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The pathogenesis of type 2 diabetes (T2D) might change
with increasing age. Here, we used a stratification based
on age of diagnosis to gain insight into the genetics and
causal risk factors of T2D across different age-groups.
We performed genome-wide association studies (GWAS)
on T2D and T2D subgroups based on age of diagnosis
(<50, 50–60, 60–70, and>70 years) (total of 24,986 cases).
As control subjects, participants were at least 70 years of
age at the end of follow-up without developing T2D
(N 5187,130). GWAS identified 208 independent lead sin-
gle nucleotide polymorphism (SNPs) mapping to 69 loci
associated with T2D (P < 1.0e�8). Among others, SNPs
mapped to CDKN2B-AS1 and multiple independent
SNPs mapped to TCF7L2were more strongly associated
with cases diagnosed after age 70 years than with cases
diagnosed before age 50 years. Based on the different
case groups, we performed two-sample Mendelian ran-
domization. Most notably, we observed that of the inves-
tigated risk factors, the association between BMI and
T2D attenuated with increasing age of diagnosis.
Collectively, our results indicate that stratification of T2D
based on age of diag-nosis reveals subgroup-specific
genetics and causal determinants, supporting the

hypothesis that the pathogenesis of T2D changes with
increasing age.

Type 2 diabetes (T2D) is characterized by the failure of
target tissues (e.g., muscle and adipose tissue) to respond
appropriately to insulin, leading to increased plasma levels
of glucose and ensuing vascular damage. T2D is strongly
associated with obesity and a Western lifestyle (1). Impor-
tantly, data-driven statistical clustering of T2D patient
characteristics (2) or genetic risk factors (3) have both
identified five different subgroups of T2D, reinforcing the
notion that T2D is not a single disease entity but, rather,
is highly heterogeneous (4,5).

The pathophysiology of T2D comprises a vicious cycle,
in which increasing insulin resistance drives increasing
insulin secretion. When the insulin-secreting capacity of
the pancreas is no longer sufficient to overcome the insu-
lin resistance (e.g., due to progressing obesity and/or
aging), glucose levels start to increase (6). However, the
relative contribution of insulin resistance and insulin
secretion capacity to the onset of T2D varies among indi-
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viduals. In addition, previous research suggests that aging
affects the pathophysiological mechanisms leading to
impaired glucose homeostasis (7). More specifically, aging
is thought to result in impaired b-cell function, which
consequently results in impaired insulin secretion and
development of T2D (8–11). These observations suggest
that the pathophysiology and the genetics of T2D change
with increasing age. This hypothesis is supported by
recent observations that the impact of obesity is lesser in
older-aged individuals with respect to the development of
T2D (12) and that the increased risk of cardiovascular dis-
ease and mortality in T2D case subjects was diminished
in those diagnosed after the age of 80 years (13). The
genetic variants previously identified in genome-wide
association studies (GWAS) on T2D (14) might thus cause
different T2D subphenotypes characterized by differences
based on age at diagnosis, as has been previously pro-
posed (3).

Data from the UK Biobank, an open-access resource
comprising a large prospective cohort, have become avail-
able for the study of a wide range of known and novel
(genetic) risk factors for a variety of diseases, including
T2D (15). Exploiting the large sample size of this cohort,
we set out to test the hypothesis that stratification of
T2D on the basis of the age of diagnosis will yield specific
genetic risk profiles and genetic correlates with different
traits. Mendelian randomization (MR), which uses genetic
variants for exposures as instrumental variables (16), on
these T2D subphenotypes was performed to provide
insight into the causal risk profile of these T2D subpheno-
types. In addition, we explored whether the association
between the genetic liability for T2D and risk of coronary
artery disease (CAD) was dependent on the age of T2D
diagnosis.

RESEARCH DESIGN AND METHODS

Information on the UK Biobank study populations is pre-
sented in Supplementary Material.

Outcome Definitions
For the current study, we made use of the objectively col-
lected patient data available in the full UK Biobank
cohort, which is predominantly based on hospital admis-
sion data and primary care data and to a lesser extent on
self-reported data (data field 130709). Here, we used data
on the date of the first occurrence of “non-insulin-depen-
dent diabetes mellitus” (data field 130708). For the cur-
rent study, we used the data available until 1 January
2020. On the basis of the date of first occurrence and the
year of birth, we calculated the age of diagnosis of T2D.
Based on this data, we classified the following case
groups: participants diagnosed with T2D irrespective of
the age of diagnosis, T2D diagnosed before the age of 50
years, T2D diagnosed between the age of 50 and 60 years,
T2D diagnosed between the age of 60 and 70 years, and
T2D diagnosed after the age of 70 years. We selected as

control participants all participants without T2D occur-
rence (or occurrence of any other diabetes type) during
the time when data were collected and who were older
than 70 years at the moment data collection stopped. For
all genetic association analyses, we used the same control
population; cases of any T2D age-group not contributing
to a certain analysis were set as missing.

Genome-Wide Association Analyses
Genome-wide association analyses were performed with
use of linear mixed models implemented in the program
BOLT_LMM (version 2.3.2) (17). We adjusted the analyses
for age, sex, and the first 10 principal components and
corrected for the genetic correlation matrix (to correct for
familial relationships in the UK Biobank population). Anal-
yses were done on the autosomal chromosomes only. Sin-
gle nucleotide polymorphisms (SNPs) with a minor allele
frequency <0.01 were excluded as well as SNPs with an
imputation quality <0.3. SNPs reaching a P value thresh-
old of <1e-8, which takes into account a total of five
GWAS, were first processed using the online tool FUMA
(18) to identify independent lead SNPs and to perform
gene mapping. We determined lead SNPs that were inde-
pendent of each other at R2 < 0.1 using the UK Biobank
Release 2b UK10K as a reference panel population. On the
basis of the results, which were composed of additive b

estimates and SEs, we calculated the average difference
between the consecutive age-groups and considered, for
interpretation and replication purposes, an average differ-
ence in log odds of 0.04 as possibly relevant. Furthermore,
to explore a possible changing genetic contribution to T2D
dependent on the age of diagnosis, we performed linear
regression on age (of diagnosis or the maximum age with-
out T2D diagnosis) with a multiplicative interaction term
between the SNP and T2D, with adjustment for sex and
the first 10 principal components. Results visualization
was performed with the R-based packages ggplot2 (19),
EasyStrata (www.genepi-regensburg.de/easystrata) (20),
and VennDiagram.

Genetic Correlations
Genetic correlations were calculated on the basis of the
summary statistics from the GWAS analyses using linkage
disequilibrium score regression (21,22). For this, we
assessed the genetic correlation between the different
case groups of T2D and the different phenotypes available
in LD Hub (excluding the phenotypes retrieved from UK
Biobank data) (https://ldsc.broadinstitute.org/ldhub/). To
prevent false positive correlations in the presence of cor-
related traits, we corrected for multiple testing on the
basis of the 193 different external phenotypes (a: 0.05/
193 5 2.6e-4). For the current study, we were particularly
interested in comparing the genetic correlates with T2D
diagnosed before age 50 years and T2D diagnosed after
age 70 years.
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Replication
We performed replication analyses of the independent
lead SNPs that had an average difference in b estimates
between the consecutive age-groups in the population-
based Estonian Biobank and BioMe Biobank. The analyses
were performed with the same analysis protocol and
study design as we used in the UK Biobank population,
with case subjects stratified into the four T2D subgroups
(age <50, 50–60, 60–70, and >70 years) and the control
subjects age 70 years and older. A detailed description of
the study design is presented in Supplementary Material.
For the present efforts, we only used data of the (self
reported) European sample of the BioMe Biobank. In
addition, we calculated the P values for heterogeneity for
the results as identified in the UK Biobank and the meta-
analyzed results (derived with R-based rmeta fixed-effects
meta-analyses) of the replication cohorts using fixed-
effects meta-analysis in the rmeta package in R.

MR Analyses
We performed two-sample MR with summary-based sta-
tistics of GWAS using the R-based statistical package Two-
SampleMR (available from https://github.com/MRCIEU/
TwoSampleMR) (23). This statistical package also con-
tains a large library of exposures from published GWAS
for use as instrumental variables, which is aligned with
the online GWAS catalog. For the current study, we used
the risk factors that have been described in relation to
T2D in MR studies (24), restricted to the exposures that
were derived from GWAS that identified at least three
independent (R2 < 0.001) genetic instruments (SNPs)
that reached genome-wide significance in the original
genome-wide association analysis (P value <5e�8). Meth-
ods for MR analyses of summary-level data based on two
study samples have previously been described in detail
(25,26). Using inverse variance–weighted (IVW) analyses,
we combined the effects of the individual genetic instru-
ments to obtain a genetically determined association
between exposure and outcome under the assumption of
absence of horizontal pleiotropy. We performed the sensi-
tivity analyses MR-Egger regression (27) and weighted
median estimator analyses (28) to be able to correct for

potential bias caused by horizontal pleiotropy. Because
MR analyses in BioMe would likely be underpowered, we
only performed these analyses in the UK Biobank and the
Estonian Biobank.

Furthermore, we assessed the relations of the significant
independent lead SNPs (P value <1e-8) from the different
T2D GWAS analyses based on the age of diagnosis in rela-
tion to CAD. For this analysis, we used publicly available
summary-statistics data of a GWAS conducted in partici-
pants of the CARDIoGRAMplusC4D (Coronary ARtery DIs-
ease Genome wide Replication and Meta-analysis
(CARDIoGRAM) plus The Coronary Artery Disease (C4D)
Genetics) consortium, which included 60,801 CAD case and
123,504 control subjects (29), mainly of European ancestry.
Cases of CAD were defined as the presence of a history of
myocardial infarction, acute coronary syndrome, chronic sta-
ble angina, or coronary stenosis of >50%.

Data and Resource Availability
With the exception of the data from the UK Biobank
(www.ukbiobank.ac.uk), the data sets analyzed in the cur-
rent study are not publicly available due to legal restric-
tions but are available from the corresponding author
upon reasonable request.

RESULTS

Characteristics of the Study Population
Discovery analyses were conducted in 24,986 T2D case
and 187,130 control subjects (Table 1). Of the T2D case
subjects, 2,331 were diagnosed before age 50 years, 7,140
between age 50 and 60 years, 10,966 between age 60 and
70 years, and 4,549 after age 70 years. Of all case sub-
jects, �38% were women, which was similar across the
different age-groups. The characteristics of the replication
cohorts Estonian Biobank and BioMe Biobank are pre-
sented in Supplementary Tables 1 and 2.

Genome-Wide Association Analyses
The GWAS on T2D irrespective of age of diagnosis yielded
208 independent lead SNPs mapping to 69 different loci
(P value <1e-8) (Supplementary Table 3). The GWAS on

Table 1—Characteristics of the Caucasian UK Biobank study population in the current study

Control
subjects All case subjects

Stratification of case subject population by age of diagnosis (years)

<50 50–60 60–70 >70

N 187,130 24,986 2,331 7,140 10,966 4,549

Age at study visit, years 75.3 (3.2)* 60.9 (6.8) 50.6 (6.7) 57.1 (6.2) 63.0 (4.1) 67.0 (2.2)

Age at diagnosis, years,
median (IQR) NA 62.8 (56.4, 68.3) 46.2 (42.8, 48.4) 56.0 (53.3, 58.1) 65.0 (62.5, 67.5) 72.6 (71.2, 74.5)

% women 54 38 40 37 38 40

Data are means (SD) unless stated otherwise. IQR, interquartile range; NA, not applicable. *Most recent date without a known
diagnosis of diabetes.
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T2D diagnosed before the age of 50 years identified 3
independent SNPs (all mapped to TCF7L2), the GWAS on
T2D diagnosed between age 50 and 60 years identified 21
independent SNPs (mapped to 8 loci), the GWAS on T2D
diagnosed between age 60 and 70 years identified 57
independent SNPs (mapped to 21 loci), and the GWAS on
T2D diagnosed after age 70 years identified 14 indepen-
dent SNPs (mapped to 4 loci).

When we performed a lookup of SNPs identified in the
overall T2D GWAS (irrespective of the age of diagnosis)
in the other four GWAS using a conservative threshold of
P < 4.81e-5 (calculated as follows: 0.05/[208 � 5]), we
observed large overlap (Fig. 1), especially in those diag-
nosed between age 50 and 60 years and between 60 and
70 years.

When we compared the effect sizes of alleles from
SNPs identified in the overall T2D GWAS (irrespective of
the age of diagnosis) with those of the T2D GWAS based
on the age of diagnosis (Fig. 2), we observed larger varia-
tion in effect sizes of the SNP alleles between the cases
diagnosed at younger and older age, whereas the age-
groups 50–60 years and 60–70 years (which represented
the largest case groups) showed the largest consistency.
When we compared the youngest with the oldest T2D
case group, we observed the largest variation in observed
b (in log odds) estimates (Fig. 2E). For all of the investi-
gated SNPs there was large consistency in the direction of
effect.

There were 17 independent SNPs (mapped to eight
loci) identified in the overall T2D GWAS that had differ-
ent effect sizes dependent on the age of diagnosis
(Supplementary Table 3). The loci, including loci mapped
to SLC4C1, SLC6A1, RP11-58B2.1, PAM, C5orf30,
CDKN2B-AS1, TCF7L2, and CCND2-AS1, had an average
difference in the observed log odds between consecutive
age groups of at least 0.04. For 12 (mapped to eight loci)
of the 17 independent SNPs displaying differences in

effect size, we observed also multiplicative interaction
(Pinteraction < 0.05) between the SNP and T2D for age (of
diagnosis or maximum age without T2D). Of these, SNPs
mapped to SLCO4C1, SLC6A1, RP11-58B2.1, PAM, and
CCND2-AS1 were more strongly associated with cases
diagnosed before age 50 years than with cases diagnosed
after age 70 years. SNPs mapped to CDKN2B-AS1 and
multiple independent SNPs mapped to TCF7L2 were
more strongly associated with cases diagnosed after age
70 years than with cases diagnosed before age 50 years.

In general (Supplementary Tables 4–7), the GWAS on
the T2D subgroups based on age of diagnosis did not
reveal additional loci that were not otherwise identified in
the overall T2D GWAS with the exception of the
rs11390198 SNP mapped to PROX1-AS1, which was only
identified in relation to T2D diagnosed after age 70 years
(Supplementary Table 7).

Results of the replication in European-ancestry partici-
pants are presented in Supplementary Table 8. Although
none of the SNPs reached statistical significance in this
relatively small sample (especially in those extreme groups
based on age of diagnosis), directionality was consistent
with that observed in UK Biobank for most of the identi-
fied associations (Pheterogeneity > 0.05 for most analyses).

Genetic Correlations
On the basis of the GWAS summary-level data, we calcu-
lated the genetic correlations with other phenotypes (Fig.
3 and Supplementary Table 9). T2D irrespective of age of
diagnosis (Fig. 3A) was genetically strongest correlated
with obesity-associated traits and glycemic traits. Similar
results, but with lower significance, were observed in
stratification of T2D based on age of diagnosis (Fig. 3B
and C). When comparing the genetic correlations of T2D
diagnosed before age 50 or after age 70 years (Fig. 3D),
we generally observed much consistency in correlation
with other traits. However, we observed some notable dif-
ferences. Most notably, we observed that the genetic cor-
relation was weaker (difference in correlation > 0.2) with
obesity-related traits (e.g., BMI: genetic correlation 5
0.56 and 0.34, respectively, for cases diagnosed before age
50 and cases diagnosed after age 70 years) and a stronger
genetic correlation with longevity-associated traits (e.g.,
mother age of death: genetic correlation 5 �0.35 and
�0.63 for cases diagnosed before age 50 and cases diag-
nosed after age 70 years) and with triglyceride levels
(genetic correlation 5 0.30 and 0.52 for cases diagnosed
before age 50 and cases diagnosed after age 70 years).

MR Analyses
For the MR analyses, we examined 10 exposures in rela-
tion to T2D and the subphenotypes based on the age of
diagnosis. Here (Supplementary Table 10), we specifically
observed that, irrespective of age of diagnosis, years of
schooling was inversely associated with the risk of devel-
oping T2D (log odds 5 �0.742 per additional year; P

Figure 1—Venn diagram showing overlap of loci associated with
diabetes diagnosed at different ages (years). The figure shows the
overlap of the independent genetic associations identified in the
GWAS on diabetes irrespective of age of diagnosis with those iden-
tified in the age-stratified genetic association analyses. We consid-
ered P < 4.81e�5 in this figure to be counted in a particular cell in
the Venn diagram.
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Figure 2—Between-subgroup comparisons of effect sizes between different T2D subgroups based on the age of diagnosis. Each dot rep-
resents an independent SNP as identified in the overall T2D GWAS (irrespective of the age of diagnosis). A: Presentation of the concor-
dance in effect sizes as observed between the overall T2D GWAS (x-axis) and the GWAS for T2D case subjects diagnosed before age 50
years (y-axis). B: Presentation of the concordance in effect sizes as observed between the overall T2D GWAS (x-axis) and the GWAS for
T2D case subjects diagnosed between ages 50 and 60 years (y-axis). C: Presentation of the concordance in effect sizes as observed
between the overall T2D GWAS (x-axis) and the GWAS for T2D case subjects diagnosed between ages 60 and 70 years (y-axis). D: Pre-
sentation of the concordance in effect sizes as observed between the overall T2D GWAS (x-axis) and the GWAS for T2D case subjects
diagnosed after age 70 years (y-axis). E: Presentation of the concordance in effect sizes as observed between the GWAS for T2D case
subjects diagnosed before age 70 years (x-axis) and after age 50 years (y-axis). The plots were prepared with the R-based package
ggplot2 (19).
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value 5 8.8e�33) and that BMI (log odds 5 0.964 per
SD increase; P value 5 1.16e�59), childhood BMI (log
odds 5 0.528 per SD increase; P value 5 7.47e�5),

systolic blood pressure (log odds 5 0.018 per mmHg; P
value 5 5.34e�8), and insomnia (log odds 5 0.164 regu-
lar vs. absent; P value 5 2.45e�12) were associated with

Figure 3—Genetic correlations with the external phenotypes. Plot was constructed with the R-based package corrplot. A–C: Presentation
of the genetic correlation at the x-axis and the �log(P value) of the genetic correlation at the y-axis for T2D irrespective of age of diagnosis
(A), T2D diagnosed before age 50 years (B), and T2D diagnosed after age 70 years (C). Genetic correlations with a P value <2.6e-4 are
visualized in black (otherwise in gray). For visualization purposes, we only labeled the phenotypes that showed a genetic correlation of at
least 0.5. D: Presentation of the concordance in the genetic correlations with the external phenotypes between T2D diagnosed before age
50 years and T2D diagnosed after age 70 years. Genetic correlations that were significant (P value <2.6e-4) in both case subgroups are
visualized in black (otherwise in gray), and significant genetic correlations that showed a difference in genetic correlations of at least 0.2 in
either direction are labeled. The plots were prepared with the R-based package ggplot2 (19). HOMA-IR, HOMA of insulin resistance;
Leptin_not_adjBMI, leptin not adjusted for BMI.
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a higher risk of developing T2D. We did not observe
major difference in effect estimates when we performed
the sensitivity analyses MR-Egger and weighted median
estimator.

Whereas particularly BMI and childhood BMI were
strong risk factors for developing T2D before age 50 years
(log odds 5 1.310 per SD increase, P value 5 2.62e�42,
and log odds 5 0.989 per SD increase, P value 5
4.44e�12, respectively), these were less strongly associ-
ated with developing T2D after the age of 70 years (log
odds 5 0.681 per SD increase, P value 1.41e�15, and log
odds 5 0.227 per SD increase, P value 5 0.13). This was
also evidenced by observed interaction by the two age-
groups (Pinteraction 5 2.50e�6 and 4.77e�4, respectively).
The observed inverse relationship with years of schooling
(Pinteraction 5 0.22) and the risk factor insomnia (Pinterac-
tion 5 0.37) did not differ between the age-groups. The
results of the sensitivity analyses MR-Egger and weighted
median estimator did not materially differ with the
results from the IVW analyses. Furthermore, results
were directionally consistent in the Estonian Biobank
(Supplementary Table 11)

With use of summary-level data on CAD from the
external CARDIoGRAMplusC4D consortium as outcome,
genetically determined T2D (irrespective of age of diagno-
sis) was associated with an increased risk for CAD (IWV
estimate 0.12 [OR 1.12; P value 5 7.1e�14]). We did not
observe a difference in association between genetic pro-
pensity to develop T2D and to develop CAD dependent
on the age of diagnosis of the T2D (e.g., IVW estimate
0.10 [OR 1.11; P value 5 0.021] with diagnosis before 50
years of age and IVW estimate 0.11 [OR 1.11; P value 5
3.73e�8] with diagnosis after 70 years of age). Results
did not materially differ in the sensitivity analyses MR-
Egger and weighted median estimator (results not
shown).

DISCUSSION

For the current study, we investigated the hypothesis
that the genetic basis of T2D may change with increasing
age. Using data from European-ancestry participants from
the large UK Biobank, and replication in the Estonian Bio-
bank and BioMe Biobank (which largely showed direction-
ally consistent results), we were able to identify specific
genetic risk factors for T2D diagnosed at either younger
or older age. More specifically, we observed a number of
loci that were more strongly associated either with T2D
diagnosed at older age (CDKN2B-AS1 and TCF7L2) or
with T2D diagnosed at younger age (SLCO4C1, SLC6A1,
RP11-58B2.1/LINC00492, PAM, and CCND2-AS1). On the
basis of the summary-level data from these studies, we
conducted two-sample MR analyses and particularly
found that adiposity traits, which were previously associ-
ated with T2D in MR studies (24), were less strongly asso-
ciated with T2D diagnosed at older age. Collectively, the
stratification in our study based on age of diagnosis

yielded novel insights that could contribute to precision
medicine and the identification of specific pathophysiolog-
ical mechanisms associated with the age of T2D onset.

In performance of genetic association analyses and MR
analyses in older people, investigators will need to con-
sider the issue of possible survival/selection or collider
stratification bias (30). However, although no real-life
examples are available, relatively simple simulations
showed that the effect of collider stratification bias partic-
ularly started to influence the results after the age of 80
years and therefore minimally affected the current study
(30). As aging might be considered as some kind of popu-
lation stratification, we further explored the possible asso-
ciation between the genetic principal components (as
usually used to correct for population stratification and
which we also included in the statistical models) and T2D
and age of diagnosis. However, we did not find evidence
that the main genetic principal components (for which we
also adjusted) were not associated with either T2D or age
of diagnosis (Supplementary Table 12). Furthermore, if
collider stratification was playing a significant role in the
current study, we expected all results would have been
biased in a similar direction (e.g., all effect sizes attenu-
ated with increasing age of diagnosis). Therefore, we con-
sidered our results to likely reflect true differences
dependent on the age of diagnosis.

With the most recent efforts from the DIAbetes Genet-
ics Replication And Meta-analysis (DIAGRAM) consor-
tium, in a current sample of �900,000 individuals of
European descent, >240 genetic risk loci have been iden-
tified to increase the risk of T2D, explaining 18% of the
genetic heritability and enhancing the potential for clini-
cal translation (14). Based on our stratification of T2D by
age of diagnosis, we identified a partly distinct genetic
background suggesting a different pathophysiology of
T2D according to age. Specifically, we identified different
genetic determinants for cases diagnosed before age 50
years and after age 70 years. Genetic variation in
CDKN2a, which is close to our mapped CDKN2B-AS1
locus, which encodes for p16INK4a, a protein involved in
cellular senescence, is consistently identified among the
top genetic variants associated with T2D (14). In mouse
models, increased expression of p16INK4a limits the
regenerative capacity of b-cells (31). Together with our
observation that this gene was more strongly associated
with T2D in older age, this finding indicates a stronger
role of cellular senescence in the older-aged individuals.
In addition, although the well-known SNP mapped to
TCF7L2 rs7903146 (14) did not differ in effect size across
different age-groups, we observed that multiple (lower-
frequency) variants were more strongly associated with
T2D diagnosed at older age. The exact mechanisms of
TCF7L2 leading to T2D is still under discussion but are
likely to involve insulin secretion as observed in pleiot-
ropy analyses (32). In addition, we observed PROX1-AS1
to be identified only in T2D case subjects age $70 years.
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Although previous GWAS identified PROX1-AS1 already
(14), there is also suggestive evidence that this gene
mainly involves insulin secretion (33). Taken together,
these findings support the existing hypothesis that the
pathogenesis of T2D in older patients is more crucially
dependent on insulin secretion (7). Of the SNPs mapped
to genes associated less strongly with T2D diagnosed at
older age, all have been previously associated with T2D
(14,34) with the exception of the RP11-58B2.1/
LINC00492 locus. SLCO4C1 contributes to T2D progres-
sion and increases phenyl sulfate levels, a gut microbio-
ta–derived metabolite (35), and SLC6A1 was specifically
identified in efforts exploring the shared pathogenesis of
T2D with Alzheimer disease (36). CCND2-AS1 has only
recently been associated with T2D in the Million Veteran
Program (34), and no mechanistic insights into the role
of this gene in T2D pathogenesis have been described at
this point. Despite our attempts for independent replica-
tion of our main findings, additional research is required
to confirm these findings as well as to investigate their
role in T2D pathogenesis at younger and older ages.

Using MR analyses (16), previous studies have studied
multiple risk factors that were causally associated with
T2D irrespective of the age of diagnosis (e.g., 24,26,37–39).
In the current study, using previously described causal risk
factors for T2D (24), we particularly observed that obesity-
related traits were less strongly associated with T2D diag-
nosed at older age. This observation is in line with earlier
observational findings in which the risk conferred by BMI
decreased with increasing age of diagnosis (12,40). These
findings suggest that tailoring a personalized genetic risk
profile should involve taking into account different charac-
teristics of T2D. However, our findings do not indicate that
CAD risk associated with T2D changes with increasing age,
which is in contrast with a previously proposed hypothesis
(13). Although survival bias has previously been indicated to
be a factor to consider in MR studies, such as ours (30), we
did not find indications (e.g., consistent decrease in effect
sizes) that this played a (major) role in the current study.
Future studies, with use of additional characteristics (e.g.,
complications, treatment effectiveness, geriatric vulnerabil-
ity), might further tailor toward a more individualized causal
risk profile that might assist in the prevention of T2D from
an aging perspective.

The current study made use of a large sample size that
allowed stratification of the overall diagnosis of T2D
based on age of diagnosis. However, the number of indi-
viduals within the age-groups <50 and >70 years was
still limited. Nevertheless, as opposed to division of the
study groups into equally sized groups, this strategy per-
mitted us to keep sufficient contrast between the differ-
ent case subgroups. Although our strategy resulted in an
unequal distribution of the statistical power across the
T2D subgroups, we obtained novel insights based on the
effect sizes of the loci and genetic correlations dependent
on the age of diagnosis. Furthermore, the replication

sample included a limited number of cases, which likely
resulted in limited replication of the results from UK Bio-
bank. Importantly, most of the results were directionally
consistent with the results observed in UK Biobank. Fur-
thermore, our outcome variable could be affected by some
degree of measurement error. However, as it is unlikely
that the measurement error is associated with the genetic
profile, it will only affect the effect estimates in the direc-
tion of the null and result in a reduced statistical power.
In addition, our study was predominantly conducted in
participants of European ancestry, as samples of other
ancestries in the available Biobanks were too limited in
size for drawing of any firm conclusions. As this was pre-
dominantly a proof-of-principle study based on age of
diagnosis of T2D, findings should be followed up in future
work in independent cohort settings.

In summary, in the current study we identified differ-
ent genetic associations and causal risk factors for T2D
after stratification for age of diagnosis. Our findings spe-
cifically contribute to our understanding of the patho-
physiological mechanisms of T2D in different age-groups
on a population level and to direct novel leads in preci-
sion medicine of T2D.
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