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Abstract

Motivation: Mediation analysis has become a prevalent method to identify causal pathway(s) between an independ-
ent variable and a dependent variable through intermediate variable(s). However, little work has been done when
the intermediate variables (mediators) are high-dimensional and the outcome is a survival endpoint. In this paper,
we introduce a novel method to identify potential mediators in a causal framework of high-dimensional Cox
regression.

Results: We first reduce the data dimension through a mediation-based sure independence screening method. A de-
biased Lasso inference procedure is used for Cox’s regression parameters. We adopt a multiple-testing procedure to
accurately control the false discovery rate when testing high-dimensional mediation hypotheses. Simulation studies
are conducted to demonstrate the performance of our method. We apply this approach to explore the mediation
mechanisms of 379 330 DNA methylation markers between smoking and overall survival among lung cancer
patients in The Cancer Genome Atlas lung cancer cohort. Two methylation sites (cg08108679 and cg26478297) are
identified as potential mediating epigenetic markers.

Availability and implementation: Our proposed method is available with the R package HIMA at https://cran.r-pro
ject.org/web/packages/HIMA/.

Contact: lei.liu@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mediation analysis was first proposed in the field of social science
(Baron and Kenny, 1986). It has been widely applied in different
areas, including neuroscience (Chén et al., 2017; Zhao et al., 2020),
genomics and epigenomics (Fang et al., 2021; Valeri et al., 2017),
microbiome studies (Sohn and Li, 2019; Zhang et al., 2018), etc.
With the advancement of data collection techniques, it is now inter-
esting and desirable to make inference on high-dimensional media-
tors. In recent years, substantial research efforts have been devoted
to developing methodology for high-dimensional mediation ana-
lysis. For example, Zhang et al. (2016) and Gao et al. (2019)
proposed innovative methods on testing mediation effects in high-
dimensional epigenetic studies. Derkach et al. (2019) considered a
model for high-dimensional mediation analysis with latent variables.
Zhang (2019) introduced two procedures for mediator selection
with high-dimensional exposures and high-dimensional mediators.
Djordjilovi�c et al. (2019) considered the testing for groups of poten-
tial mediators in high-dimensional mediation models. Zhang et al.
(2019, 2021a, b) and Wang et al. (2020) considered the statistical

inference for mediation effects with high-dimensional and compos-
itional microbiome data. Liu et al. (2020) developed a powerful
Divide-Aggregate Composite-null Test for large-scale mediation
hypotheses. Loh et al. (2020) proposed a nonlinear framework for
mediation analysis with high-dimensional mediators. Zhou et al.
(2020) presented new inference procedures for the indirect effect in
high-dimensional linear mediation models. Shi and Li (2020) devel-
oped a hypothesis testing procedure for high-dimensional mediators
using the logic of Boolean matrices. Dai et al. (2021) developed a
multiple-testing procedure that accurately controls the false discov-
ery rate (FDR) when testing high-dimensional mediation
hypotheses.

The above-mentioned results are mainly focused on noncensored
outcomes. In low-dimensional case, some authors have studied the
mediation analysis with survival data. For example, Lange and
Hansen (2011), VanderWeele (2011), Tchetgen (2011) and Fulcher
et al. (2017) proposed several causal mediation analysis frameworks
with a single mediator and a survival outcome. Gelfand et al. (2016)
presented a comparison of semiparametric proportional hazards and
fully parametric accelerated failure time approaches to causal
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mediation analysis. Wang and Albert (2016) considered causal me-
diation analysis for the Cox model with a smooth baseline hazard
estimator. Liu et al. (2018), Didelez (2019) and Zheng and Liu
(2021) considered the mediation analysis for longitudinal and sur-
vival data. Fasanelli et al. (2019) proposed a method to estimate the
marginal time-dependent causal effects in mediation analysis with
survival data. Huang and Yang (2017) and Yu et al. (2019) studied
mediation analysis of survival outcomes with multiple mediators.
Cho and Huang (2019) investigated mediation analysis with causal-
ly ordered mediators using the Cox model.

However, there is a dearth of suitable models for high-
dimensional mediation analysis on the survival outcome. To the best
of our knowledge, Luo et al. (2020) was the first work toward high-
dimensional mediator selection for the survival endpoint. In this
paper, we propose a novel mediator identification procedure for the
high-dimensional Cox model. Compared with Luo et al. (2020),
our method has the following advantages. First, we use a series of
marginal mediation effect (ab) pathways (exposure!mediator
!outcome), which roughly describe the mediation effect of each in-
dividual mediator, to screen out potentially significant mediators.
On the other hand, Luo et al. (2020) only considered the effect
b (mediator!outcome) as the term of screening criterion.
Therefore, our mediation-based screening could be more accurate
than Luo et al. (2020)’s screening method. Second, we adopt
the de-biased Lasso (Fang et al., 2016) to estimate the effect b
(mediator!outcome), where the estimate and its standard error are
available. Therefore, our method can give inference results for all
the de-biased Lasso estimators. In comparison, Luo et al. (2020)
used the minimax concave penalty (MCP; Zhang, 2010) technique
to estimate the effect b, which only provides statistical inference on
nonzero MCP-based estimators. Third, we employ Dai et al.
(2021)’s joint significance test with an mixture null distribution,
which can more accurately control the FDR for large-scale multiple
testing. However, Luo et al. (2020) used a naive joint significance
rule with a uniform null distribution for the maximum P-value.
Their procedure results in a valid but overly conservative test with
low power (Dai et al., 2021; Huang, 2018).

The remainder of this paper is organized as follows. In Section 2,
we present the regression model for mediation analysis with a sur-
vival outcome. We propose a three-step testing procedure for medi-
ation effects in the high-dimensional Cox model. In Section 3, we
evaluate the performance of our method via numerical simulations.
In Section 4, an application to The Cancer Genome Atlas (TCGA)
lung cancer cohort is provided. Some concluding remarks are given
in Section 5.

2 Statistical methods

We use the counterfactual framework as VanderWeele and
Vansteelandt (2014) and Huang and Yang (2017) to formally define
the mediation effects and list assumptions for the identification of
such effects. We denote the exposure for the ith individual as Xi and
the baseline adjusted covariates (e.g. age and gender) as
Zi ¼ ðZi1; . . . ;ZiqÞ0. Under stable unit treatment value assumption
(Imbens and Rubin, 2015), let m ¼ ðm1; . . . ;mpÞ0, we use Tiðx;mÞ
to denote the potential survival time, respectively, for individual i
when the exposure is set to x, and the mediators are set to m. We
use MikðxÞ to denote the potential value of the kth mediator for indi-
vidual i when the exposure is set to x. Here, we assume that the
mediators are not causally related to each other. Formally, let
m�k ¼ ðm1; . . . ;mk�1;mkþ1; . . . ;mpÞ0 and use Mikðx;m�kÞ to denote
the potential value of the kth mediator for individual i when the ex-
posure is set to x and all mediators except the kth mediator are set
to m�k, then we assume Mikðx;m�kÞ ¼MikðxÞ for all k ¼ 1; . . . ;K
and all possible ðx;m�kÞ. We would like to point out that this as-
sumption does not require all mediators to be independent given the
exposure X and the baseline adjusted covariates Z, and it allows for
potential unmeasured common causes (either induced by the expos-
ure or not) between mediators. In our example, where all the

mediators are measured at the same time and a direct causal rela-
tionship between them is less likely, this assumption is reasonable.
Under the consistency assumption (Imbens and Rubin, 2015), we
have the observed mediators Mi ¼ ðMi1; . . . ;MipÞ0 ¼ ðMi1ðXiÞ; . . . ;
MipðXiÞÞ0 and the survival time Ti ¼ TiðXi;Mi1ðXiÞ; . . . ;MipðXiÞÞ.

As discussed in VanderWeele and Vansteelandt (2014) and
VanderWeele et al. (2014), the following assumptions regarding po-
tential confoundings, in addition to the positivity assumption
(Imbens and Rubin, 2015), will allow us to nonparametrically iden-
tify the joint causal mediation effect as well as path-specific causal
effects in the framework above:

(C.1) X?Tðx;mÞjZ; 8x;m, i.e. no unmeasured confounders be-
tween the exposure and the survival outcome;

(C.2) MðxÞ?Tðx;mÞjX;Z; 8x;m, i.e. no unmeasured confound-
ers between the mediators and the survival outcome;

(C.3) X?MðxÞjZ; 8x, i.e. no unmeasured confounders between
the exposure and the mediators;

(C.4) Mðx�Þ?Tðx;mÞjZ; 8x; x�;m, i.e. no exposure-induced con-
founding between the mediators and the survival outcome.

To separate the effect of each mediator, we consider the follow-
ing Cox model for the hazard of the potential survival time Tiðx;mÞ
and multivariate linear model for the distribution of potential medi-
ators MiðxÞ:

kxmðtjZÞ ¼ k0ðtÞ expðcxþ b0mþ g0ZÞ; (1)

MkðxÞ ¼ akxþ fk
0Zþ ek; fork ¼ 1; . . . ; p; (2)

where k0ðtÞ is an unspecified baseline hazard function, c is the direct
effect of the exposure on the survival outcome; b ¼ ðb1; . . . ; bpÞ0 is
the regression parameter vector relating the mediators to the sur-
vival outcome adjusting for the effect of the exposure; a ¼
ða1; . . . ; apÞ0 is the parameter relating the exposure to mediators; g

and fk are regression coefficients for the covariates; e ¼ ðe1; . . . ; epÞ0
is a vector of error terms with CovðeÞ ¼ Re, which quantifies the
correlation between mediators due to unmeasured common causes.

Let C be the censoring time. The observed failure time is
~T ¼ minðT;CÞ, and the censoring indicator is d ¼ IðT � CÞ. Under
assumptions (C.1), (C.2) and (C.3), the potential outcome model
above can derive the following high-dimensional mediation-based
Cox model (Luo et al., 2020), for the survival outcome T

kðtjX;M;ZÞ ¼ k0ðtÞ expðcXþ b0Mþ g0ZÞ; (3)

Mk ¼ akXþ f0kZþ ek; fork ¼ 1; . . . ;p: (4)

Assuming the censoring time C is noninformative, we can iden-
tify the parameters in these models.

Here, we point out that Luo et al. (2020)’s method adapts Zhang
et al. (2016)’s framework to the survival endpoint. In Figure 1, we il-
lustrate a scenario of high-dimensional mediation-based Cox model
with omitted confounding variables, where the p mediators could be
correlated with each other. Of note, the situation with causally
ordered mediators described in Cho and Huang (2019) will not be
captured by our suggested procedure.

We define the causal effect at the difference in log-hazard scale
following the idea of Huang and Yang (2017) and its extension to
high-dimensional mediators with the Cox model (Luo et al., 2020).
Let ~k

x;x� ðtjZÞ denote the hazard function of Tðx;M1ðx�Þ; . . . ;
Mpðx�ÞÞ, the population natural direct effect and natural indirect ef-
fect can be defined as

NDEðx;x�Þ ¼ E½log ~k
x�xðtjZÞ � log ~k

xxðtjZÞ�
�ðx� � xÞc;

NIEðx; x�Þ ¼ E½log ~k
x�x� ðtjZÞ � log ~k

x�xðtjZÞ�
�ðx� � xÞða1b1 þ � � � þ apbpÞ;

where the approximation holds under the rare event assumption
given
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~k
x;x� ðtjZÞ ¼ E½kxMðx�ÞðtjZÞjT � t;Z�

�E½kxMðx�ÞðtjZÞjZ�

¼ k0ðtÞ exp

(
acxþ

Xp

k¼1

bkðakx� þ f0kZÞ þ g0Zþ 1

2
b0Rebg;

where the last equation holds by the normality assumption of MðxÞ
and assumptions (C.1)–(C.4). The total effect defined as below can
be decomposed to the NDE and NIE

TEðx; x�Þ ¼ E½log ~k
x�x� ðtjZÞ � log ~k

xxðtjZÞ�
¼ NIEðx;x�Þ þNDEðx; x�Þ
�ðx� � xÞðcþ a1b1 þ � � � þ apbpÞ:

Similarly, the path-specific causal effect on the log-hazard
difference scale for the mediator Mk (X!Mk ! T) can be defined
as a comparison of log hazard for Tðx;M1ðxÞ; . . . ;Mk�1ðxÞ;Mkðx�Þ;
Mkþ1ðxÞ; . . . ;MpðxÞÞ and Tðx;M1ðxÞ; . . . ;MpðxÞÞ, which can be
approximated as akbkðx� � xÞ. We would like to point out that even
when the rare event approximation does not hold, testing the null
hypothesis akbk ¼ 0 is still valid for testing the existence of such
path-specific causal effect through Mk.

Our aim is to estimate and test the path-specific mediation
effects akbk of the kth mediator Mk, for k ¼ 1; . . . ; p. Denote by
S0 ¼ fk : akbk 6¼ 0g the index set of those significant mediators.
Assume that we have n i.i.d. samples fðXi;Mi;Zi; ~T i; diÞ; i ¼ 1;
. . . ;ng. For practical analysis, we first conduct a standardization of
the mediator variables with mean zero and variance one. The pro-
posed approach is as follows:

Step 1: (Mediators screening). Motivated by the sure independ-
ence screening (SIS) (Fan and Lv, 2008; Fan et al., 2010), we con-
sider a series of marginal models:

kðtjX;Mk;ZÞ ¼ k0ðtÞ expðcXþ bkMk þ g0ZÞ;

Mk ¼ akXþ f0kZþ ek:

Select a subset D ¼ fk : Mk is among the top d ¼ ½n=logðnÞ�large
effect jâk

~bkj; for k ¼ 1; . . . ;pg, where âk and ~bk are the ordinary
least square (OLS) and maximum partial likelihood estimators
based on the above marginal models, respectively.

Step 2: (De-biased Lasso estimates). Conditional on the selected
set D, we focus on the following submodel:

kðtjX;MD;ZÞ ¼ k0ðtÞ expðcXþ b0DMD þ g0ZÞ;

where bD denotes a subvector of b with index belonging to D, and
MD has a similar interpretation. To estimate the parameter of inter-
est bD, we employ the de-biased Lasso method in Fang et al. (2016).
For any k 2 D, the de-biased Lasso estimator b̂k and its standard
error r̂bk

can be obtained by (3.8) and (4.3) of Fang et al. (2016), re-
spectively. For k 2 D, the corresponding P-values are given as

Pbk
¼ 2f1� Uðjb̂kj=r̂bk

Þg; (5)

where Uð�Þ is the cumulative distribution function of N(0, 1). As one
reviewer pointed out, Pbk

in (5) could only be regarded as a valid
P-value conditional on the selected set D in Step 1. In view of Fan
and Lv (2008) and Fan et al. (2010), the selected set D includes the
true mediators with probability tending to one, i.e. PðS0 	 DÞ ! 1
as n!1.

Step 3: (Multiple-testing procedure). Conditional on the selected
set D, we focus on the multiple-testing problem:

H0k : akbk ¼ 0vs:H1k : akbk 6¼ 0;k 2 D; (6)

which can be equivalently expressed as the union of the following
three disjoint component null hypotheses:

H00;k : ak ¼ 0andbk ¼ 0;
H01;k : ak ¼ 0andbk 6¼ 0;
H10;k : ak 6¼ 0andbk ¼ 0:

Toward (6), one commonly used approach is the joint significant
test (Luo et al., 2020; Zhang et al., 2016), which is referred to as the
‘JS-uniform’. Specifically, the P-value for (6) is defined as

Pmax;k ¼ maxðPak
;Pbk
Þ; (7)

where Pbk
is given in (5), Pak

¼ 2f1� Uðjâkj=r̂ak
Þg; âk and r̂ak

are
based on the OLS estimators. Note that the significance rule using
the uniform null distribution for Pmax;k results in a valid but overly
conservative test (Huang, 2018). In fact, the null distribution of
Pmax;k is a three-component mixture distribution (Dai et al., 2021).
To correct the conservativeness of the ‘JS-uniform’ procedure, Dai
et al. (2021) proposed a novel multiple-testing procedure that accur-
ately controls the FDR (referred to as ‘JS-mixture’ procedure). For
t 2 ½0; 1�, we define the following empirical processes: V00ðtÞ ¼
fPmax;k � tjH00g; V01ðtÞ ¼ fPmax; k � tjH01g; V10ðtÞ ¼
fPmax;k � tjH10g; V11ðtÞ ¼ fPmax;k � tjH11g and RðtÞ ¼ V00ðtÞþ
V01ðtÞ þ V10ðtÞ þ V11ðtÞ. According to Dai et al. (2021), an esti-
mated FDR for testing mediation is

^FDRðtÞ ¼ p̂01t þ p̂10t þ p̂00t2

maxf1;RðtÞg=d ;

where p̂01; p̂10 and p̂00 are the estimates of the proportions of
H01;j; H10;j and H00;j, respectively. For more theoretical details on
p̂01; p̂10 and p̂00, we refer to the lines of Storey (2002) and Storey
et al. (2004). For application, the three terms are available by the R
package HDMT. To control the FDR at level b, we define the sig-
nificance threshold for Pmax;k as

t̂ b ¼ supft : ^FDRðtÞ � bg; (8)

which is available from the R package HDMT in practical applica-
tions. Of note, a finite sample adjustment was provided by Dai et al.
(2021) to improve the performance of the proposed procedure. With
probability tending to one, an estimated index set of significant
mediators is given as Ŝ ¼ fk : Pmax;k � t̂b;k 2 Dg, where Pmax;k

and t̂b are defined in (7) and (8), respectively.

Fig. 1. A scenario of high-dimensional mediation-based Cox model (confounding

variables are omitted)
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Of note, we have made statistical inference in Steps 2 and 3 of
our proposed method conditional on the selected set D (Step 1). As
mentioned before, PðS0 	 DÞ ¼ 1 as n!1. Asymptotically, we as-
sume that D ¼ S0 [ S?0 , where S?0 	 f1; . . . ; pg and S0 \ S?0 ¼1.
Basically, the randomness of D is actually due to S?0 . Because the
key idea of de-biased Lasso is to project the scores of interested
parameters (e.g. bS0

) onto the linear span of the score functions of
nuisance parameters (e.g. bS?0 ), the corresponding estimation
function of bS0

is uncorrelated with the score function of bS?0
(Fang et al., 2016). Hence, the randomness of S?0 has very limited
impact on the de-biased Lasso estimator of bS0

asymptotically.

3 Simulation studies

In this section, we conduct two simulation studies to assess the per-
formance of our proposed method. First, we generate failure times
T1; . . . ;Tn from Cox Model (3) with k0ðtÞ ¼ 1. The exposure Xi fol-
lows from N(0, 2), and c ¼ 0:5; the covariates Zi ¼ ðZi1;Zi2Þ0,
where Zi1 and Zi2 are independently generated from N(0, 2),
g ¼ ð0:5;0:5Þ0; b1 ¼ 0:6; b2 ¼ �0:5; b3 ¼ 0:4; b4 ¼ �0:3; b5 ¼
0:25; b6 ¼ 0:15; b7 ¼ 0:5; b8 ¼ 0:35; b9 ¼ 0:15; b10 ¼ 0:12; b11 ¼
0:5 , and bk ¼ 0 otherwise; the mediators are generated from Model
(2), where a1 ¼ 0:6; a2 ¼ �0:5; a3 ¼ 0:4; a4 ¼ �0:3; a5 ¼ 0:25;
a6 ¼ 0:15; a7 ¼ 0:5; a8 ¼ 0:35; a9 ¼ 0:45; a10 ¼ 0:5; a12 ¼ 0:5,
and ak ¼ 0 otherwise; i.e. the fMkg10

k¼1 are active mediators.
fk ¼ ð0:3; 0:3Þ0, and the error terms ei ¼ ðei1; . . . ; eipÞ0 are generated
from Nð0;ReÞ. To simulate the dependency structure of mediators
close to the real data, we use the first step of our method (mediators
screening) to pick up the top p DNA methylation markers from the
real data in Section 4. Re is set to the correlation matrix of those
p DNA methylation markers. In Supplementary Figure S1, we pre-
sent the histogram for the lower triangular of the correlation matrix
Re, which indicates that some of the mediators are highly correlated.
For illustration, in Supplementary Figure S2, we show the 10
10
upper submatrix of Re for the active mediators fMkg10

k¼1. Moreover,
the censoring times Ci are generated from a uniform distribution
over ð0; c0Þ, where c0 ¼ 150 (censoring rate is about 20%) and 5
(censoring rate is about 40%), respectively. All the simulations are
based on 200 replications, where p¼10 000, n¼300 and 500,
respectively.

For fair comparison, we consider Luo et al. (2020)’s method
(denoted as ‘Luo et al.’), where the number of survived variables in
their first step is the same as our method with d ¼ ½n= logðnÞ�. In
Table 1, we present the probabilities to be screened in for those ac-
tive mediators (Step 1) over 200 replications. The results indicate
that Luo et al. (2020)’s screening method has a poor performance,
while our mediation-based screening has a higher probability to in-
clude those active mediators fMkg10

k¼1.
In Table 2 and Supplementary Table S1, we report the estimation

results for mediation effects fakbkg13
k¼1, which include the estimated

biases (Bias) given by the sample mean of the estimates minus the
true value, and the mean squared errors (MSE) of the estimates.
Here, we omit the results for fakbkg

p
k¼14, because their performances

are similar to that of a13b13. For significant mediators, the Bias and
MSE of our method (denoted as ‘Proposed’) are much smaller than
those of ‘Luo et al.’. Hence, the proposed approach is more efficient
than Luo et al. (2020)’s method toward the estimation of active me-
diation effects. In Table 3, we present the estimated FDR of medi-
ation effects, where the FDR threshold level is 0.05. The results
indicate that both methods can control the FDR under the threshold
level. In Figures 2–5, we illustrate the empirical power for each of
the active mediators separately. The figures indicate that our proced-
ure is much more powerful than Luo et al. (2020)’s method in select-
ing significant mediators. All the above reported results become
much better when the sample size n is increasing. However, it seems
that the increasing of censoring rate has a negative affect on both
methods, which is common in survival analysis.

As suggested by one reviewer, we conduct the second simulation
to study the performance of our method when there are no indirect
effects for any mediators. The settings are identical with the first
simulation, except that b1 ¼ 0:5; bk ¼ 0 for other k; and a2 ¼

Table 1. The frequency of those active mediators being kept after

the screening step over 200 repetitionsa

CR¼ 20% CR¼ 40%

Proposed Luo et al. Proposed Luo et al.

n¼ 300 M1 200 50 200 43

M2 158 0 152 0

M3 200 131 200 115

M4 98 0 116 0

M5 196 8 190 1

M6 90 0 81 0

M7 200 141 200 125

M8 200 24 199 18

M9 200 11 199 18

M10 177 1 179 0

n¼ 500 M1 200 60 200 63

M2 179 0 179 0

M3 200 167 200 159

M4 101 0 126 0

M5 200 6 200 9

M6 132 0 128 0

M7 200 190 200 171

M8 200 35 200 31

M9 200 19 199 26

M10 195 0 182 0

a‘Proposed’ denotes our method; ‘Luo et al.’ denotes Luo et al. (2020)’s

method; ‘CR’ denotes the censoring rate of failure times.

Table 2. Bias and MSE (in the parentheses) of estimation for medi-

ation effects in simulation study 1 (n¼ 500)a

CR¼ 20% CR¼ 40%

akbk Proposed Luo et al. Proposed Luo et al.

a1b1 –0.0197 –0.2650 –0.0271 –0.2649

(0.0029) (0.0921) (0.0037) (0.0921)

a2b2 –0.1036 –0.2500 –0.1157 –0.2500

(0.0162) (0.0625) (0.0190) (0.0625)

a3b3 –0.0135 �0:0517 –0.0173 �0:0597

(0.0011) (0.0059) (0.0014) (0.0080)

a4b4 –0.0515 –0.0900 �0:0466 �0:0900

(0.0044) (0.0081) (0.0037) (0.0081)

a5b5 –0.0231 �0:0609 –0.0235 –0.0619

(0.0009) (0.0038) (0.0011) (0.0039)

a6b6 –0.0107 –0.0225 –0.0118 –0.0225

(0.0003) (0.0005) (0.0003) (0.0005)

a7b7 –0.0395 �0:1767 –0.0404 �0:1919

(0.0038) (0.0420) (0.0036) (0.0462)

a8b8 0.0218 –0.1089 0.0222 �0:1131

(0.0015) (0.0132) (0.0022) (0.0139)

a9b9 –0.0035 –0.0609 –0.0007 –0.0621

(0.0009) (0.0044) (0.0010) (0.0046)

a10b10 –0.0168 –0.0600 –0.0151 –0.0600

(0.0016) (0.0036) (0.0016) (0.0036)

a11b11 0.0002 0.0001 �0:0005 �6
 10�5

(1:7
 10�5) (3:3
 10�6) (2
 10�5) (3
 10�6)

a12b12 0.0013 0 0.0082 0

(0.0007) (0) (0.0007) (0)

a13b13 �1:7
 10�5 0 3:5
 10�6 0

(5:6
 10�8) (0) (4
 10�7) (0)

a‘Proposed’ denotes our method; ‘Luo et al.’ denotes Luo et al. (2020)’s

method; ‘CR’ denotes the censoring rate of failure times.
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0:5; ak ¼ 0 for other k. The estimation results for fakbkg
p
k¼4 are

similar to those of a3b3. Hence, we only report the Bias and MSE
for a1b1; a2b2 and a3b3 in Table 4 (other cases are similar and omit-
ted). From the results, we can see that both methods are unbiased on
the estimation of mediation effects. In Table 5, we give the FDR of
multiple-testing in the case when there are no mediation effects. It
seems that both method can well control the FDR.

4 An application to lung cancer data

We apply our proposed method to the TCGA lung cancer cohort study
including lung squamous cell carcinoma and lung adenocarcinoma,
where the data are freely available at https://xenabrowser.net/datapages/
. Our interest is to identify potential epigenetic markers linking smoking
and survival of lung cancer patients. In the analysis, we focus on 593
patients with nonmissing clinical and epigenetic information, whose
ages ranged from 33 to 90years. The survival endpoint is defined as the
number of days from initial diagnosis to death, which could be cen-
sored. The median survival time is 678 days. Two hundred and forty-
three patients died during the follow-up, with a censoring rate of 59%.
A total of 379 330 DNA methylation markers (M) profiled by Infinium
HumanMethylation450 BeadChip array are potential mediators. The
exposure X is the number of packs smoked per years, and the survival
time is the outcome variable. Other covariates (Z) include age at initial
diagnosis, gender (male¼1; female¼0), tumor stage (Stage I¼1; Stage
II¼2; Stage III¼3; Stage IV¼4) and radiotherapy (yes¼1; no¼0).

Table 3. The FDR of mediation effect testing in simulation study 1a

CR¼ 20% CR¼ 40%

Methods n¼ 300 n¼ 500 n¼ 300 n¼ 500

Proposed 0.0097 0.0047 0.0092 0.0039

Luo et al. 0.0125 0.0063 0.0325 0.0117

a‘Proposed’ denotes our method; ‘Luo et al.’ denotes Luo et al. (2020)’s

method; ‘CR’ denotes the censoring rate of failure times.

Fig. 2. A comparison of empirical power for all the active mediators fMkg10
k¼1 with

n¼300

Fig. 3. A comparison of empirical power for all the active mediators fMkg10
k¼1 with

n¼500

Fig. 4. A comparison of empirical power for all the active mediators fMkg10
k¼1 with

CR ¼ 20%

Fig. 5. A comparison of empirical power for all the active mediators fMkg10
k¼1 with

CR ¼ 40%
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In Table 6, we report the summary results on the two selected
mediators by our method, where the FDR threshold level is 0.05.
For cg08108679 (in gene PRKCZ, chromosome 1, position:
2 003 274), the estimated pathway effect (a) on X!M is –0.0092
(0.0024), where the number in parenthesis is the corresponding
standard error (SE); the estimated pathway effect ðbÞ on M! T is –
3.4997 (1.0248). For cg26478297 (in gene PRKCG, chromosome 19,
position: 54387 436), the estimated pathway effects on X!M and
M! T are –0.0256 (0.0068) and –1.3362 (0.4011), respectively.
Hence, the two selected CpGs have positive log-hazard indirect effect
(smoking increases the mortality). The two CpGs are located in differ-
ent chromosomes but belonging to the same gene family of protein
kinase C (PKC). PKC family members are known to be involved in di-
verse cellular signaling pathways and have been studied extensively as
a group of proteins that involve in cancer development (Dowling
et al., 2017). Previous studies (Guo et al., 2008; Wyatt et al., 1999)
have found that PKC is activated in human epithelial cells when
exposed to cigarette smoke extract, which may in turn influence the
invasion and metastasis of lung cancer (Gopalakrishna et al., 1994).

For comparison, we also use Luo et al. (2020)’s method to ana-
lyze this dataset. However, their approach fails to identify any signifi-
cant mediators. In summary, our proposed method works well for

mediation testing with survival outcomes in practical applications.

5 Concluding remarks

We have proposed a multiple-testing procedure for high-

dimensional mediation effects with the survival outcome. To address
the ultra high-dimensional DNA methylation markers, we used a

screening technique to reduce the dimension of potential mediators.
Moreover, we adopted the de-biased Lasso method and ‘JS-mixture’
procedure to identify significant mediators. Simulation results indi-

cated that our method has a satisfactory performance. An applica-
tion to TCGA lung cancer cohort was provided to illustrate the
utility of our proposed approach.

There are several topics to be studied in the future. First, we have
adopted marginal screening in Step 1 of our method. As pointed out

already in the original SIS paper by Fan and Lv (2008), correlations
among the mediators may cause problems. Fan and Lv (2008) allevi-

ated this by introducing the iterative SIS. Although our approach
works well in the simulated examples, it is interesting to further
study the iterative SIS in our method from both the theory and appli-

cation aspects. Second, group testing for mediation effects is an at-
tractive direction (Derkach et al., 2020; Djordjilovi�c et al., 2019;

Krull and MacKinnon, 2001), it is interesting to consider the group
mediators in high-dimensional survival data. Third, we have
imposed some traditional assumptions related to no unmeasured

confounding in our method. However, in the high-dimensional me-
diator situation, additional complications occur. Specifically, the

interrelationship among the (potential) mediators plays a crucial
role. As suggested by one reviewer, it is interesting to consider the
situation with causally ordered mediators described in Cho and

Huang (2019). Fourth, we have used Pbk
in (5) as valid p-values con-

ditional on the selected set D in Step 1. As one reviewer suggested, it
is desirable to consider the randomness of D for our method in the

nonasymptotic situation. There are two possible ways to guarantee
valid p-values theoretically: (i) apply the proposed Steps 2 and 3 dir-

ectly without using the mediator screening step. However, the com-
putational burden for de-biased Lasso is extremely heavy for ultra
high-dimensional mediators, e.g. there are a total of 379 330 DNA

methylation markers in the real application; (ii) split the samples
into two equal parts, one part for Step 1 and the other part for Steps

2 and 3. However, this sample-splitting technique suffers from loss
of efficiency, because only half of the whole samples are used in the
screening (Step 1) and inference (Steps 2 and 3), respectively.
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Table 4. Bias and MSE (in the parentheses) of estimation for medi-

ation effects in simulation study 2a

CR¼ 20% CR¼ 40%

akbk Proposed Luo et al. Proposed Luo et al.

n¼ 300 a1b1 –0.0003 �9
 10�5 0.0009 0.0008

(0.0001) (0.0001) (0.0001) (0.0001)

a2b2 0.0572 0 0.0608 0

(0.0053) (0) (0.0059) (0)

a3b3 0 �3
 10�5 0 0

(0) (1:4
 10�7) (0) (0)

n¼ 500 a1b1 0.0004 0.0006 0.0002 8:3
 10�5

(9
 10�5) (0.0001) (7
 10�5) (8:1
 10�5)

a2b2 0.0446 0 0.0488 0

(3
 10�3) (0) (0.0004) (0)

a3b3 0 0 0 0

(0) (0) (0) (0)

a‘Proposed’ denotes our method; ‘Luo et al.’ denotes Luo et al. (2020)’s

method; ‘CR’ denotes the censoring rate of failure times.

Table 5. The FDR of mediation effect testing in simulation study 2a

CR¼ 20% CR¼ 40%

Methods n¼ 300 n¼ 500 n¼ 300 n¼ 500

Proposed 0.040 0.030 0.050 0.045

Luo et al. 0.050 0.060 0.030 0.025

a‘Proposed’ denotes our method; ‘Luo et al.’ denotes Luo et al. (2020)’s

method; ‘CR’ denotes the censoring rate of failure times.

Table 6. Summary of selected CpGs with significant mediation

effects (âk b̂k > 0)a

CpGs Chromosome Gene âk b̂k Pmax;k

(SE) (SE)

cg08108679 Chr1:2003274 PRCKZ –0.0092 –3.4997 0.0006

(0.0024) (1.0248)

cg26478297 Chr19:54387436 PRCKG –0.0256 –1.3362 0.0009

(0.0068) (0.4011)

a‘SE’ denotes standard error; ‘Pmax;k’ is given in (7).
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