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ABSTRACT

The current coronavirus disease outbreak of 2019 (COVID-19) has led to a global pandemic. The principal cause of mortality in
COVID-19 is represented lung injury with the development of acute respiratory distress syndrome (ARDS). In patients with
COVID-19 infection, liver injury or liver dysfunction has been reported. It may be associated with the general severity of the dis-
ease and serve as a prognostic factor for ARDS development. In COVID-19, the spectrum of liver damage may range from
direct SARS-CoV-2 viral proteins, inflammatory processes, hypoxemia, the antiviral drugs induced hepatic injury and the pres-
ence of the preexisting liver disease. We highlight in this review important topics such as the epidemiological features, poten-
tial causes of liver injury, and the strategies for management and prevention of hepatic injury in COVID-19 patients.

Key indexing terms: COVID-19; Pathogenesis; Liver transaminases; Liver injury; Cytokine storm. [Am J Med Sci 2022;363
(2):94–103.]
INTRODUCTION
Corona Virus Disease (COVID)-19 is a respiratory
viral infection induced by a recently emerged
coronavirus, Severe Acute Respiratory Syndrome

Corona Virus-2 (SARS-CoV-2).1 Upon 14 July 2021, the
records counted around 188,975,095 confirmed cases of
COVID-19, and 4,070,387 deaths, worldwide.2 On the
same date in Egypt, the statistics referred to 16,412 deaths
caused by COVID-19 and around 283,320 confirmed
infections with more than 219,525 recovered cases.2 The
main target organ of COVID-19 is the lung and represents
the most causal agent for morbidity and mortality. How-
ever, neurologic, renal, hepatobiliary, cardiac, and gastroin-
testinal tract implications are increasingly being
recognized.3 The percentage of liver injury cases in
patients with COVID-19 ranged from 14% to 53%.4 It was
detailed that the frequency of mortality was greater in
patients with hypertension (48%), taken after by 21% in
diabetics, 14% in patients with cardiovascular sickness,
10% in those with a persistent lung infection, and 4%
each for danger, cerebrovascular diseases and chronic
kidney infection.5 Moreover, the mortality rate in patients
with pre-existing liver disease was 0−2%.6

Even though elevated liver proteins were detailed as
an extra pulmonary clinical sign, and nearly one-half of
patients experienced grades of hepatic damage,7−9 liver
damage in patients with SARS diseases was shown
within the mild and moderate rise of alanine and/or
aspartate aminotransferases (ALT and AST) with a few
degrees of hypoalbuminemia and hyperbilirubinemia
through the early stage of the infection.10,11 The causal
agent for liver test marker abnormalities in COVID-19 is
not yet interpreted. There’s a lack of knowledge about if
the pre-existing liver illnesses affected the severity of the
infection. Many antiviral drugs and steroids are utilized to
treat the disease with modest or high severity and may
induce liver toxicity in COVID-19 patients. The systemic
immune response may worsen the infection progression,
ending with liver damage.1 Massive quantities of pro-
inflammatory cytokines in serum (counting TNF-a, IL-6,
and IL-1b) were found in most severe infections, show-
ing cytokine storm disorder related to the infection sever-
ity.12 Up to date, the availability of COVID-19 vaccines is
complicated.13,14 Attempts are being made for the
improvement of certain and compelling prophylactic vac-
cination.14 Many epitopes of SARS-CoV-2 have been
testified targeting of the immunity via these epitopes can
confer sufficient protection facing this epidemic and give
exploratory stages for the improvement of prophylactic
vaccines.13,15

This review sheds light on the potential mechanisms
of liver injury in COVID-19 infected patients and offers a
detailed description of how to treat liver injury during
COVID-19 infection. The improvement of the therapeutic
routes for pre-existing liver disease patients associated
with SARS-CoV-2 is a must for better COVID-19 and liver
disease outcomes.
MOLECULAR STRUCTURE OF SARS CoV2
SARS-CoV-2 virion, positive-sense single-stranded

RNA, has a massive genome (29.9 kb) like the other
CoVs.16 The nucleocapsid here is surrounded by spike
protein (S). Viral RNA is comprised of the phosphorylated
nucleocapsid (N) protein. SARS-CoV-2 holds two types
of spike protein (S); the ordinary spike glycoprotein trim-
mer (the familiar spike in all CoVs) and the hemagglutinin
esterase (HE) (known in some CoVs).17 On the envelope
(E) protein, the S protein is embedded alternately with
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FIGURE 1. Genome organization of SARS CoV-2 and its encoded proteins. The orf1ab gene constitutes two-thirds of the genome, encodes a
total of 16 non-structural proteins (NSPs) within the pp1ab gene. The other third of SARS CoV-2 includes four genes that encode four structural
proteins (S, M, E, N), and six accessory genes that encode six accessory proteins (orf3a, orf6, orf7a, orf7b, orf8, and orf10).
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the membrane (M) protein.18 The viral genome here has 5�
and 3� terminal sequences (265 nt at the 5� terminal and
229 nt at the 3�terminal region), as known in all b-CoVs,
with a gene order 5�replicase open reading frame (ORF)
1ab-S-envelope(E)-membrane(M)-N-3� (Fig. 1). The pre-
dicted S, ORF3a, E, M, and N genes of SARS-CoV-2 are
3822, 828, 228, 669, and 1260 nt in length,
respectively.18
SARS- CoV2 HOST RECEPTORS IN LIVER TISSUE
The respiratory tract is not the unique tropism for

SARS-CoV-2; it is also founded in the kidneys, heart,
liver and surprisingly, the brain. The ACE2 protein dis-
plays within the gastrointestinal (GI) tract and within the
colon, the biliary system, and the liver at high levels.19

Moreover, SARS-CoV2-interacts with three receptors in
liver tissue, the expression fluctuats among cell types.
ACE2, for illustration, is expressed in cholangiocytes,
along with hepatocytes. TMPRSS2 is expressed in hepa-
tocytes, cholangiocytes, erytroid cells, and sinusoidal
endothelial cells. All cell types can represent FURIN.20

These receptors' existence indicates the emergence of
liver disease in patients with COVID-19, the direct viral
cytopathic effect. Several studies revealed the relation-
ship between COVID-19 and hepatic manifestation.
Therefore, the apoptosis and ballooning degeneration
along with the bile duct injury may be the consequence
of viral infection, with in situ hybridization and electron
microscopy (EM) demonstrating viral particles within the
liver. Moreover, Wang et al.21 showed that 3.9% of
COVID-19 patients had chronic liver disease, with 4.3%
mortality. A previous study reported that 11% of COVID-
19 patients had pre-existing chronic liver disease (Xu
and colleagues).22 Wang et al.23 confirmed that SARS-
Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
CoV-2 could harm liver cells by the direct cytopathic
effect. Earlier studies have shown that about 60% of
SARS patients have hepatic damage, and reverse tran-
scription-polymerase chain reaction (RT-PCR) has identi-
fied positive SARS-COV in hepatic tissues.10
TRAJECTORY OF LIVER FUNCTION TESTS IN COVID
19 PATIENTS

Chen et al.7 was the first study that reported abnor-
mal liver tests in patients with COVID-19. Abnormal ala-
nine transaminase/aspartate transaminase (ALT/AST)
levels and slightly elevated bilirubin levels indicate liver
damage.8,24−26 In severe cases, the albumin is lessened
and the level of albumin ranges from 26.3 to 30.9 g/L.7

An additional study from Wuhan on 113 patients
observed that ALT, AST, g-glutamyl transferase (GGT),
alkaline phosphatase and bilirubin levels were signifi-
cantly higher in deceased patients than others. Elevated
AST (>40 U/L) was observed in 25 (16%) recovered
patients and in 59 (52%) deceased patients, similarly
abnormal ALT (>41 U/L) was noticed in 30 (19%) recov-
ered patients and in 30 (27%) deceased patients. Com-
parably, hypoalbuminemia (<32 g/L) was reported in 22
(14%) recovered patients compared with 74 (65%)
deceased patients. Serum bilirubin ranged from
8.4 mmol and 12.6 mmol in the recovered and deceased
patients, respectively.5 Also, Chen et al.5 reported 13
(5%) patients with COVID-19 progressed to acute liver
injury during the infection, of them 10 (76.9%) died.
These findings were limited by the small number of
patients, but it had a crucial message on patients with
COVID-19 and hepatic injury. A recent study showed
that patients with augmented aminotransferases (AST
and/or ALT above 40 U/L), had elevated inflammatory
ier Inc. All rights reserved. 95
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indexes (high C-reactive protein [CRP], procalcitonin
[PCT], ferritin, lactate dehydrogenase [LDH], GGT, lactate
and d-dimer).27 In severe and critical cases of COVID-19,
associated with poor outcomes, the level of liver
enzymes is substantially higher. Huang et al. 24 found
that the AST elevation was observed in 8 out of 13 (62%)
ICU patients and 7 out of 28 (25%) patients in the non-
ICU setting. Furthermore, in patients receiving lopinavir/
ritonavir therapy, a higher percentage of enzyme eleva-
tion was observed (56.1% vs. 25%).25 Zhang et al.1

observed that in 54% of COVID-19 patients, the GGT
was augmented. Zhou et al.28 reported that the
increased level of ALT and a reduction in platelet and
albumin were associated with a high mortality rate. More-
over, in a group comprised of 1099 severe patients with
COVID-19, abnormal hepatic function tests (AST, ALT
and total bilirubin) were reported in 22.2%, 21.3% and
10.5% of the cases, respectively.29 Furthermore, coagu-
lation abnormalities have been associated with thrombo-
cytopenia in critically ill COVID-19 infected patients.21

Liver test abnormalities can be found in patients with
COVID-19. This finding is associated with a more
extended hospital stay and a more severe clinical course.
The exact physio pathological mechanisms are not
completely understood, with potential roles for direct
viral lesions in hepatic/cholangiocytes cells, inflamma-
tory damage, hypoxic/shock-related circulatory compro-
mise, and drug toxicity all under consideration.
HISTOLOGIC CHARACTERISTICS OF THE LIVER IN
COVID-19 INFECTED PATIENTS

Hepatocyte deterioration and focal necrosis of the
lobules, detected through liver histopathology, were
observed in the examined postmortem liver of a COVID-
19 infected patient. Inflammatory cells such as neutro-
phils, lymphocytes, and monocytes also infiltrated the
portal triad. Obstruction of the hepatic sinus with micro-
thrombosis was noted. Although, the histopathologic
signs of liver failure or damage to the bile duct had not
been recognized yet.30

Additionally, peripheral blood testing determined a
considerable decline of CD4 and CD8 cells, whereas they
were in hyper activation status. Also, an excessive concen-
tration of pro-inflammatory CCR6+ Th17 CD4 T cells was
observed and large amounts of cytotoxic granules were
found in CD8 T cells that could lead to hepatocellular dis-
order.31 Tian et al.32 observed that the liver biopsies from
four post mortem COVID-19 patients showed mild lobular
lymphocytic infiltration and necrosis.

Moreover, from one patient and using RT-PCR,
SARS-CoV-2 genomic RNA was separated from liver tis-
sue. Wang et al.,23 using electron microscopy (EM) imag-
ing, described viral shape in hepatocytes analogous to
SARS�CoV�2 virions in the liver samples of two
deceased COVID�19 patients. So, the histopathological
alterations described in these patients may be triggered
by direct cytopathic consequences of SARS�CoV�2.23
96
Wichmann et al.33 performed autopsies on many pre-
existing cardiac diseases of COVID-19 patients and dis-
covered hepatomegaly, persistent inflammation and fat
alteration.
MECHANISMS OF LIVER INJURY IN COVID-19
INFECTION

Data reported by case studies affirmed that liver
damage is frequently observed in COVID-19; however
the magnitude and underlying mechanisms are up to this
time unclear. Fig. 2 depicts all the possible pathophysio-
logical observations that will be addressed below.
Direct viral effect on the liver
In many systemic infections, the liver orchestrates a

vital role in host-microbe protection by collecting the
systemic and portal circulation. Yang et al.34 revealed
the direct cytopathic effect of SARS-CoV2 on the liver
and other factors as seen in sepsis.

Many publications mentioned that SARS-CoV-2
might enter the liver cells via ACE2 receptor, which is
expressed in the liver and bile duct cells.35 Recent data
showed ACE2 expression in 2.6% of hepatocytes and
59.7% of cholangiocytes, the level of ACE2 expression
in cholangiocytes was like that in type 2 alveolar cells of
the lungs, interpreting that SARS-CoV-2 may directly
attach to ACE2 found on cholangiocytes and causing
liver dysfunction.36 As the suggestions that ACE2
expression from bile duct cells is greater than that of
hepatic cells, the bile duct epithelial cells have a master
role in liver regeneration and immune response.37 Chol-
angiocytes have a role in liver physiology (regeneration
and adaptive immune response mechanisms) and
accordingly the disturbance of cholangiocyte function
can lead to hepatobiliary damage. In an ex vivo study,
Zhao et al.38 found that SARS-CoV-2 infection interrupts
the barrier and the transportation of bile acid via cholan-
giocytes using the dysregulation of genes incorporated
in tight junction formation and carriage of bile acid. This
could be due to the direct viral cytopathogenic effect on
target cells that express ACE2 and TMPRSS2.

Moreover, gene ontology (GO) analysis in the same
study revealed an alteration of genes involved in cell death.
SARS-CoV-2 infection triggers many factors as: cell apo-
ptosis factors (CD40 molecule [CD40], serine/threonine
kinase 4 [STK4] and caspase recruitment domain family
member 8 [CARD8]). The latter conclusion suggested that
SARS-CoV-2 infection triggers cell death of patients with
cholangiocytes.38 Therefore, it is clear that SARS-CoV-2
infection is the causal agent for direct cholangiocyte injury
and subsequent bile acid accumulation ending liver dam-
age in COVID-19 patients. However, the exact mecha-
nisms of this proposed direct damage pathway are yet to
be clarified. Hepatocellular necrosis, fatty degeneration,
cellular infiltration, increase in ballooned hepatocytes, and
mitotic cells were observed in the liver biopsy of SARS
patients, referring to incorporating SARS-CoV-2 in the
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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FIGURE 2. Potential mechanisms of hepatic injury in SARS-CoV-2 infection.
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induction of liver apoptosis.4,10 Considering the above-
mentioned findings, the idea that the liver damage in
COVID-19 patients might result from direct cholangiocyte
injury and subsequent bile acid accumulation caused by
the virus infection.
Systemic cytokine storm
Cytokine storm is a hyperinflammatory response of

the host body triggered by viral infection, which recruits
a persistent activation and generation of lymphocytes
and macrophages that will produce massive quantities
of inflammatory cytokine. Inflammatory cytokine storm
gives an order to pulmonary and non-pulmonary organs
failure as (kidneys, liver, and cardiac muscle). Several
data have been reported the correlation between the liver
damage and severe pneumonia in COVID-19 patients via
the inflammatory storm.39 COVID-19 cases with severe
pneumonia demonstrated stimulation of inflammatory
Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
biomarkers involving CRP, inflammatory cytokines (eg.
IL-2, IL-6, IL-7, IL-18, TNFa, interferon-g, and ferritin),24

neutrophils and lymphocytes.1,24

Severe hypercytokinemia could provoke a cascade of
actions that ends with tissue damage and multiorgan failure,
especially in the liver.40 Hepatic inflammation, including the
innate immune cell stimulation and cytokine generation, is a
master cause for liver injury.41,42 IL-6 secreted into the liver
during the initial stages of inflammation induces an enor-
mous number of proteins,43 including CRP, fibrinogen, hap-
toglobin, alpha-antitrypsin and serum amyloid A (SAA). On
the contrary, IL-6 was reported to lessen albumin, fibronec-
tin, and transferrin generation.44 A correlation between lym-
phopenia and liver injury was remarked in some cases with
CRP ≥ 20 mg/L levels and count of lymphocyte
<1.1 £ 109/L as an independent risk parameter predicting
liver injury. Lymphopenia in COVID-19 studies was observed
in more than 70% of patients and those with lesser lympho-
cyte counts are more susceptible to worse consequences.45
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This information represents a correlation between inflamma-
tory responses and liver injury in severe COVID-19 patients.
Effect of the drug on liver functions
A variety of antiviral drugs, steroids and antibiotics

are utilized in treatment of COVID-19 patients. The liver
plays a master function in the metabolism of all these
drugs; accordingly, these drugs may cause hepatotoxic-
ity. So far, there is no proof that drugs cause liver injury
in severe COVID-19 patients. The initial presentation of
COVID-19 is manifested usually by fever, cough, dys-
pnea and fatigue. Therefore, the patients occasionally
consume antipyretic drugs. The latter pills mostly contain
acetaminophen and are known to initiate direct hepato-
cyte toxicity.46 In the meantime, various antiviral (remde-
sivir, lopinavir/ritonavir, oseltamivir, arbidol and ribavirin),
antibiotic (macrolids), antimalaria/ (hydroxychloroquine),
immunomodulation (corticosteroids, tocilizumab) and
antipyretic (acetaminophen) therapies are approved for
COVID-19 severe cases.1 These drugs might cause
abnormality in liver function. Besides, hemolysis trig-
gered by ribavirin could stimulate tissue hypoxia, which
may elevate serum liver enzyme. Many studies revealed
that hepatic injury in COVID-19 patients may be due to
the consumption of antiviral drugs like arbidol, oseltami-
vir, lopinavir, and ritonavir applied for the treatment of
COVID-19 critical cases.25,47 Cai et al.47 reported that
ritonavir and lopinavir are significant contributors to liver
test abnormalities in COVID-19 patients. Also, in the pre-
vious study, liver injury was augmented up to four-fold
post to lopinavir and ritonavir consumption. Furthermore,
remdesivir is an antiviral nucleoside analog that is exten-
sively used in coronaviruses treatment; remdesivir was
first applied to treat patients with COVID-19 in the USA48

after showing in vitro antiviral activity anti SARS-CoV-
2.49 Remdesivir achieved more than 60% clinical recov-
ery in severe COVID-19 patients. In vitro study, remdesi-
vir was shown to be lowly hepatocytes cytotoxic.50

However, there have been reports of adverse effects,
including rising amounts of hepatic enzymes, diarrhea,
rash, abnormal kidney function, and hypotension.51

Moreover, Wang et al.52 described elevated transami-
nase rates in patients treated with redeliver or placebo;
patients with cirrhosis and/or with baseline AST/ALT
>5 £ upper limit were excluded. Also, the usage of tocili-
zumab for limiting cytokine release syndrome is corre-
lated with augmented AST/ALT levels and the possibility
of toxic hepatitis.53

The hydroxychloroquine (HCQ) and chloroquine (CQ)
mechanism of action is to inhibit the virus’s entrance by
targeting the endosomal pathway.54 During the COVID-
19 pandemic CQ and HCQ have been chosen as candi-
dates for treatment of COVID-19 due to their anti-SARS-
CoV-2 properties and safety for treatment of malaria and
autoimmune disease.55 However, contradictory results
are reported in clinical trials of COVID-19 with CQ or
HCQ treatment. Several studies revealed that CQ and
98
HCQ have no clinical efficacy in the treatment of COVID-
19.56−58 To date, the effectiveness of CQ and HCQ as an
antiviral drug against SARS-CoV-2 is still debatable.
Recently, CQ and HCQ may cause cardiotoxicity and a
high rate of mortality in severe COVID-19 infected
patients. Hence, for treating severe COVID-19 patients,
HCQ and CQ should be administered cautiously based
on the current treatment guidelines.

Furthermore, the antibiotics used for COVID-19 treat-
ment have shown an association with the increased
prevalence of liver test abnormalities in the regression
model; however, the association was not significant.47

Moreover, corticosteroids positively correlated with high
ALT/AST ranges in COVID-19 patients,59 also associated
with steatosis.60 Accordingly, cirrhotic patients should
be treated prudently with anti-inflammatory drugs.61
Hypoxic injury
Ischemic hepatitis, also named, hypoxic hepatitis, is

occasionally observed in severe patients and declares a
sign of cardiac, respiratory, or circulatory failure, causing
passive congestion or lessened perfusion of the
liver.62,63 There is a compensatory decline in peripheral
and splanchnic blood flow in systemic stress conditions,
leading to a deterioration in hepatic blood flow and
thereby ending with hepatocellular hypoxia.64 Animal
models65 show that hypoxia can cause hepatic cell death
and infiltration of inflammatory cells, with lipid accumula-
tion and an increase in oxygen reactive species.66 ALT/
AST elevations mark hypoxic liver damage due to oxygen
imbalance. Additionally, Kupffer cells can stimulate cyto-
kines due to ischemia and recruit polymorph nuclear leu-
kocytes.67 The last phenomenon progresses with
elevated levels of transaminases, elevated LDH levels,
which can recover as hypoxia is adjusted.62 Therefore,
hypoxemia may be one of the physio pathological
causes of liver damage in patients with COVID-19.
Impact of pre-existing liver disease on COVID 19
prognosis

Patients of any age with the following described liver
diseases are at high risk of progressive infection from
SARs-CoV2 virus.

Chronic viral hepatitis. No evidence clarifies synergism
chronic viral hepatitis (hepatitis B &C) with SARS-CoV-
2. Nevertheless, it is well-known that SARS-COV
patients suffering from viral hepatitis are at risk of more
liver injury. This was due to heightened hepatitis virus
replication during SARS-COV Infection.68 In a recent
study from Wuhan, 9% of patients had underlying liver
disease of cirrhosis or hepatitis.26 Zou et al.69 have
recently reported that the patients with SARS-CoV-2
and hepatitis B co-infection with liver injury are prone to
a worse prognosis. Lin et al.70 observed that most
COVID-19 cases suffering hepatitis B co-infection had
abnormal total bilirubin, AST, and ALT alterations.
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A retrospective analysis of more than three hundred
COVID�19 patients noticed that twelve patients had a
co-infection with hepatitis B and two patients had a
co-infection with hepatitis C .71 In another study of base-
line liver biochemical parameters in 324 cases in China,
the HBsAg�positivity ranges in COVID�19 infected cases
raised to 6.5%.72 So, the synergism of the pre-existing
liver infection with disease prognosis and outcomes in
COVID-19 need a comprehensive study to be evaluated.

TaggedPChronic liver disease TaggedEnd. TaggedPLiver cirrhosis now affects 112 mil-
lion people worldwide, resulting in 2 million deaths each
year due to hepatic decompensation and hepatocellular
carcinoma (HCC).73 In several recently published series,
high mortality rates of COVID-19 were reported among
cirrhotic patients.74,75 In addition, it was noted that the
Child-Pugh baseline score was significantly related to
mortality. Lung injury is the most common cause of
death among COVID-19 patients. As a potential driver of
continuous lung injury, liver dysfunction is involved.
Indeed, in patients with bacterial chest sepsis, the signifi-
cance of liver failure is well recognized.76 The lethal com-
bination of cirrhosis and SARS-CoV-2 may be attributed
to immune alteration caused by viral infection and coag-
ulation disorders. Ascites or encephalopathy worsening,
immune dysfunction in viral infection, increased burden
of venous thromboembolic disease, and coexisting lung
disease have all contributed to pulmonary dynamics dys-
regulation. According to Marjot et al.77 patients with cir-
rhosis have a 32% mortality rate compared to 8% for
those without cirrhosis and the mortality rate increased
in patients with cirrhosis in relation to the Child-Pugh
class (A [19%], B [35%], C [51%]). Respiratory failure
was the foremost reason of death (71%) .

Alcohol associated liver disease (ALD) and COVID. The
impact of COVID-19 in patients with alcoholic liver dis-
ease or in patients with alcoholic hepatitis is very
limited.75,78 Nevertheless, studies of patients with cirrho-
sis showed increased mortality in patients with alcohol-
related cirrhosis, as in other patients with cirrhosis.75,78

Patients with alcohol-related cirrhosis often have associ-
ated comorbidities, like obesity, diabetes mellitus and
chronic kidney disease, which also increase the risk of
COVID-19 complications.79 Kim et al.,80 reported in a
study of 867 patients with chronic liver disease and diag-
nosed with COVID-19 infection that ALD was autono-
mously linked with an increased risk of poor survival and
COVID-19 mortality rate. The inflammatory state caused
by danger-associated molecular patterns (DAMPs) is
associated with ALD, which leads to the production of
pro-inflammatory cytokines by distinct immune
cells.75,81 In patients with ALD, it was postulated that the
superimposed cytokine storm caused by SARS-CoV-2
could aggravate the increased inflammatory process,
resulting in worse outcomes.82

Non-alcoholic fatty liver disease (NAFLD). Obesity is a risk
factor for an acute COVID-19 infection.83 The adipose
tissue may serve as a viral reservoir and an immunologi-
cal core for the inflammation.84 Diabetes and
Copyright © 2021 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
hypertension as elements of the metabolic syndrome are
extensively detected in patients with severe COVID-19.85

As non-alcoholic steatohepatitis (NASH) and non-alco-
holic fatty liver disease ([NAFLD], or metabolic dysfunc-
tion-associated fatty liver disease) are strictly related to
these metabolic comorbidities, detecting patients with
NAFLD progression to a more severe outcome of
COVID-19 has a great clinical importance.86 In a retro-
spective study of 202 COVID-19 patients, Ji et al.87

stated that around 35% of COVID-19 patients were
comorbid with NAFLD, and patients having NAFLD had
an augmented risk of severe COVID-19, higher likelihood
of liver test abnormalities during hospitalization, and
extended viral shedding times in comparing with COVID-
19 patients without NAFLD. On the other side, allelic var-
iants correlated with NASH progression did not show
any association with the severity of COVID-19 infec-
tion.88 Moreover, the relevant genes for SARS-CoV-2
infection did not show dysregulation in liver tissues from
patients having NAFLD.89

Liver transplant recipients. During the COVID-19 pan-
demic, liver transplantation was challenging because
many hospitals had to practically prevent or vastly
reduce their transplantation programs due to an abrupt
decrease in the number of donors and the switch of
many care facilities into COVID-19 units. Managment of
post liver transplant recipients during the COVID-19 pan-
demic is a hard challenge for clinicians due to the cir-
cumscribed available information and the vital need to
continue immunosuppressive drugs in these patients,
placing them at risk for more serious courses of COVID-
19 infection and potential sustained viral shedding. Qin
et al.90 reported the first case of SARS-CoV-2 infection in
a hepatocellular carcinoma patient who underwent liver
transplantation, and found an increased viral burden with
increased immunosuppressant dose. Bhoori et al.91

revealed that immunosuppressive drugs did not affect
the incidence of COVID-19 severity. Early reports from
Italy reported low mortality rates less than 5% in trans-
plant recipients,92 but subsequent analyses reported
mortality rates around 25% in liver and other solid organ
transplant recipients.93,94 Results of a prospective Euro-
pean study from 19 transplant centers95 involving 57 liver
transplant (LT) recipients with confirmed SARS-CoV-2
infection were recently published. The overall and in-hos-
pital case-fatality rates for patients with severe COVID-
19 infection were 12% and 17%, respectively, which are
consistent with the expected mortality rate. There was
an underlying history of cancer in five of the 7 patients
who died. The available evidence does not support the
concept that transplantation or specific immunosuppres-
sive treatments have a substantial influence on the pos-
sibility of disease severity, but those with underlying
cancer may require particular consideration.96

Recently, several vaccines against COVID-19 have
been registered and proved their efficacy in healthy indi-
viduals. However, careful evaluation for vaccination of
immunocompetent patients remain necessary due to the
ier Inc. All rights reserved. 99
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potential risk of immune imbalance related to their dis-
ease or the immunosuppressive treatment. Boyarsky
et al.97 reported an adequate humoral response after the
full immunization regimen of mRNA vaccine among solid
organ transplant recipients and a poor response was
associated with the use of antimetabolite immunosup-
pression.
COVID-19 and HCC
Because of chemotherapy and disease treatments, can-

cer patients are frequently immunosuppressed. In a Chinese
study of 1590 cancer patients with COVID-19 among 575
hospitals, it was observed that patients with underlying can-
cer were at higher risk of contracting SARS-CoV-2 Infection
and progresses to a severe outcome. They also showed
progressive outcomes than patients without cancer.98 Most
HCC patients have chronic liver disease and as a result,
they are categorized as a high-risk group and are suspected
of having worse outcomes. EASL recommends postponing
loco regional treatments wherever possible and gradually
remove anti-cancer immunological therapy.99
Diagnostic work up of the patient and treatment
The risk of drug-induced liver injury is heightened in

COVID-19 patients with pre-existing elevated transami-
nase levels. Hence, antipyretic consumption, antiviral or
herbal drugs must be under physician monitoring to pre-
vent drug-induced liver injury. The elevation of ALT/AST
>5 times the normal amount should be followed by drugs
cessation. Also, the extensive usage of corticosteroids
(methylprednisolone) can reactivate chronic hepatitis B.
Therefore, patients that have positive HBsAg must be
treated with antiviral drugs. Also, there is a recommenda-
tion for screening for the hepatitis B core antibody and, if
positive, treating patients with antivirals along with ste-
roid therapy. Moreover, it was observed that the intro-
duction of lopinavir combined with ritonavir could
accelerate liver damage in hepatitis C or hepatitis B
infected patients100; thus, the usage of the drugs men-
tioned above in COVID�19 treatment in patients suffer-
ing from liver disease is not recommended.

Management of recipients after liver transplantation
in the COVID-19 pandemic is a complex challenge for
clinicians due to the necessity for immunosuppressive
drugs in these patients and the shortage of data available
that puts them at risk for more aggressive courses of
COVID-19 infection and possible persistent viral shed-
ding. Lessening immunosuppression doses to the mini-
mally acceptable level appears reasonable in liver
transplanted patients; especially, in case of lymphopenia
or severe infection.99 In addition, physicians have to take
into account the drug-drug interactions in the transplan-
tation setting. Particularly, immunosuppressive drugs
and ritonavir-boosted antiviral drugs display related
interactions through CYP34A, which augments calci-
neurin and mTOR inhibitors' levels. Accordingly,
100
remdesivir or chloroquine-based regimens seem to be
safe, while boosted protease inhibitors should be
avoided.

In order to avoid getting sick with or spreading
COVID-19 infection, patients post-liver transplantation or
suffering pre-existing liver disease must stick to the
same precautionary measures followed by people with
other medical conditions. Therefore, it is recommended
to treat COVID-19 patients with liver injury using drugs
that can inhibit systemic inflammation and care for liver
functions. Furthermore, the influence of drugs on liver
injury should be frequently monitored and evaluated
throughout the treatment of COVID-19. It is recom-
mended that acetaminophen be considered and that
non-steroidal anti-inflammatory medicines should be
avoided during cirrhosis. The administration of the antivi-
ral agents in COVID-19 infected patients with decompen-
sated liver disease should be regarded.
CONCLUSIONS
Abnormal Liver tests are reasonably more frequent

in severe patients with COVID-19 infection. Liver func-
tion abnormalities require clinical monitoring, continu-
ous observations and, possibly, specific treatment.
Liver test biomarkers (especially AST and GGT) as
well as viral hepatitis markers should be regularly
observed and monitored through hospitalization. More
consideration should be paid to minimize liver dam-
age in patients with pre-existing liver disease. Cau-
tious usage of antiviral therapies in liver disease
patients and drug-drug interactions in post-liver trans-
planted patients must be considered. Furthermore,
reduction of immunosuppression in liver transplant
patients may be considered in the presence of moder-
ate COVID-19 infection and in patients with lympho-
penia, fever, or worsening pneumonia. More studies
to interpret the pathogenic mechanisms of liver injury
in severe COVID-19 patients are urgently needed.
Upon these studies, researchers can postulate pre-
ventive strategies and effective therapies in COVID-19
infected patients with preexisting liver disease.
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