2
c=r

2Þ > tW� � 1g (34)

where r2
c in the right hand side of this equation is the true QTL

variance and r2ðBIASEDÞ
c in the left hand side of this equation is the

biased QTL variance. This equation allows us to evaluate the the-
oretical bias given the effective sample size (n0), the residual error
variance (r2), and the true QTL variance (r2

c ).

Correcting the bias
Substituting r2ðBIASEDÞ

c and r2 in Equation (35) by r̂2ðBIASEDÞ
c and r̂2,

the estimated values from the data, we have

r̂2ðBIASEDÞ
c ¼ r̂2

n0
fE½v2

1ðn0r
2
c=r̂

2Þjv2
1ðn0r

2
c=r̂

2Þ > tW� � 1g (35)

After rearrangement of the equation, we obtain

E½v2
1ðn0r

2
c=r̂

2Þjv2
1ðn0r

2
c=r̂

2Þ > tW� ¼
n0r̂

2ðBIASEDÞ
c

r̂2 þ 1 (36)

The right hand side of the equation is

n0r̂
2ðBIASEDÞ
c

r̂2 þ 1 ¼
n0ðĉ2 � s2

ĉ Þ
r̂2 þ 1 ¼ n0ĉ

2

r̂2 �
n0s2

ĉ

r̂2 þ 1 ¼W (37)

where n0ĉ
2=r̂2 ¼W, s2

ĉ ¼ r̂2=n0 and n0s2
ĉ=r̂

2 ¼ 1. Therefore,
Equation (37) becomes

E½v2
1ðr2

c=s2
ĉ Þjv2

1ðr2
c=s2

ĉ Þ > tW� ¼W (38)

Let the expectation of the truncated noncentral Chi-square
distribution in the left hand side of Equation (39) be

f ðr2
cÞ ¼ E½v2

1ðr2
c=s2

ĉ Þjv2
1ðr2

c=s2
ĉ Þ > tW� (39)

which is a function of the QTL variance. Equation (39) can be re-
written as

f ðr2
cÞ ¼W (40)

The solution for r2
c is implicit, requiring an initial value of the

parameter and taking a few iterations to converge. The final solu-
tion is denoted by

r̂2ðCORRECTEDÞ
c ¼ arg

r2
c

½f ðr2
cÞ ¼W� (41)

Analysis of the polygenic model
The Beavis effect and correction for the Beavis effect described
previously apply to the single marker model. We now extend the
analysis to a polygenic model, which is the default model for
GWAS (Yu et al. 2006; Zhang et al. 2010). QTL mapping can also
use the polygenic model to control the genetic background (Xu
2013). The linear mixed model is

y ¼ Xbþ Zcþ nþ e (42)

The expectation of y is EðyÞ ¼ Xbþ Zc and the variance-
covariance matrix of y is

varðyÞ ¼ V ¼ varðnÞ þ varðeÞ ¼ K/2 þ Ir2 ¼ ðKkþ IÞr2 ¼ Hr2

where k ¼ /2=r2 is the variance ratio (proportional to the size of
the polygene) and

H ¼ Kkþ I (43)

which is the covariance structure of the mixed model. The vari-
ance parameters can be estimated from the restricted maximum
likelihood (REML) method (Patterson and Thompson 1971). Once
the parameters are estimated, the best linear unbiased estimates
(BLUE) of the fixed effects (b and c) are obtained from the follow-
ing equations,

F. Xie et al. | 5



½ b̂ĉ� ¼
�

XTH�1X XTH�1Z
ZTH�1X ZTH�1Z

��1�
XTH�1y
ZTH�1y

�
(44)

The variance-covariance matrix of the BLUE is

var½ b̂ĉ� ¼
�

XTH�1X XTH�1Z
ZTH�1X ZTH�1Z

��1

r̂2 ¼
�

CXX CXZ

CZX CZZ

�
r̂2 (45)

Define

P ¼ H�1 �H�1XðXTH�1XÞ�1XTH�1

The variance of the estimated QTL effect is

varðĉjcÞ ¼ s2
ĉ ¼ CZZr̂2 ¼ r̂2

ZTPZ
¼ r̂2

nZ
(46)

The expectation of nZ with respect to Z is

n0 ¼ EðZTPZÞ ¼ EðZTÞPEðZÞ þ tr½varðZÞP� ¼ trðPÞ

because EðZÞ ¼ 0 and varðZÞ ¼ I (Z has been standardized prior to
the data analysis). We replace Equation (47) by

s2
ĉ ¼

r̂2

EðZTPZÞ
¼ r̂2

n0
(47)

The theoretical value of the variance is

s2
c ¼

r2

EðZTPZÞ
¼ r2

trðPÞ ¼
r2

n0
(48)

When there are no fixed effects other than the grand mean,
the effective sample size can be approximated via

n0 ¼ trðPÞ � trðH�1Þ ¼ tr½UðkDþ IÞ�1UT� ¼ tr½ðkDþ IÞ�1� (49)

where D ¼ diagf d1 d2 	 	 	 dn g holds the eigenvalues of the
kinship matrix K and U are the eigenvectors of K. Because D is a
diagonal matrix, the effective sampled size is rewritten as

n0 � tr½ðkDþ IÞ�1� ¼
Xn

j¼1

ðkdj þ 1Þ�1 (50)

The Wald test statistic is defined as

W ¼ ĉ2

s2
ĉ

¼ n0ĉ
2

r̂2 (51)

The biased QTL variance incorporating the Beavis effect is

r2ðBIASEDÞ
c ¼ r2

n0
½EðWjW > tWÞ � 1�

¼ r2

n0
fE½v2

1ðr2
c=s

2
cÞjv2

1ðr2
c=s2

cÞ > tW� � 1g (52)

The r2
c in the right hand side of the equation is the theoretical

value of the QTL variance and the r2ðBIASEDÞ
c in the left hand side

of the equation is the theoretically biased QTL variance.
To correct the bias, Equation (39) for the single QTL model

applies to the polygenic model,

E½v2
1ðdÞjv2

1ðdÞ > tW� �W ¼ 0 (53)

where d ¼ r2
c=s2

ĉ . Again, the solution for the noncentrality param-
eter is not explicit and, with an initial value of d, a few iterations
are required to achieve the final bias corrected solution, denoted
by d̂. The bias corrected estimate of the QTL variance is

r̂2ðCORRECTEDÞ
c ¼ s2

ĉ d̂ (54)

where d̂ is the solution from Equation (54) and s2
ĉ is obtained from

Equation (48).

Technical improvement
In analysis of experimental data, correction for the bias may not
be as easy as that given in Equation (54). To calculate the noncen-
trality parameter after truncation on the Wald test statistic, Li
and Yu (2009) proposed a modified moment method of estima-
tion using a single value of the Wald test statistic (W). Let aW be a
number 0 < aW < 1 and the following value is recommended (Li
and Yu 2009)

aW ¼ ðtW þ 2Þ=ðtW þ 2þ kÞ (55)

where k ¼ 1 is the degree of freedom of the Wald test. Define

Jð0Þ ¼ E½v2
1ð0Þjv2

1ð0Þ > tW� (56)

as the expectation of the truncated central Chi-square distribu-
tion with 1 degree of freedom. Let

ja ¼minfdTMðWÞ ¼ aWðj� tWÞ; j 
 Jð0Þg (57)

i.e., ja is the minimum solution of dTMðWÞ ¼ aWðj� tWÞ when
j 
 Jð0Þ. The modified estimate of the noncentrality parameter is

d̂aðWÞ ¼
�

aWðW � tWÞ
dTMðWÞ

for
for

tW < W � ja

W > ja
(58)

where dTMðWÞ is the moment estimate of the noncentrality pa-
rameter satisfying

Efv2
1½dTMðWÞ�jv2

1½dTMðWÞ� > tWg ¼W (59)

The bias corrected estimate of the QTL variance is

r̂2ðCORRECTEDÞ
c ¼ s2

ĉ d̂aðWÞ (60)

Results
An example
Biased QTL heritability
Assume that the true QTL variance is r2

c ¼ 2 so that the QTL effect
is c ¼

ffiffiffi
2
p
¼ 1:4142. Assume that the residual variance is r2 ¼ 10.

The QTL heritability is h2
QTL ¼ r2

c=ðr2
c þ r2Þ ¼ 2=ð2þ 10Þ ¼ 0:1667.

Assume that the sample size is n0 ¼ 100 and the threshold of the
Wald test is tW ¼ 20. We now have enough information to evaluate
the theoretical bias in the estimated QTL variance and QTL heritabil-
ity. The noncentrality parameter is d ¼ n0r2

c=r
2 ¼ 100� 2=10 ¼ 20.

The expectation of the truncated Chi-square distribution is
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E½v2
1ðdÞjv2

1ðdÞ > tW� ¼ E½v2
1ð20Þjv2

1ð20Þ > 20� ¼ 28:1365

The biased QTL variance (theoretically) is

r2ðBIASEDÞ
c ¼ r2

n0
fE½v2

1ðdÞjv2
1ðdÞ > tW� � 1g ¼ 10

100
� ð28:1365� 1Þ

¼ 2:71365

The actual bias of the QTL variance is
r2ðBIASEDÞ

c � r2
c ¼ 2:71365� 2 ¼ 0:71365. The theoretical biased

heritability is

h2ðBIASEDÞ
QTL ¼ r2ðBIASEDÞ

c =ðr2ðBIASEDÞ
c þ r2Þ ¼ 2:71365=ð2:71365þ 10Þ

¼ 0:2134438

The actual bias in QTL heritability is

h2ðBIASEDÞ
QTL � h2

QTL ¼ 0:2134438� 0:1667 ¼ 0:04677713

The relative bias in QTL heritability is

ðh2ðBIASEDÞ
QTL � h2

QTLÞ=h2
QTL ¼ 0:04677713=0:1667 ¼ 28%:

Correcting the bias
Assume that the sample size is n0 ¼ 100 and the threshold in the
Wald test is tW ¼ 20. A QTL has passed the criterion of the test.
Assume that the estimated QTL variance is r̂2ðBIASEDÞ

c ¼ 2:71365
and the estimated residual variance is r̂2 ¼ 10. The estimated
QTL heritability is then

ĥ
2ðBIASEDÞ
QTL ¼ r̂2ðBIASEDÞ

c =ðr̂2ðBIASEDÞ
c þ r̂2Þ ¼ 0:2134438

The squared error of the estimated QTL effect is
s2
ĉ ¼ r̂2=n0 ¼ 10=100 ¼ 0:1. Therefore, the retrospective estimated

QTL effect is

ĉ2 ¼ r̂2
c þ s2

ĉ ¼ 2:71365þ 0:1 ¼ 2:81365:

The retrospective Wald test is

W ¼ ĉ2

s2
ĉ

¼ 2:81365
0:1

¼ 28:1365

Since the reported QTL variance is associated with a test sta-
tistic, there is a bias. We are now ready to correct the bias using
the following equation

E½v2
1ðr2

c=s2
ĉ Þjv2

1ðr2
c=s2

ĉ Þ > t� ¼W

which is simplified into

E½v2
1ð10r2

cÞjv2
1ð10r2

cÞ > 20� ¼ 28:1365

Let d ¼ 10r2
c , so that the above equation is rewritten into

E½v2
1ðdÞjv2

1ðdÞ > 20� ¼ 28:1365

Solving for d numerically, we have d̂ ¼ 20 and thus the bias
corrected QTL variance is

r̂2ðCORRECTEDÞ
c ¼ s2

ĉ d̂ ¼ 0:1� 20 ¼ 2

which is the original QTL variance presented in the previous sec-
tion. Of course, the bias corrected QTL heritability is

ĥ
2ðCORRECTEDÞ
QTL ¼ r̂2ðCORRECTEDÞ

c =ðr̂2ðCORRECTEDÞ
c þ r̂2Þ ¼ 2=ð2þ 10Þ

¼ 0:1667

which is also shown in the previous section.

Simulation for QTL mapping
The simplest model was chosen for QTL mapping. There was no
genetic background to control (mimicking the simple interval
mapping). We assume that the marker is in perfect LD with the
QTL and thus genotypes of the QTL are assumed to be observed.
The genotypes of the QTL were sampled from a multinomial
distribution with three categories, mimicking the A, H, and B
genotypes of an F2 population with 0.25, 0.5, and 0.25 genotypic
frequencies, respectively. The numerical code for the three gen-
otypes is 1, 0, or �1, respectively, corresponding to the additive
model. The numerical genotype was standardized prior to the
data analysis. We assumed the residual error variance to be
r2 ¼ 20 and the trait mean to be l ¼ 100. The QTL variance and
thus the QTL effect were determined by the QTL heritability,
which varied from 0 to 0.5 incremented by 0.005. Given
h2

QTL ¼ r2
c=ðr2

c þ r2Þ, we get

r2
c ¼ h2

QTLðr2
c þ r2Þ ¼ h2

QTLr
2
c þ h2

QTLr
2 (61)

Rearranging the above equation leads to

r2
c ¼ r2h2

QTL=ð1� h2
QTLÞ

The QTL effect is

c ¼
ffiffiffiffiffiffi
r2

c

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

QTL=ð1� h2
QTLÞ

q
(62)

The phenotypic value of an individual was simulated from

yj ¼ lþ Zjcþ ej (63)

where Zj is the standardized genotypic code for individual j and ej

is the residual effects sampled from the Nð0;r2Þ distribution. The
sample size (n) was set at four levels, 100, 200, 300, and 400. The
threshold (tW) for the Wald test was arbitrarily set at six levels, 0,
5, 10, 15, 20, and 25, where tW ¼ 0 indicates no significance test
(no Beavis effect was expected). Each experimental setup was
replicated 40 times and the average estimated QTL heritability
was compared to the theoretical value calculated from Equation
(35). The bias-corrected heritability was obtained by solving
Equation (39) or Equation (41).

Biased QTL heritability
Figure 1 shows the average estimated QTL heritability (noisy
curves) of 40 replicates and the theoretically predicted heritability
(smooth curves) plotted against the true QTL heritability. The heri-
tability ranges from 0 to 0.5. As the heritability increases, the bias
(deviation from the diagonal) becomes smaller (closer to the diago-
nal). The bias decreases as the sample size (n) increases. The bias
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also increases as the threshold (tW) increases. The simulation
results behave exactly as predicted from the theory.

Correction for the bias
Figure 2 illustrates the bias-corrected heritability for four different
levels of the test statistic thresholds (tW ¼ 10; 15; 20; 25) when the
samples size is n ¼ 100. The QTL heritability ranges from 0 to 0.5.
The red curves show the biased QTL heritability (noisy curves from
simulated data and smooth curves are theoretically predicted val-
ues) and the blue curves show the bias corrected QTL heritability.
We can see that, after correction, the estimated QTL heritability is
closer to the true value on the diagonal.

Simulation for genome-wide association studies
Genome-wide association studies differ from QTL mapping in the
application of mixed models where the fixed effects include pop-
ulation structure and systematic environmental effects and the
random effect is represented by a polygenic effect (Yu et al. 2006;
Kang et al. 2010; Lippert et al. 2011; Zhou and Stephens 2012). If
the pedigree relationships are unknown, the covariance structure

of the polygene is often captured by a marker inferred kinship
matrix. In this study, we simulated multiple full sib families with
a constant family size of five (m ¼ 5) for all families. For example,
if the number of families is nf ¼ 20, the total sample size will be
n ¼ m� nf ¼ 5� 20 ¼ 100. The kinship matrix for n individuals is
a block diagonal matrix with nf ¼ 20 blocks, where each block is a
5� 5 matrix of additive relationship among full-siblings (diagonal
elements equal to 1 and off-diagonal elements equal to 0.5). The
covariance among families is zero. The sample size varied from
n ¼ 100 to n ¼ 400 incremented by 100, corresponding to nf vary-
ing from 20 to 80 incremented by 20. The polygenic variance cap-
tured by the pedigrees was set at /2 ¼ 10 while the residual
variance was set at r2 ¼ 10, resulting in a ratio of
k ¼ /2=r2 ¼ 10=10 ¼ 1. The QTL variance is determined by the
QTL heritability by solving for r2

c from h2
QTL ¼ r2

c=ðr2
c þ /2 þ r2Þ,

which is

r2
c ¼ ð/2 þ r2Þh2

QTL=ð1� h2
QTLÞ (64)

The QTL effect takes the square root of the QTL variance,

Figure 1 Comparison of estimated QTL heritability with true QTL heritability from replicated simulation experiments. There are four different sample
sizes (n) and six different thresholds of test statistics (t). The simple linear model (without polygenic background control) was used in the simulation
experiments. The smooth curves represent the theoretically calculated QTL heritability and the noisy curves are the average QTL heritability estimated
from 40 replicated simulation experiments.
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c ¼
ffiffiffiffiffiffi
r2

c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/2 þ r2Þh2

QTL=ð1� h2
QTLÞ

q
(65)

The phenotypic value of individual j was generated from the
following model,

yj ¼ lþ Zjcþ nj þ ej (66)

where l ¼ 100 is the grand mean, Zj is a standardized genotype
indicator variable for the simulated QTL, nj � Nð0;/2Þ and
covðni; njÞ ¼ Kij/

2, where Kij ¼ 0:5 if i and j are from the same fam-
ily and Kij ¼ 0 otherwise. The QTL heritability varied from 0 to 0.3
incremented by 0.005. Each parameter combination was repli-
cated 40 times. The average estimated QTL heritability was
reported and compared with the theoretical value.

Biased QTL heritability
Figure 3 shows the estimated QTL heritability (noisy curves) com-
pared with the theoretically predicted QTL heritability (smooth
curves). As the heritability increases, the bias (deviation from the
diagonal) becomes smaller (closer to the diagonal). The bias

decreases as the sample size (n) increases. The bias also increases
as the threshold (tW) increases. The simulation results behave ex-
actly as predicted from the theory. Comparing Figure 3 with
Figure 1, we observed less variation among the 40 replicates in
the polygenic model than in the simple linear model.

Correction for the bias
Figure 4 illustrates the bias-corrected QTL heritability for four dif-
ferent levels of the test statistic thresholds (tW) when the samples
size is n ¼ 100. The QTL heritability ranges from 0 to 0.3. The red
curves show the biased QTL heritability and the blue curves show
the bias corrected QTL heritability. We can see that, after correc-
tion, the estimated QTL heritability is closer to the diagonal. This
means that we have successfully corrected the bias caused by
significance tests under the polygenic model.

Bootstrap and conditional maximum likelihood
estimators
Three bootstrap estimators have been evaluated in this study.
Details of the bootstrap method can be found from previous pub-
lications (Sun and Bull 2005; Wu et al. 2005, 2006; Sun et al. 2011;

Figure 2 Correction for the bias of estimated QTL heritability. The simple linear model was used in the simulation (without polygenic background
control). There are four levels of the test threshold (t¼ 10, 15, 20, 25) and the sample size is n¼ 100. The noisy curves are the average estimated QTL
heritability from 40 replicated simulation experiments. The smooth curves are the predicted QTL heritability. The red curves are the QTL heritability
prior to the correction for the Beavis effect (deviated from the diagonal). Blue curves are the QTL heritability after correction for the Beavis effect (closer
to the diagonal).
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Poirier et al. 2015) and are also described in Appendix B of this
study. The conditional maximum likelihood method (Xiao and
Boehnke 2009, 2011) has been implemented in a one parameter
approach where only sufficient statistics of the original data are
analyzed. Details of the conditional maximum likelihood were
presented in the original publication (Xiao and Boehnke 2009,
2011) and a slightly modified version is given in Appendix C of
this study. The bootstrap and conditional maximum likelihood
methods were briefly compared with the moment method devel-
oped here. We simply tested the differences between these meth-
ods in a simple situation where no polygenic effect was included
in the linear model and the sample size was set at n ¼ 100. The
QTL heritability varied at 0.05, 0.10, 0.15, and 0.20. The residual
error variance was set at r2 ¼ 20. Under each level of the QTL
heritability, the simulation was replicated 100 times and the av-
erage estimated QTL heritability over the 100 replicates was
reported. The biased or naı̈ve estimate was the estimate from all
samples with the Wald test statistic greater than tW ¼ 10. The
moment estimate was the procedure developed in this study. The
conditional maximum likelihood method was originally devel-
oped by Xiao and Boehnke (2009, 2011) for a truncated noncentral
t distribution and slightly modified to a truncated noncentral

Chi-square distribution here (see Appendix C). The three specific
bootstrap estimators are the shrinkage estimator, the estimation
sample estimator and the weighted estimator. The estimation
sample estimate was called the “out of sample” estimator in the
original publication (Sun and Bull 2005; Wu et al. 2005, 2006; Sun
et al. 2011; Poirier et al. 2015). The number of bootstrap samples
was set at B ¼ 1000. The actual number of bootstrap samples was
much higher than 1000 because samples with the W test statis-
tics less than tW ¼ 10 were discarded. Table 1 shows the average
estimated QTL heritability obtained from 100 replicated simula-
tions. The naı̈ve biased estimates are indeed biased upward com-
pared to the true values (except for high heritability). The
moment and conditional maximum likelihood estimates are very
similar to each other, but both over corrected the QTL heritabil-
ity. The three bootstrap estimators vary considerably, some over
estimating and some under estimating the QTL heritability. No
method is consistently better than all other methods across all
situations. We observed that for small effect QTL, the bootstrap
estimators under corrected the QTL heritability. For large effect
QTL, the bootstrap estimators over corrected the QTL heritability.
These observations are consistent with the simulation results of
Wu et al. (2005).

Figure 3 Comparison of estimated QTL heritability with true QTL heritability from replicated simulation experiments. There are four different sample
sizes (n) and six different threshold of the test statistics (t). The linear mixed model (with polygenic background control) was used in the simulation
experiments. The smooth curves represent the theoretical QTL heritability and the noisy curves are the average QTL heritability estimated from 40
replicated simulation experiments.
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Application of the bias corrected heritability to a
rice population
The rice data of Chen et al. (2014) was used as an example to
demonstrate the linear mixed model procedure of GWAS and the
Beavis effect. The rice population consists of 524 varieties col-
lected from a wide range of geographical locations with a diverse
genetic background, including indica, japonica and some interme-
diate types between the two subspecies. The trait analyzed is the
grain width (GW) trait. The number of SNP markers is
m ¼ 314393, covering the 12 chromosomes of the rice genome.
The Bonferroni corrected threshold was used as the cut-off point for
declaration of statistical significance. Let Fv2 ðx; kÞ be a Chis-square
distribution function for argument x with k degrees of freedom.
Define p ¼ 1� Fv2 ðx; kÞ as the P-value at value x in the Chi-square
distribution. The critical value is calculated from

tW ¼ F�1
v2 ð1� a=m; kÞ ¼ F�1

v2 ð1� 0:05=314393; 1Þ ¼ 27:47624 (67)

where a ¼ 0:05 is the nominal Type 1 error, p ¼ a=m is the
Bonferroni corrected experiment wise Type 1 error and k ¼ 1 is

the degree of freedom. The corresponding value of the threshold
in the Manhattan plot is � log 10ð0:05=314393Þ ¼ 6:7985. Figure 5A
shows the Manhattan plot, where the red horizontal line is the
cut-off point for significance test (6:7985). Three regions of the ge-
nome have markers with values that exceed the cut-off point.
The highest peak appears on chromosome 5, which overlaps with
a cloned gene (GW5) that controls the grain-width trait and the
grain-length-to-grain-width-ratio trait (Wan et al. 2008). The sec-
ond peak occurs on chromosome 9 (GW9). Figure 5 also shows
the plot of the estimated heritability against genome location be-
fore bias correction (Panel B) and after bias correction (Panel C).
Obviously, only loci that have passed the critical threshold
have nonzero estimated heritability after the bias correction. In
practice, only statistically significant loci are to be corrected for
their estimated QTL heritability, because the corrected heritabil-
ity will be zero for all nonsignificant loci.

There are a total of 42 markers whose Wald test statistics
passed the threshold value oftW ¼ 27:47624: The greatest peak
occurs on chromosome 5 overlapped a cloned gene (GW5) control-
ling GW. The Wald test is W ¼ 109:5486 and the corresponding P-
value is p ¼ 1:23� 10�25. The peak value in the Manhattan plot

Figure 4 Correction for the bias of estimated QTL heritability. The linear mixed model was used (with polygenic background control). There are four
levels of the test threshold (t¼ 10, 15, 20, 25) and the sample size is n¼ 100. The noisy curves are the average estimated QTL heritability from 40
replicated simulation experiments. The smooth curves are the predicted QTL heritability. The red curves are the QTL heritability prior to the bias
correction (deviated from the diagonal). The blue curves are the QTL heritability after the bias correction (closer to the diagonal).
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corresponding to this P-value is �log 10ð1:23� 10�25Þ ¼ 24:91009.
The estimated polygenic variance is /̂

2 ¼ 0:130845, the estimated
residual variance is r̂2 ¼ 0:01426, the estimated variance ratio is
k̂ ¼ /̂

2
=r̂2 ¼ 9:175674, the estimated marker effect of the peak is

ĉ ¼ �0:14361, and the standard error of the estimated QTL effect is

sĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉjcÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000188
p

¼ 0:01372

The estimated QTL variance from the moment method is

r̂2ðBIASEDÞ
c ¼ ĉ2 � ŝ2

ĉ ¼ 0:020622� 0:000188 ¼ 0:020434

The estimated QTL heritability is

ĥ
2ðBIASEDÞ
QTL ¼

r̂2ðBIASEDÞ
c

r̂2ðBIASEDÞ
c þ /̂

2 þ r̂2
¼ 0:020434

0:020434þ 0:130845þ 0:01426

¼ 0:123441

The critical value for the Wald test is tW ¼ 27:47622. The bias-
corrected QTL variance is obtained by solving the noncentrality
parameter (d) from the following equation,

E½v2
1ðdÞjv2

1ðdÞ > 27:47622� ¼ 109:5486

The solution is d̂ ¼ 108:5486. The bias-corrected QTL variance
is

r̂2ðCORRECTEDÞ
c ¼ s2

ĉ d̂ ¼ 0:000188� 108:5486 ¼ 0:020434

Therefore, the bias corrected QTL heritability is

ĥ
2ðCORRECTEDÞ
QTL ¼

r̂2ðCORRECTEDÞ
c

r̂2ðCORRECTEDÞ
c þ /̂

2 þ r̂2

¼ 0:020434
0:020434þ 0:130845þ 0:01426

¼ 0:123441

This bias-corrected heritability is the same as the original
uncorrected QTL heritability because both the QTL size and the
sample size are sufficiently large and the Beavis effect has played
no role in the estimated QTL heritability.

The second highest peak appears on chromosome 9 with an
estimated QTL heritability of 0.09087. After correction for the
Beavis effect, the heritability becomes 0.064233, which is
ð0:09087� 0:064233Þ=0:09087 ¼ 29:316345% lower than the biased
heritability prior to the Beavis correction. Compared with the first
peak on chromosome 5, correction for the Beavis effect of the

second peak has significantly reduced the QTL heritability. The
estimated genetic parameters for the two loci at the peaks are
summarized in Table 2.

The heritability of the two loci were also estimated via the
conditional maximum likelihood method (Sun and Bull 2005; Sun
et al. 2011). The bias corrected estimates of the heritability for the
two loci are 0.1245 and 0.0663, respectively. These estimates are
very close to the bias corrected estimates from the moment
method (see Table 2). The bootstrap method failed to generate
bias corrected estimates of the QTL heritability for the two loci
because the kinship matrices for the bootstrap samples are not
positive definite.

Discussion
The ultimate benefit of reporting bias-corrected QTL sizes is to
provide an accurate understanding of a quantitative trait, avoid-
ing over optimistic expectation of the potential benefit from detected
QTL. Therefore, we recommend all QTL mapping studies to include
the bias-corrected QTL sizes. Adjusting for the Beavis effect requires
estimated QTL effects, the standard errors of the estimates and the
Wald test statistics of all detected loci. Most QTL mapping and
GWAS software packages allow users to report the estimated QTL ef-
fect and the test statistic for each locus. We have enough informa-
tion to perform the bias correction, because the standard error of

Table 1 Bias corrected QTL heritability from the conditional
maximum likelihood method and the bootstrap method

Method QTL Heritability

0.05 0.10 0.15 0.20

Biased estimatea 0.1105 0.1357 0.1577 0.1976
Moment estimateb 0.0426 0.0879 0.1232 0.1783
Conditional likelihoodc 0.0399 0.0901 0.1269 0.1831
Shrinkage estimated 0.0386 0.0792 0.1132 0.1659
Estimation sample estimated 0.0765 0.1088 0.1364 0.1825
Weighted estimated 0.0889 0.1187 0.1442 0.1881

a Biased or naı̈ve estimate after significance test.
b Bias corrected moment estimate (this study).
c Bias corrected conditional likelihood estimate.
d Bias corrected estimate via bootstrapping.

Figure 5 Manhattan plot of the rice genome for GW. (A) Manhattan plot,
where the red broken horizontal line indicates the Bonferroni corrected
threshold in –Log(p). (B) Plot of the estimated QTL heritability before the
Beavis effect correction. (C) Plot of the estimated QTL heritability after
the Beavis effect correction.
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the estimated QTL effect can be found from the two pieces of infor-
mation. If the test statistic is the t-test, t ¼ jĉj=sĉ , the standard error
can be recovered from sĉ ¼ jĉj=t. The Wald test statistic is defined as
W ¼ ĉ2=s2

ĉ and thus the square of the standard error is recovered
from s2

ĉ ¼ ĉ2=W. The outputs of most QTL mapping software pack-
ages include both the estimated effects and the standard errors.
Given the threshold (tW), define d ¼ r2

cs2
ĉ as the noncentrality pa-

rameter, the bias-corrected QTL variance is obtained via

E½v2
1ðdÞjv2

1ðdÞ > tW� ¼W

The solution for d is obtained iteratively. Let d̂ be the solution,
the bias-corrected QTL variance is r̂2ðCORRECTEDÞ

c ¼ s2
ĉ d̂. If the sam-

ple size is not too small, say n > 30, we can convert the t-test into
the corresponding Wald test via W ¼ t2, where this t is the t-test
statistic, not the threshold tW in W. If the output of a software
package reports the LOD score rather than the Wald test for a sig-
nificant locus, the corresponding Wald test can be achieved via
W ¼ 4:61 LOD. The threshold in W should also be converted this
way accordingly, i.e., tW ¼ 4:61 tLOD. If the threshold is in the P-
value after Bonferroni correction, we can convert the P-value
threshold (say pW ¼ 10�7) into the threshold in the Wald test using

tW ¼ F�1
v2 ð1� pW; 1Þ ¼ F�1

v2 ð1� 10�7; 1Þ ¼ 28:3740

If the output of a QTL mapping software package does not in-
clude the Wald test, but the P-value (denoted by p), the conver-
sion formula is

W ¼ F�1
v2 ð1� p; 1Þ

A recommendation to software developers is to report the
Wald test statistic (W), the estimated QTL effect (ĉ) and the stan-
dard error of the estimated QTL effect (sĉ ) for each locus, where ĉ

and sĉ are needed for meta-analyses using the inverse variance
weighted method (Kang et al. 2014).

Theory and methods of the Beavis effect were derived based
on a standardized genotype indicator variable Z for convenience
of presentation. We recommend that QTL and GWAS software
developers standardize the Z variables prior to the data analysis,
although existing software packages may not have done so. The
easiest way to fix this issue is to modify the estimated QTL effect
and the standard error. Recall that the linear mixed model (43)

for GWAS contains the QTL item with Zc, where Z has been stan-
dardized, i.e., r2

Z ¼ 1. Let Z� be the Z variable in the original scale
and c� be the QTL effect in the original scale, where r2

Z� 6¼ 1. The
relationship between c and c� is

r2
QTL ¼ varðZcÞ ¼ varðZ�c�Þ

where varðZcÞ ¼ r2
Zc2 ¼ c2 and varðZ�c�Þ ¼ varðZ�Þc�2 ¼ r2

Z�c
�2.

Therefore,

ĉ ¼ rZ� ĉ
�

The squared error of ĉ is

s2
ĉ ¼ varðĉjcÞ ¼ varðrZ� ĉ

�jc�Þ ¼ r2
Z�varðĉ�jc�Þ ¼ r2

Z�s
2
ĉ�

The Wald test statistic remains the same, regardless of the
scale in the Z variable. With the modified ĉ and s2

ĉ , correction can
be proceeded as we do for standardized Z variables.

Correction for the Beavis effect and theoretical evaluation of
the potential impact of the Beavis effect are separate issues.
Understanding the Beavis effect can help us develop an optimal
design of experiment for a follow-up QTL mapping study. In the
experimental design stage, one needs to consider the sample
size required to detect a QTL with a predetermined power. A
sample size sufficient for detecting the QTL may not be enough
to guarantee that the QTL heritability will not be overly esti-
mated.

Most QTL mapping and GWAS tools are designed for detecting
additive effects because additive effects are considered to be
more important than nonadditive effects, especially in breeding
programs that focus on developing conventional pure bred culti-
vars. However, detection of dominance and epistatic effects may
also be interesting for some investigators. The procedure devel-
oped in this study only concerns the additive effects. Extension to
dominance effects is straightforward but incorporation of both
the additive and dominance effects requires more complicated
models, which deserves further studies.

Another extension of the Beavis effect is bias correction for
meta-analysis. Meta-analysis is to combine results from multiple
studies of the same locus for the same trait and report a consen-
sus result (Kang et al. 2014). Since the reported QTL effects and
the standard errors from the multiple studies are all truncated
with W > tW, the consensus estimated QTL effect is biased and
thus correction is needed.

In classical quantitative genetics, there is another effect asso-
ciated with selection, which is called the Bulmer effect (Bulmer
1976). The Bulmer effect is a downward bias in genetic variance
after selection. So, the Beavis effect is the upward bias in expecta-
tion and the Bulmer effect is the downward bias in variance, both
due to selection.

Data availability
Data and program code are provided in six Supplementary
Folders, which are described as follows.

Supplementary Folder 1: This folder contains
“mixed725.SAS,” a SAS code for PROC MIXED, “kinship725.xlsx” is
a 278� 278 marker inferred kinship matrix, “phegen725.xlsx”
contains the phenotypic values of rice 1000-grain-weight (KGW)
trait from 278 rice genotypes along the numerical code (z0) of the
725th bin (marker) and the standardized genotypic code (z).

Table 2 Summary of estimated genetic parameters for the two
peak loci of the rice genome

Parameter QTL1 (GW5) QTL2 (GW9)

Estimated QTL effect (ĉ) �0.1436 �0.1340
Standard error (sĉ ) 0.0137 0.0226
Wald test 109.5486 35.2473
P-value 1.23E-25 2.90E-09
QTL variance before correction

(r̂2ðBIASEDÞ
QTL )

0.0204 0.0175

QTL variance after correction

(r̂2ðCORRECTEDÞ
QTL )

0.0204 0.0120

Estimated polygenic variance (/̂
2
) 0.1308 0.1604

Estimated residual variance (r̂2) 0.0143 0.0142
QTL heritability before correction

(ĥ
2ðBIASEDÞ
QTL )

0.1234 0.0909

QTL heritability after correction

(ĥ
2ðCORRECTEDÞ
QTL )

0.1234 0.0642

Effective sample size ðn0Þ 218.2185 198.8164
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Supplementary Folder 2: The folder contains “mixedFunction.R”
(mixed() function in R to perform mixed model analysis) and
“mixed.R” (R code to read the sample data and to call the mixed()
function for data analysis). The two rice data in Folder 1 are also
stored in this folder.

Supplementary Folder 3: This folder contains three files:
“beavis.R” is an R function to correct the Beavis effect,
“kinship725.csv” and “kinship725.xlsx” is a kinship matrix stored in
two different file types.

Supplementary Folder 4: This folder stores the 524 rice variety
data, including “gen524.RData” for genotypes of 314393 SNPs,
“kk524.RData” for a 524� 524 kinship matrix calculated from
markers of the whole genome, “phe524.csv” for the phenotypic
values of five traits, “Output-marker135000-marker136000.csv”
for the GWAS output with corrected QTL heritability of all
markers between 135000 and 136000, “mixedFunction.R” for the
R function of the mixed model analysis, and “mixed.R” for the R
code to read the data and call the mixed() function.

Supplementary Folder 5: This folder contains two R pro-
grams to simulate the data for validating the bias and correct-
ing the bias for the Winners’ curse in QTL mapping, where
“simulIntervalValidation.R” is to validate the bias and
“simulIntervalCorrection.R” is to correct the bias.

Supplementary Folder 6: This folder contains two R pro-
grams to simulate the data for validating the bias and correct-
ing the bias for the Winners’ curse in GWAS, where
“simulPolygeneValidation.R” is to validate the bias and
“simulPolygenCorrection.R” is to correct the bias.

Supplementary material is available at GENETICS online.
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Appendix A: The effective sample size (n0)
The variance-covariance matrix of the BLUE of fixed effects is

var½ b̂ĉ� ¼ ½X
TH�1X XTH�1Z

ZTH�1X ZTH�1Z
��1r̂2 ¼ ½CXX CXZ

CZX CZZ
�r̂2 (A1)

where

CZZ ¼ ðZTPZÞ�1

and

P ¼ H�1 �H�1XðXTH�1XÞ�1XTH�1

The variance of the estimated QTL effect (squared estimation
error) is

varðĉjcÞ ¼ s2
ĉ ¼ CZZr̂2 ¼ r̂2

ZTPZ
¼ r̂2

nZ
(A2)

where nZ ¼ ZTPZ, which is an observed data point depending on
Z. The theoretical value of the variance (squared error) is

s2
c ¼

r2

EðZTPZÞ
¼ r2

trðPÞ ¼
r2

n0
(A3)

where

n0¼ EðZTPZÞ ¼ EðZTÞPEðZÞ þ tr½varðZÞP� ¼ trðPÞ (A4)

is the effective sample size. Note that EðZÞ ¼ 0 and varðZÞ ¼ I be-
cause Z has been standardized prior to the data analysis. We now
prove CZZ ¼ ðZTPZÞ�1. The proof requires the inverse of a blocked
(partitioned) matrix,

½ A B
BT D

��1 ¼ ½A
�1 þA�1BðD� BTA�1BÞ�1BTA�1 �A�1BðD� BTA�1BÞ�1

�ðD� BTA�1BÞ�1BTA�1 ðD� BTA�1BÞ�1 �

(A5)

The inverse of the blocked matrix in the BLUE is

½X
TH�1X XTH�1Z

ZTH�1X ZTH�1Z
��1 ¼ ½ A B

BT D
��1 (A6)

Therefore, A ¼ XTH�1X, B ¼ XTH�1Z, BT ¼ ZTH�1X and
D ¼ ZTH�1Z. As a result,

CZZ ¼ ðD� BTA�1BÞ�1

¼ ½ZTH�1Z� ZTH�1XðXTH�1XÞ�1XTH�1Z��1

¼ fZT½H�1 �H�1XðXTH�1XÞ�1XTH�1�Zg�1

¼ ðZTPZÞ�1

(A7)

which concludes the proof.

Appendix B: The Bootstrap method
The bootstrap method for correcting the bias in estimated QTL var-
iance consist of three specific estimators (Sun and Bull 2005; Sun
et al. 2011). Let ĥ

2

N be the naı̈ve estimate of the QTL heritability
from the original sample. Let B be the number of bootstrap

samples in which the test statistics are significant. Depending on
the sample size and the magnitude of the QTL heritability, the ac-
tual number of bootstrap samples can be substantially larger than
B because all samples with the test statistics less than the thresh-
old (tW) are discarded. In other words, the B bootstrap samples are
censored. A sample is included in the bootstrap samples only if its
test statistic has passed the critical value of the test statistic. Let
h2ðbÞ

D be the estimated QTL heritability from the bth bootstrap sam-
ple for b ¼ 1; 2; . . . ;B. Let h2ðbÞ

E be the estimated QTL heritability
from the bth estimation sample. An estimation sample is a sample
excluding all individuals that appear in a bootstrap sample. A boot-
strap sample is also called a detection sample. The QTL heritability
obtained from the estimation sample is

ĥ
2
O ¼

1
B

XB

b¼1

h2ðbÞ
E (B1)

Another estimate from the bootstrap samples is called the
shrinkage estimate, which is defined as

ĥ
2

S ¼ ĥ
2

N � ðĥ
2

D � ĥ
2

OÞ ¼ ĥ
2

N � ĥ
2

D þ ĥ
2

O (B2)

where

ĥ
2
D ¼

1
B

XB

b¼1

h2ðbÞ
D (B3)

Combining the naı̈ve estimate and the estimate from the esti-
mation sample leads to a third estimate of the QTL heritability,
called the weighted estimate,

ĥ
2
W ¼ 0:368ĥ

2
N þ 0:632ĥ

2
O (B4)

Regarding the definition of an estimation sample, it is a sample
for all individuals in the original sample that are not included in
the corresponding bootstrap (detection) sample. Let n ¼ 10 be the
original sample size with 10 observations, say 1, 2, 3, 	 	 	, 10. A
bootstrap sample contains exactly 10 observations but they are
sampled with replacement. For example, a bootstrap sample
may include observations 2, 3, 3, 5, 6, 10, 2, 3, 1. The correspond-
ing estimation sample includes observations 4, 7, 8, 9, which do
not appear in the bootstrap sample. In summary, there are three
bootstrap estimators, the estimate from the estimation sample
(ĥ

2

O), the shrinkage estimate (ĥ
2

S) and the weighted estimate ðĥ
2

WÞ.

Appendix C: The conditional maximum
likelihood method
The conditional maximum likelihood methods for correcting the
bias in an estimated QTL variance was developed by Xiao and
Boehnke (2009, 2011). They proposed two ascertainment cor-
rected estimates of QTL heritability, a three-parameter approach
and a one-parameter approach. The three-parameter approach
requires analysis of the original data. It is computationally inten-
sive and thus is not discussed in this study. The one-parameter
approach is comparable to the moment method and thus is ex-
amined here. Similar to the moment method investigated in this
study, Xiao and Boehnke (2009, 2011) used the sufficient statis-
tics, ĉ and s2

ĉ , as the “row data” to build the conditional likelihood
function. The test statistic is the t-test,
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t ¼ jĉj
sĉ

(C1)

which follows a noncentral t distribution with n� 2 degrees of
freedom and a noncentrality parameter d ¼ jcj=sĉ . Xiao and
Boehnke (2011) claimed that ĉ � Nðc; s2

ĉ Þ asymptotically for a typi-
cal GWAS sample size (n > 100), where c is the true QTL effect.
The normal density of ĉ is

f ðĉjc; s2
ĉ Þ ¼

1ffiffiffiffiffiffiffiffiffiffi
2ps2

ĉ

q exp � 1
2s2

ĉ

ðĉ � cÞ2
" #

(C2)

Let t1�a=2;n�2 be the 1� a=2 percentile of the central t-distribu-
tion where a is the genome-wide Type 1 error rate. The condi-
tional likelihood function is

Lðcjt > t1�a=2;n�2Þ ¼
1ft > t1�a=2;n�2gf ðĉjc; ŝ2

ĉ Þ
Prðt > t1�a=2;n�2Þ

(C3)

where Prðt > t1�a=2;n�2Þ is the probability of the noncentral t vari-
able being greater than the t1�a=2;n�2 threshold (statistical power)
and the noncentral t has n� 2 degrees of freedom and a noncen-
trality parameter of d ¼ jcj=sĉ . In the above conditional likelihood
function, everything is assumed to be known except c being the
unknown parameter. The conditional maximum likelihood esti-
mate of the QTL effect is the c that maximizes the above condi-
tional likelihood function and is denoted by ĉðCORRECTEDÞ. The
ascertainment-corrected estimate of the QTL heritability is

ĥ
2ðCORRECTEDÞ
CML ¼

ðĉ2ðCORRECTEDÞ � s2
ĉ Þ
þ

ðĉ2ðCORRECTEDÞ � s2
ĉ Þ
þ þ r̂2

(C4)

Since s2
ĉ is an estimated variance, not the theoretical variance

s2
c , standardization of ĉ leads to t ¼ ðĉ � cÞ=sĉ , which follows a

noncentral t distribution. Therefore, the conditional likelihood
function is the density of a truncated noncentral t distribution.
As a result, the above conditional likelihood function in
Equation (C3) is simply the density of a truncated noncentral t
distribution

Lðcjt > t1�a=2;n�2Þ ¼
1ft > t1�a=2;n�2gf ðtjn� 2; dÞ

Prðt > t1�a=2;n�2Þ
(C5)

where d ¼ jcj=sĉ . Maximizing Equation (C5), the above truncated
noncentral t distribution, will produce the maximum likelihood
estimate of the QTL effect.

The two-tailed t-test is equivalent to the one-tailed F-test, we
can replace the t-test by the F-test with a numerator degree of
freedom of 1 and a denominator degree of freedom of n� 2. Since
the typical sample sizes of QTL mapping and GWAS are larger
than 100, the F-test can be well approximated by the Wald test
(Chi-square test) with 1 degree of freedom. In other words,
t2 ¼ F �W. Since the Wald test follows a noncentral Chi-square
distribution, after significance test, the Wald test will follow a
truncated noncentral Chi-square distribution with 1 degree of
freedom and a noncentrality parameter

d ¼ ðc2 � s2
ĉ Þ
þ=s2

ĉ (C6)

Let us define

LðcÞ ¼ fv2 ðWj1; djW > tWÞ (C7)

as the probability density of a truncated noncentral Chi-square
distribution. We now treat Equation (C7) as the conditional likeli-
hood function. The parameter (c) that maximizes LðcÞ in
Equation (C7) is the conditional maximum likelihood estimate of
c, denoted by ĉðCORRECTEDÞ. Let

r̂2ðCORRECTEDÞ
c ¼ ðĉ2ðCORRECTEDÞ � s2

ĉ Þ
þ (C8)

be the bias corrected estimate of the QTL variance. The bias cor-
rected estimate of the QTL heritability is

ĥ
2ðCORRECTEDÞ
CML ¼

ðĉ2ðCORRECTEDÞ � s2
ĉ Þ
þ

ðĉ2ðCORRECTEDÞ � s2
ĉ Þ
þ þ r̂2

(C9)

This conditional maximum likelihood estimate can be com-
pared with the moment estimate of the QTL heritability.
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