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• Daily temperature fluctuations are in-
versely correlated with virus lifetimes.

• This work provides a physical explana-
tion for the observed correlation.

• Chemical kinetics describes the
temperature-dependent rate of virus
inactivation.

• Higher diurnal temperature range (DTR)
results in shorter virus lifetimes.

• The effects of daily mean temperature
and DTR are shown for SARS-CoV-2.
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Epidemiological studies based on statistical methods indicate inverse correlations between virus lifetime and
both (i) daily mean temperature and (ii) diurnal temperature range (DTR). While thermodynamic models
have been used to predict the effect of constant-temperature surroundings on virus inactivation rate, the rela-
tionship between virus lifetime and DTR has not been explained using first principles. Here, we model the inac-
tivation of viruses based on temperature-dependent chemical kineticswith a time-varying temperature profile to
account for the daily mean temperature and DTR simultaneously. The exponential Arrhenius relationship
governing the rate of virus inactivation causes fluctuations above the daily mean temperature during daytime
to increase the instantaneous rate of inactivation by a much greater magnitude than the corresponding decrease
in inactivation rate during nighttime. This asymmetric behavior results in shorter predicted virus lifetimes
when considering DTR and consequently reveals a potential physical mechanism for the inverse correlation ob-
served between the number of cases and DTR reported in statistical epidemiological studies. In light of the
ongoing COVID-19 pandemic, a case study on the effect of daily mean temperature and DTR on the lifetime of
SARS-CoV-2 was performed for the five most populous cities in the United States. In Los Angeles, where mean
monthly temperature fluctuations are low (DTR ≈ 7 °C), accounting for DTR decreases predicted SARS-CoV-2
lifetimes by only 10%; conversely, accounting for DTR for a similar mean temperature but larger mean monthly
temperature fluctuations in Phoenix (DTR≈ 15 °C) decreases predicted lifetimes by 50%. The modeling frame-
work presented here provides insight into the independent effects of mean temperature and DTR on virus life-
time, and a significant impact on transmission rate is expected, especially for viruses that pose a high risk of
fomite-mediated transmission.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Epidemiologists incorporate environmental effects when modeling
the spread of diseases by applying statistical methods to determine
whether environmental variables correlate with transmission rates
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Fig. 1. The rate of inactivation of a virus depends on temperature following the rate law
and Arrhenius equation (a). The effect of a time-varying temperature profile about the
mean temperature influences the rate constant, k, for inactivation of a virus and,
consequently, the concentration of a virus over time (b). The exponential dependence of
the rate constant on temperature results in a higher net rate of inactivation of a virus
when incorporating environmental temperature fluctuations about the mean
temperature.
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(Malki et al., 2020; Rahman et al., 2020; Sajadi et al., 2020).
Environmental temperature is often considered; however, most
models only account for the daily mean temperature (Sethwala
et al., 2020; Merow and Urban, 2020; Pirouz et al., 2020; Sajadi
et al., 2020), despite studies reporting that the diurnal temperature
range (DTR) also plays a significant role in forecasting the transmis-
sion of diseases (Islam et al., 2020; Liu et al., 2020; Luo et al., 2013;
Ma et al., 2020). One recent study on the mosquito's (Aedes aegypti)
ability to transmit dengue virus showed that an increase in DTR
reduces transmission rates at mean temperatures above 18 °C
(Lambrechts et al., 2011). This work studied the importance of con-
sidering both (i) daily mean temperatures and (ii) temperature fluc-
tuations; the pathogen was transmitted by an active vector, where
the virus lifetime may be less significant than in the case of a passive
vector (e.g., fomite-mediated transmission), but DTR nevertheless
played a role. Meanwhile, thermodynamic models built on first prin-
ciples have been used to predict the lifetime of viruses based on
constant-temperature surroundings (Yap et al., 2020), but a frame-
work describing the relationship between virus inactivation rate
and DTR has not been established.

The ongoing COVID-19 pandemic represents a critical area where
such a fundamental physical model could find use. Recent literature de-
scribes epidemiological studies based on statistical analyses that docu-
ment an inverse correlation between DTR and relative risk (RR),
where RR represents the ratio of the probability of infection under a
given condition to the probability of infection in a control group. For ex-
ample, studies by Islam et al. and Liu et al. present statistical analyses ac-
counting for DTR, and they both report a correlation coefficient between
RR and DTR of less than one for COVID-19 (Islam et al., 2020; Liu et al.,
2020), indicating lower infection rates at higher values of DTR. A study
conducted during the onset of thepandemic in China seemingly showed
the opposite relationship, reporting a positive correlation of DTR with
number of deaths due to COVID-19; however, higher DTR is also
known to increase the overall risk of mortality (Kim et al., 2016), and
as such, mortality can be a poor indicator for the rate of transmission
in this context. More recent studies in India, Indonesia, and Russia re-
port negative correlations between DTR and COVID-19 infection rates
or number of cases (Pramanik et al., 2020; Pratim, 2020; Supari et al.,
2020), which is likely attributable, at least in part, to shorter virus life-
times outside of a host at high DTR because fomites have served as a
mode of transmission for other viruses (Abdelrahman et al., 2020;
Boone and Gerba, 2007; Xiao et al., 2017). Although fomite-mediated
transmission is not likely the primary mode of transmission for SARS-
CoV-2, it still poses a risk (Bouchnita and Jebrane, 2020; Gao et al.,
2021; Kampf et al., 2020; van Doremalen et al., 2020; Xiao et al., 2017;
Zhao et al., 2020). These studies consider the aggregated statistical ef-
fects of environmental conditions to correlate DTR to number of cases,
but they do not provide a fundamental understanding of the virus inac-
tivation behavior.

Prior work introduced an analytical model that uses the rate law for
a first-order reaction and the Arrhenius equation to predict the lifetime
of coronaviruses as a function of constant temperature (Yap et al.,
2020). This model treats viruses as macromolecules that are inactivated
by thermal denaturation of the proteins comprising each virion to pre-
dict the time required to achieve an n-log inactivation, which is defined
as the ratio of final viable concentration of a pathogen to its initial con-
centration in terms of 10 raised to the nth power ([C] / [C0]=10−n). For
consistency throughout this work, we define the “lifetime” of a virus as
the time required to achieve a 3-log reduction in concentration of that
virus (i.e., n=3) based on guidance from the US Food and Drug Admin-
istration (FDA); specifically, the FDA recommends a 3-log (99.9%) re-
duction in virus concentration for decontamination of non-enveloped
viruses (CDC, 2008; FDA, 2020a, 2020b; Oral et al., 2020), which are
typically more resistant to thermal inactivation than enveloped viruses
(Firquet et al., 2015; Yeo et al., 2020), allowing a conservative prediction
of lifetime for both types of viruses.
2

The lifetime of a virus has an exponential dependence on tempera-
ture, fundamentally underpinning our hypothesis that accounting for
environmental temperature fluctuations will decrease virus lifetimes
compared to relying only on daily mean temperature data. To further
explore this hypothesis, we introduced a numerical model to incorpo-
rate environmental temperature fluctuations, enabling predictions of
the lifetime of viruses and showing the disparities between the com-
puted virus lifetime when using (i) daily mean temperature only
(i.e., a constant daily temperature profile) and (ii) accounting for both
daily mean temperature and DTR (i.e., a time-varying temperature pro-
file). Fig. 1 shows a graphical illustration of the difference between
models of virus lifetime based on these two profiles. The inactivation
rate constant, k, varies exponentially with temperature (Fig. 1(a)), and
this exponential dependence results in temperature fluctuations above
the mean influencing the instantaneous rate of inactivation to a greater
extent than fluctuations below themean. Fig. 1(b) shows the difference
in inactivation rate between the two temperature profiles. The plot on
the right shows a greater increase in magnitude of the instantaneous
value of k as a result of temperature fluctuations above the daily mean
temperature (i.e., daytime) compared to the corresponding decrease
in inactivation rate for temperatures below the mean (i.e., nighttime),
resulting in a shorter overall virus lifetime. The illustration shows how
incorporation of DTR generates shorter predicted virus lifetimes
compared to daily mean temperature alone. We also show that
the virus lifetime will always decrease when considering fluctuations
in temperature in the Supplementary material to provide a quantitative
fundamental understanding of the phenomenon. We compare
the change in concentration at the mean temperature only to the
change in concentration when considering temperature fluctuations
while accounting for both symmetric and asymmetric time-varying
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temperature profiles. This physical behavior could explain the inverse
correlation between DTR and RR observed in statistical epidemiological
studies (Islam et al., 2020; Lambrechts et al., 2011; Lin et al., 2020; Liu
et al., 2020; Pramanik et al., 2020; Pratim, 2020; Supari et al., 2020).
We go on to present a case study on SARS-CoV-2 in the five most
populous cities in the United States to illustrate the difference in virus
lifetime when accounting for DTR. In this work, we model the inactiva-
tion rate of viruses based on temperature-dependent chemical kinetics
with a time-varying environmental temperature profile to account for
the daily mean temperature and DTR simultaneously. This physical
model of the effect of DTR on virus lifetimewill elucidate the role of en-
vironmental temperature in the spread of viruses. We also show that
this physical model can be applied to a range of coronaviruses, as well
as influenza, which exhibits similar temperature-dependent inactiva-
tion behavior and seasonality (McDevitt et al., 2010). This work may
provide an explanation as to why regions with similar daily mean tem-
peratures can have starkly different virus transmission rates. Ourmodel
may also explain—at least in part—the surge of COVID-19 that has been
observed in winter, as temperatures dropped and the virus lifetime in-
creased by orders of magnitude.

2. Material and methods

2.1. Theoretical framework

The rate law for a first-order reaction (Eq. (1)) can be used to deter-
mine the inactivation of viruses (Yap et al., 2020).

d C½ �
dt

¼ −k Tð Þ � C½ � ð1Þ

The rate constant, k, is governed by the Arrhenius equation, and can
be determined for a given temperature. Previous models have consid-
ered only a constant temperature profile: temperature, T, did not vary
with time, t. In this work, we calculate a time-varying rate constant as
a function of a time-varying temperature profile using the Arrhenius
equation (Eq. (2)):

k Tð Þ ¼ A � e− Ea
R�T tð Þ ð2Þ

where R is the gas constant, Ea is the activation energy associated with
inactivation of the virus (i.e., the energy barrier that must be overcome
for protein denaturation), and A is the frequency factor. The Ea and ln(A)
values for SARS-CoV-2, SARS-CoV-1, andMERS-CoVwere determined in
prior work (Yap et al., 2020) and are reported in Table 1. Themodel can
also be used to determine the lifetime of other viruses, including influ-
enza viruses (responsible for the seasonal flu); we calculated values of
Ea and ln(A) for Influenza A based on existing literature (McDevitt
et al., 2010) to highlight the versatility of the model (primary data in-
cluded in the Supplementarymaterial). These four enveloped viruses af-
fect the respiratory system (Abdelrahman et al., 2020), and the
corresponding results could be relevant to understanding the current
pandemic (Abdelrahman et al., 2020; Zhu et al., 2020).
Table 1
Activation energy and frequency factor values used to determine virus lifetime. Values for
coronaviruses were determined in prior work (Yap et al., 2020). Primary datasets used to
obtain activation energy and frequency factor for Influenza A are provided in the Supple-
mentary material.

Activation energy, Ea [kJ/mol] Frequency factor, ln(A) [1/min]

SARS-CoV-2 135.7 48.6
SARS-CoV-1 142.6 51.9
MERS-CoV 135.4 49.5
Influenza A 41.0 12.2

3

Environmental temperatures vary continuously with time, and
this time-varying temperature profile can be used to determine the
rate constant as a function of time. The daily temperature maximum,
Tmax, and minimum, Tmin, are available for most regions with
weather stations, while daily hourly temperature data are not often
reported; therefore, we chose the WAVE diurnal temperature
model introduced by de Wit, based on maximum and minimum
temperature values, to represent the continuous daily temperature
profile for a given location (Baker et al., 1988; Cesaraccio et al.,
2001; Reicosky et al., 1989). Two half-cosine functions were used
to estimate this diurnal temperature profile. For the first half-
cosine function, the period, p1, was calculated as the time between
sunrise, when the minimum temperature occurs, and 1400 h solar
noon, when the maximum temperature occurs. The second half-
cosine function continues from 1400 h solar noon throughout the re-
mainder of the 24-hour day for the second period, p2, and joins with
the first half-cosine function of the following day, d + 1, at sunrise,
where d represents the day for which the temperature used in the
model is obtained. The sunrise times in each city were obtained to
determine the periods for the WAVE model. The temperature profile
is defined by a piecewise function, given by Eq. (3):

T tð Þ ¼
−

T max ,d−T min ,d

2
cos

π
p1

t
� �

þ T max ,d þ T min ,d

2
, sunrised ≤ t < 1400 hrd

−
T max ,d−T min ,dþ1

2
cos

π
p2

t−
π
p2

p1

� �
þT max ,d þ T min ,dþ1

2
, 1400 hrd ≤ t < sunrisedþ1

8>>><
>>>:

ð3Þ

The expression for the daily temperature profile (Eq. (3)) is
substituted into Eq. (2),which is then combinedwith Eq. (1). Separation
of variables is applied to yield thefinal expression used to determine the
virus concentration after a given period of time:

Z C½ � f inal

C½ �0

d C½ �
C½ � ¼

Z t f inal

t0
−A � e− Ea

R�T tð Þdt ð4Þ

Due to the cumbersome temperature profile function, analytical in-
tegration of the right-hand side of Eq. (4) was not possible; we solved
it numerically using Euler'smethod (details included in the Supplemen-
tary material).

2.2. Data collection

The daily sunrise times and maximum and minimum tempera-
ture data for the five cities with the highest populations in the
United States were obtained from the National Oceanic and
Atmospheric Administration (NOAA) solar calculator and climate
data online search. A sinusoidal temperature profile that takes into
account each city's maximum and minimum temperature was
created for the period of January through December of 2020. The
temperature profile, T(t), was then used to solve for the reduction
in concentration of virus as a function of time. The lifetime of the
virus starting from sunrise on each calendar day was determined
by calculating the concentration of viable virions as a function of
the continuous temperature distribution over time, and then
determining the time required to achieve a 3-log reduction in con-
centration. The maximum cutoff point of the predicted lifetime
was taken to be 30 days for two reasons: (i) to correspond approx-
imately to one month, after which the uncertainty in predictions
becomes large due to other potential inactivation mechanisms
(Yap et al., 2020); and (ii) to include the virus lifetime for the colder
winter months through the end of November 2020 (the predicted
virus lifetimes in some cities span more than one month, thus
requiring temperature data from the subsequent month; at the
time of preparing the results in this manuscript, only data through
December 2020 were available). The n values were determined
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by taking the logarithm of the ratio of concentration at a given time,
[C]final, to the initial concentration, [C]0.

2.3. Model development: activation energy and frequency factor

The relevant physical parameters governing thermal inactivation of
viruses were quantified from primary data reported in the literature.
The log of concentration reported in primary experimental data on
temperature-based inactivation of viruses, ln([C]), was plotted as a
function of time, t. According to the rate law for a first-order reaction
(Eq. (1)), we determined the rate constant, k, for inactivation of a
virus at a given temperature, T, by applying a linear regression and cal-
culating the slope, k= –Δln([C])/Δt, as detailed in priorwork (Yap et al.,
2020). Each pair of k and T determined for a given virus was plotted; ac-
cording to theArrhenius equation (Eq. (2)), these data points yield a lin-
ear relationship between ln(k) and 1/T. From the linearfit, the activation
energy, Ea, and natural log of frequency factor, ln(A), can be obtained
from the slopes and intercepts, respectively, of the fitted curves for
each virus. These values were used in our analysis to determine the life-
times of viruses in different regions as a function of daily mean temper-
ature and daily temperature fluctuations using the numerical model
presented in this work. The activation energy and frequency factor
used here for SARS-CoV-2, SARS-CoV-1, and MERS-CoV were already
determined in prior work (Yap et al., 2020), whereas the procedure
Fig. 2. Comparison of the degree of inactivation of three coronaviruses and Influenza A
between (a) a simple daily mean temperature profile and (b) a time-varying
temperature profile (temperature data shown for Houston starting on May 7, 2020).
SARS-CoV-2 would require approximately 3 days to reach decontamination to a 3-log
reduction in concentration according to the simple daily mean temperature model,
whereas the more realistic time-varying environmental temperature profile showed
that decontamination would require less than 1.5 days. The percentage difference in
predicted lifetime across all four viruses when accounting for the DTR was
approximately 50%.

4

used to determine the thermodynamic parameters used in this work
for Influenza A is detailed in the Supplementary material.

3. Results

The degree of inactivation of a virus, defined by the n-log reduction,
is used to describe the order of magnitude decrease in virus concentra-
tion. The degree of inactivation is plotted against time to show the
amount of time needed to achieve an n-log reduction, where Fig. 2
shows the lifetime (i.e., time until 3-log reduction) of three different
coronaviruses and Influenza A computed using the time-varying tem-
perature profile versus the daily mean temperature profile.

For illustration, temperature data for Houston starting on May 7,
2020, was used to determine the lifetime using the time-varying tem-
perature profile versus the daily mean temperature profile. Fig. 2
shows the disparity in predicted lifetime when using the two different
temperature profiles. In this case, when computing the lifetime of
SARS-CoV-2 using daily mean temperatures (Fig. 2(a)), it took approx-
imately 3 days to achieve a 3-log reduction, whereas the more realistic
time-varying environmental temperature profile (Fig. 2(b)) showed
that decontamination would require less than 1.5 days. The reduction
in predicted virus lifetime across all four viruses when accounting for
DTR was approximately 50%, highlighting the importance of DTR
when modeling virus lifetime. All four of the viruses described in
Table 1 are modeled in Fig. 2; however, due to the ongoing pandemic,
only SARS-CoV-2 is emphasized throughout the remainder of this work.

For the top five most populous cities in the United States (New
York City, Los Angeles, Chicago, Houston, and Phoenix), the lifetime
of SARS-CoV-2 was calculated using the mean temperature profile
and the time-varying temperature profile, with results plotted as
blue and purple lines, respectively, in Fig. 3(a–e). The percentage
difference in lifetime predictions for these two temperature profiles
was also determined and plotted in red. The daily mean temperature
and DTR values were averaged by month for each city and plotted in
Fig. 3(f) to show the monthly variation in temperature and provide a
comparison between the cities. During the winter months with low
daily mean temperatures, the virus lifetime can be greater than one
month; as the temperature increases during the summer, the life-
time of the virus becomes several orders of magnitude shorter. Cities
like Los Angeles, which have relatively low variations in mean tem-
perature throughout the year, exhibit correspondingly small varia-
tions in SARS-CoV-2 lifetime, whereas cities like New York City and
Chicago show large variations in virus lifetime due to large variations
in mean temperature throughout the year. We also observed that the
percentage difference in lifetime predictions between the time-
varying temperature profile and daily mean temperature profile is
relatively low for Los Angeles when compared to Phoenix, in this
case due to the higher typical DTR experienced by Phoenix (≈ 2×
the DTR of Los Angeles).

We studied the generalized effect of DTR on the lifetime of SARS-
CoV-2 (for applicability to any city) by implementing a parametric
sweep across both daily mean temperature and DTR (Fig. 4), showing
the predicted lifetime of the virus in Fig. 4(b) and the percentage differ-
ence between the lifetimes calculated using the two different tempera-
ture profiles (simple daily mean versus time-varying) in Fig. 4(c). The
time-varying temperature profile used to calculate the virus lifetime
in Fig. 4 maintains a fixed sunrise time at 0600 h; a comparison of
virus lifetime computed between varied and fixed sunrise time showed
an average percentage difference of 0.68% across all five cities discussed
above (Fig. S8 in the Supplementarymaterial). The lifetime at each point
on the heat map was computed by holding the daily mean temperature
and DTR constant in theWAVE temperature profile. The computed life-
timebecomes dependent on the starting time of the temperature profile
at high mean temperature and high DTR due to shorter virus lifetimes
(i.e., less than one day); modeling the virus lifetime starting from solar
noon (at the maximum temperature) versus sunrise (at the minimum



Fig. 3. Lifetime of SARS-CoV-2 and percentage difference between predictions using the simple daily mean temperature profile (blue line) versus the time-varying temperature profile
(purple line) for the five most populous cities in the U.S. as reported by the U.S. Census Bureau: (a) New York City, (b) Los Angeles, (c) Chicago, (d) Houston, and (e) Phoenix. The
plots show the predicted lifetime of SARS-CoV-2 for the months of January 2020 through November 2020. The mean temperature and DTR pertaining to each city averaged by month
are plotted in (f) to illustrate climate trends in each city. The symbols correspond to (a)-(e). The lifetime axis is scaled to reflect 30 days (7.2 × 103 min = 5 days); predicted values for
lifetimes greater than one month are not reported, and the corresponding periods of time are shaded in gray.
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temperature) can yield an order of magnitude higher initial rate con-
stant due to the exponential dependence on temperature. To overcome
this issue and accommodate generalized results, the values presented in
the heat maps are provided on an averaged basis, determined by taking
the geometric mean of lifetimes starting every hour for a full diurnal
temperature cycle; i.e., the values shown in the plots represent an aver-
age of 24 predicted lifetimes, each offset by one hour in starting time
throughout a diurnal cycle. The percentage difference is then calculated
by comparing the averaged lifetimes determined using the time-
varying temperature profile with those from the simple daily mean
temperature profile.

4. Discussion

As shown in Fig. 4(a), for a given daily mean temperature, the virus
lifetime is shorter for regions with higher DTR. Cities like Los Angeles
with relatively small temperature variations throughout the year see
correspondingly small effects on virus lifetime,whereas cities like Phoe-
nix, with both high DTR and large variations in mean temperature, ex-
hibit a wider range of virus lifetimes spanning across the contour lines
on the lifetime heat map throughout a year (Fig. 4(b)). Cities like New
York City and Chicago experience extreme cold temperatures in winter,
resulting in virus lifetimes greater than one month, but as the environ-
mental temperatures become warmer, virus lifetime drastically de-
creases. Fig. 4(c) shows the percentage difference between predictions
based on daily temperature fluctuations and those only considering
daily mean temperatures. At DTR = 0, this plot shows predictions
based only on themean temperature; in this case, the percentage differ-
ence between the two models is effectively 0%. This heat map also
showswhere daily temperature fluctuations become important. For ex-
ample, Phoenix typically has a high averagemonthlymean temperature
and a large DTR, resulting in a high percentage difference (35–50%) be-
tween the two models. On the other hand, Los Angeles, with lower
5

monthly mean temperatures and DTR, exhibits a relatively small per-
centage difference (10–20%). We also note that daily temperature vari-
ations could yield percentage differences as high as 120% (Fig. 3(b–d)),
further highlighting the influenceDTRhas on the prediction of virus life-
time across regions and illustrating that, as the DTR increases, the differ-
ence in predicted virus lifetime becomes more pronounced. For a given
mean temperature, as the magnitude of DTR increases, the percentage
difference between the two models becomes monotonically larger, sig-
nifying the importance of accounting for fluctuating environmental
temperatures. This knowledge of how DTR influences virus lifetime be-
comes crucial when comparing policy decisions for cities or regions
with similar daily mean temperatures but different DTR because they
may experience disparate virus lifetimes.

Themodel presented in this work elucidates the independent effects
of the magnitude of DTR and mean temperature on virus lifetime. This
information could be of use when predicting the spread of the COVID-
19 pandemic by providing a physical understanding of the effects of
DTR, allowing epidemiologists to treat the environmental temperature
variables independently. We note that reports in the literature using
statistical analyses to study the correlation between various meteoro-
logical variables have considered DTR and have found a negative
correlation between the magnitude of DTR and number of cases of
COVID-19. In one instance, Islam et al. studied the COVID-19 cases in
seven climatic regions of Bangladesh from March to May 2020 and re-
ported mean relative risk (RR) values of 0.95–0.97 as a function of in-
creased DTR (with RR < 1 indicating that the risk of transmission is
decreased) (Islam et al., 2020). Another study by Liu et al. reported a
pooled RR of 0.9 for each 1 °C increase in the DTR for 30 cities in China
from January 2020 toMarch 2020 and suggested that the viruses thrive
in regions with low DTR or constant temperature (Liu et al., 2020).
Recent studies on the number of COVID-19 cases in Indonesia, India,
and Russia (the sub-arctic region) also reported negative correlations
with DTR, all showing a similar trend despite representing vastly



Fig. 4. The lifetime of SARS-CoV-2 varies with both the mean environmental temperature
and the DTR. The lifetime of the virus is plotted against DTR for mean temperatures of 15,
20, and 25 °C to show that an increased DTR results in a shorter lifetime (a). A parametric
sweep shows the lifetime of SARS-CoV-2 versus mean temperature and DTR (b), where
increasing mean temperature and DTR both result in shorter virus lifetime. The
percentage difference between predicted lifetime of SARS-CoV-2 calculated with the
simple mean temperature profile versus lifetime calculated with the time-varying
temperature profile accounting for DTR (c) shows that disparities between the two
models are larger for higher values of DTR, with up to 50% deviation in lifetime due to
DTR in some climates considering monthly averaged temperatures. The mean monthly
DTR and mean temperatures for each city are overlaid to highlight trends of virus
lifetime in cities with disparate climates. City-specific data points for months
corresponding to mean temperatures less than 10 °C are not included.
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different regions of the world (Pramanik et al., 2020; Pratim, 2020;
Supari et al., 2020). Prior work studying the dengue virus—an endemic
virus in more than 100 countries—found that mosquitoes, the primary
vector for transmission of the disease, are less susceptible to infection
at high DTR, resulting in a lower rate of transmission of the disease
(Ehelepola and Ariyaratne, 2016; Lambrechts et al., 2011); further in-
vestigation of the specifics of this vector of transmission in the context
of DTR may be possible using our modeling framework. We also in-
cluded Influenza A in Fig. 2 because Influenza A exhibits temperature-
dependent inactivation (see Fig. S6 in Supplementary material). Several
studies indicate a positive correlation between Influenza A transmission
and DTR, but these studies also mention that large temperature fluctu-
ations tend to lower the immune system and consequently increase
the risk of infections (Park et al., 2020; Zhang et al., 2019), suggesting
that a more detailed statistical analysis would be needed to determine
the isolated effect of DTR on transmission of Influenza A.

In the context of these findings, we emphasize that the purpose of
the model presented here is to provide a fundamental understanding
of the impact of realistic environmental temperature fluctuations on
virus lifetime as compared to only considering mean daily tempera-
tures. The model does not consider relative humidity, fomite material
(i.e. the surface contaminated with a virus), or solar irradiation on ex-
posed outdoor surfaces, all of which are known to affect virus lifetime
(Carleton et al., 2021; Ficetola and Rubolini, 2021; McDevitt et al.,
6

2010; van Doremalen et al., 2020; Zhang et al., 2020; Zhao et al.,
2020). Relative humidity and fomite material can be treated as
catalytic effects (Morris et al., 2020; Roduner, 2014) (among other
mechanisms (Lin and Marr, 2020)), and adjustments to the activation
energy could allow for additional predictive capabilities. Varying non-
pharmaceutical intervention methods and social structures also play a
role in the transmission of diseases and must be carefully accounted
for when modeling the site-specific spread of the current pandemic
(Bouchnita and Jebrane, 2020; Ficetola and Rubolini, 2021; Lin et al.,
2020; Thu et al., 2020; Zhao et al., 2020). For simplicity and ease of com-
parison between the environmental temperatures of different cities, the
temperature profiles used in this work are assumed to follow a smooth
sinusoidal profile as described by theWAVEmodel; in reality, the actual
temperature profiles are not smooth, and deviations from a sinusoidal
profile may occur. Fortunately, specific regional environmental temper-
atures can easily be incorporated into Eq. (4) in future work as T(t).
Finally, we note that there are different methods to express time-
varying temperature profiles; the WAVE profile was utilized in this
study due to its simple, yet accurate, depiction of the diurnal tempera-
ture cycle, where prior work has shown that the WAVE model had
an R2 value of 0.95 compared to actual observed hourly temperature
data and exhibited an absolute error of less than 3 °C (Baker et al.,
1988; Cesaraccio et al., 2001; Reicosky et al., 1989). The lifetimes pre-
sented in Fig. 3 have been limited to a maximum of one month due to
inherent uncertainties in predictions at colder temperatures and longer
times. In Fig. 4, the lower limit of the daily mean temperature was cho-
sen as 10 °C because the lifetime at lower temperatures is greater than
one month.

5. Conclusions

This study presents an analytical framework to understand the ef-
fects of temperature fluctuations on virus lifetime. We show that re-
gions with similar mean temperatures can potentially exhibit a
difference in virus lifetime of greater than 50% when accounting for
DTR, and daily temperature variations in a city could result in differ-
ences as large as 120%. Our model allows for incorporation of realistic
temperature profiles to predict the transmission of viruses and could
therefore play a role in mitigating the spread of COVID-19. In addition,
an array of mean environmental temperature and DTR values were
used to determine the virus lifetime and highlight, for a given mean
temperature, the magnitude of DTR at which temperature fluctuations
become significant in predicting virus lifetime. Finally, we show that
the model can be adapted to predict lifetimes and seasonal trends for
other viruses—including, potentially, novel viruses that have not yet
been encountered—and used as a tool based on lab-scale experimental
characterization or simulation, rather than statistical analysis of trans-
mission after a virus has already become widespread. Ultimately, this
work describes how time-varying environmental temperature profiles
result in shorter virus lifetime with a framework to bridge the gap be-
tween statistical analyses and physical understanding.
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