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Abstract
Climate change presents distinct ecological and physiological challenges to plants 
as extreme climate events become more common. Understanding how species have 
adapted to drought, especially ecologically important nonmodel organisms, will be 
crucial to elucidate potential biological pathways for drought adaptation and inform 
conservation strategies. To aid in genome-to-phenome research, a draft genome was 
assembled for a diploid individual of Artemisia tridentata subsp. tridentata, a threat-
ened keystone shrub in western North America. While this taxon has few genetic 
resources available and genetic/genomics work has proven difficult due to genetic 
heterozygosity in the past, a draft genome was successfully assembled. Aquaporin 
(AQP) genes and their promoter sequences were mined from the draft genome to pre-
dict mechanisms regulating gene expression and generate hypotheses on key genes 
underpinning drought response. Fifty-one AQP genes were fully assembled within 
the draft genome. Promoter and phylogenetic analyses revealed putative duplicates 
of A.  tridentata subsp. tridentata AQPs which have experienced differentiation in 
promoter elements, potentially supporting novel biological pathways. Comparison 
with nondrought-tolerant congener supports enrichments of AQP genes in this taxon 
during adaptation to drought stress. Differentiation of promoter elements revealed 
that paralogues of some genes have evolved to function in different pathways, high-
lighting these genes as potential candidates for future research and providing critical 
hypotheses for future genome-to-phenome work.
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1  | INTRODUC TION

Drought is a major factor determining plant survival, growth, and 
reproduction, as well as species distributions (Brenes-Arguedas 
et al., 2009; Samarah, 2005). Drought stress has numerous del-
eterious effects on plants, including reduced growth (Samarah, 
2005), increased production of reactive oxygen species (ROS; Cruz 
De Carvalho, 2008), and reduction of photosynthetic efficiency 
(Galmés et al., 2007). Water deficits generate hydraulic and chem-
ical signals, particularly abscisic acid (ABA), that trigger signaling 
cascades and ABA-dependent and ABA-independent transcriptome 
changes (Chaves et al., 2003; Christmann et al., 2013; Lata et al., 
2015; Takahashi et al., 2018). Plants respond to water deficit through 
mechanisms that reduce water loss, increase water uptake, and alter 
hydraulic conductivity (Sharp et al., 2004; Kaldenhoff et al., 2008; 
Hsu et al., 2021). In the long term, adaptations to dry environments 
come through the evolution of structural, biochemical, and physio-
logical traits that maximize the ability to acquire and retain water (re-
viewed in Shinozaki & Yamaguchi-Shinozaki, 2007; Shinozaki et al., 
2003). These traits may include deep roots, thick cuticles, sunken 
stomata, CAM metabolism, and characteristics that reduce or enable 
repair of xylem embolism (Fahn, 1964; Lüttge, 2004; McElrone et al., 
2007; Secchi et al., 2017).

Aquaporins (AQP) are a large family of proteins known to func-
tion in the transport of water and other molecules across cell mem-
branes (Yakata et al., 2007; Azad et al., 2012; Uehlein et al., 2012; 
Reviewed in Li et al., 2014; Afzal et al., 2016). The defining charac-
teristics of AQP proteins include having six alpha-helices, including 
two conserved asparagine–proline–alanine (NPA) motifs (Mitsuoka 
et al., 1999; Murata et al., 2000). While the NPA motifs are gener-
ally highly conserved, there are some AQP genes that have under-
gone mutations of the alanine residue in the NPA motif (Ishibashi, 
2006). AQPs in flowering plants comprise five subfamilies: (1) 
NOD26-like intrinsic proteins (NIPs), (2) plasma membrane intrinsic 
proteins (PIPs), (3) small basic intrinsic proteins (SIPs), (4) tonoplast 
intrinsic proteins (TIPs), and (5) X intrinsic proteins (XIPs) (Danielson 
& Johanson, 2008). Genes from each subfamily tend to move water 
or other substrate depending on their NPA motifs. Some AQPs, such 
as NIPs, have acquired a mutation in their NPA motif, such as ala-
nine to leucine, which confer the ability to move substrates such as 
urea or ammonium (reviewed in Chaumont et al., 2005; Kaldenhoff 
& Fischer, 2006; Maurel, 2007).

Most of the water plants take from the soil is lost to the atmo-
sphere via transpiration (Steudle, 2001). In this water flow through 
the soil–plant–atmosphere continuum, AQPs play an important role 
in controlling the radial movement of water from the soil to the root 
xylem as well as water movement from the leaf xylem to evapora-
tion sites in the mesophyll (Sade & Moshelion, 2017). Various envi-
ronmental and internal changes such as in soil moisture, evaporative 
demand, salinity, and ABA can alter the expression and activity of 
AQPs and plant hydraulic conductivity (Afzal et al., 2016; Ding et al., 
2015; Fang et al., 2019; Maurel et al., 2016). Through these changes 
in expression and activity, AQPs contribute to regulate plant water 

balance and maintain cellular water homeostasis, which ultimately 
affects plant growth, photosynthesis, and water use efficiency 
(Chaumont & Tyerman, 2014; Moshelion et al., 2015). As important 
regulators of the plant water balance, AQPs are excellent targets 
to increase our understanding of how plants can deal with drought 
stress and survive in arid environments (Shekoofa & Sinclair, 2018; 
Zargar et al., 2017; Zhang et al., 2019). Understanding the mecha-
nisms that promote expression of AQPs would allow rapid identifica-
tion of key AQP genes underpinning drought adaptation and provide 
a tool to screen natural populations to predict their abilities to cope 
with climate change. Such endeavors are especially important for 
natural habitats that are dominated by few foundational species, 
including the threatened sagebrush steppe ecosystem in western 
North America (Davies et al., 2011). Promoter sequence analyses, 
such as those in Lopez et al. (2013), may provide valuable informa-
tion about what drives the expression of AQP genes for plant species 
in these habitats.

Researchers have primarily focused on studying the roles and 
importance of AQPs using crop and model plants; very little effort 
has been devoted to species occurring in natural environments. 
Artemisia tridentata Nutt. (sagebrush; Asteraceae) exists as a poly-
ploid species complex with a history of hybridization (Freeman 
et al., 1991; McArthur et al., 1988; Taylor et al., 1964) that oc-
cupies environments with contrasting precipitation regimens and 
drought occurrences (Kolb & Sperry, 1999). This complex evolu-
tionary history, in conjunction with limited resources available for 
research, has complicated genetic studies of this taxon. Natural 
variation in drought tolerance within this species may provide an 
excellent system to study the role of AQPs in plants’ responses 
to water stress and survival in arid environments (Maurel et al., 
2010). This long-lived shrub is the most ecologically important 
and dominant species of the steppes of northwestern North 
America (Karban, 2007; Leonard et al., 2000; Prevéy et al., 2010). 
Sagebrush steppe habitat once covered much of western North 
America (McArthur & Plummer, 1978; Mueggler & Stewart, 1980; 
Requena-Mullor et al., 2019), though it is now threatened by vari-
ous habitat disturbances (Barnard et al., 2019; Prevéy et al., 2010) 
and anthropogenic climate change (Richardson et al., 2017; Still & 
Richardson, 2015).

Anthropogenic climate change poses a great threat to many or-
ganisms across the globe. Average temperatures experienced an 
increase of 0.6°C within the 20th century (reviewed in Jones et al., 
2001), with a potential increase in future temperatures of 0.4°C per 
decade (IPCC, 2001). While shifts in species distributions have been 
identified across latitudinal and elevational gradients (Grabherr 
et al., 1994; Kullman, 2002; Lloyd & Fastie, 2003; Parmesan & Yohe, 
2003; Penuelas & Boada, 2003; Sanz-Elorza et al., 2003; Sturm 
et al., 2001; Walther, 2003; Walther et al., 2002), with ranges of 
many more species expected to shift (Bakkenes et al., 2002), the 
rate of climate change will likely outpace the ability of many spe-
cies to acclimate, adapt, or disperse (Cang et al., 2016; Jezkova & 
Wiens, 2016; Quintero & Wiens, 2013; Wiens, 2016). Along with 
rising temperatures, many areas will see changes in precipitation 
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and aridity, leading to increased water-related stress in sessile 
plants (Gao & Giorgi, 2008; Zarch et al., 2017; reviewed in Huang 
et al., 2017).

Given the rapid improvements in genomic tools, use of draft 
genomes in the study of nonmodel organisms can greatly decrease 
cost and help generate focused genome-to-phenome (G2P) hypoth-
eses for long-term experiments (reviewed in Wojahn et al., 2021). 
A draft genome can be assembled and then mined for relevant ge-
netic information, as opposed to a more classical G2P experiment, 
in which genetic/transcriptomic data would be linked to an experi-
mentally induced phenome. In this study, we explored the evolution 
of AQP genes that may promote drought adaptation in plants using 
diploid Artemisia tridentata Nutt. subsp. tridentata (2n  =  2x  =  18; 
McArthur & Sanderson, 1999). Artemisia tridentata subsp. tridentata 
is a nonmodel plant that can be difficult to use in genetic research, 
with few resources currently available, though propagated lines are 
in development (Barron et al., 2020). Here, we test the hypothesis 
that the genome of the drought-tolerant taxon A. tridentata subsp. 
tridentata will be enriched with AQP genes, particularly those of the 
PIP and TIP subfamilies, which produce proteins key in channeling 
water between cells, by being located in the plasma membrane, and 
the tonoplast, respectively, and that differentiation of promoter 
sequences have driven the evolution of novel functional groups of 
these AQP genes underpinning biochemical pathways adapted to 
drought tolerance.

These hypotheses were tested by assembling a draft genome 
of a diploid A. tridentata subsp. tridentata (2n = 2x = 18) and min-
ing for AQP genes. Candidate AQP genes were characterized with 
regard to their amino acid sequences, predicted three-dimensional 
structures, promoter elements, and phylogenetic inference. AQPs 
mined from the draft genome were compared to those of an annual, 
nondrought-tolerant congener, Artemisia annua L. (Shen et al., 2018), 
to determine whether the genome of A. tridentata subsp. tridentata 
is enriched for AQP genes, which may confer increased tolerance to 
drought stress.

2  | MATERIAL AND METHODS

2.1 | Sampling, genome sequencing, and assembly

A diploid (2n = 2x = 18) individual of Artemisia tridentata Nutt. subsp. 
tridentata from a common garden in Orchard, Idaho (USA), grown 
from seed collected near Mountain Home, Idaho, USA (43.3371, 
−116.0081), was sampled for DNA extraction and genome sequenc-
ing (1C  =  2.98  Gbp; Richardson et al., 2012; other individuals of 
this species have been found to have much larger genome sizes: 
1C = 4.12–4.21 Gbp; Garcia et al., 2008). This individual, known as 
IDT2-2, was grown as part of a long-term experiment conducted by 
the USDA Forest Service in the Orchard common garden (Richardson 
& Chaney, 2018). DNA extraction was performed at Boise State 
University using a Qiagen Plant Mini kit per manufacturer protocol 
and quantified using Qubit (Thermo Fisher Scientific, Waltham, MA 

USA). A sample of 30 ng/μl was sent to the HudsonAlpha Institute 
for Biotechnology (Huntsville, AL, USA) for sequencing. A PCR-free 
2 ×150 bp paired-end library of 350 bp standard was constructed 
using the Illumina TruSeq DNA PCR-Free LT Library Preparation 
Kit (cat #20015962). After construction, the library was assessed 
for concentration by a Qubit™ fluorometer, fragment size with an 
Agilent Bioanalyzer, and optimal loading concentration by qPCR.

2.2 | De novo genome assembly

A whole-genome shotgun sequencing and standard sequenc-
ing protocols were utilized to sequence the Artemisia tridentata 
subsp. tridentata genome. Reads were generated using the Illumina 
NovaSeq platform at the HudsonAlpha Institute for Biotechnology 
in Huntsville, Alabama (USA). Two TruSeq PCR free 400  bp in-
sert 2  ×  150 Illumina fragment libraries (176.3  ×  raw coverage) 
were generated. Prior to assembly, Illumina fragment reads were 
screened for PhiX contamination. Reads composed of >95% simple 
sequence were removed. Illumina reads <50 bp after trimming for 
adapter and quality <20 were removed. The final read set consists 
of 5,388,578,188 reads for a total of 169.9× of high-quality Illumina 
bases. The genome assembly was generated by assembling the 
5,388,578,188 Illumina reads (169.9× sequence coverage) using the 
HipMCL assembler (version 1.1-27-g69eb6141; Azad et al., 2018). 
To validate our draft genome assembly for gene mining purposes, 
BUSCO V.5.1.2 (Seppey et al., 2019) was used to estimate the per-
cent of orthologous genes from the eukaryote (n = 255) and eud-
icots (n = 2326) db10 databases that were completely and partially 
assembled or missing within the draft genome. BUSCO analysis was 
performed using default parameters and the Augustus gene predic-
tion algorithm (Stanke & Waack, 2003).

2.3 | Identification and validation of 
Aquaporin genes

Scaffolds containing candidate AQP genes were identified via 
BLASTN search using a custom reference BLAST database contain-
ing all DNA sequences available from GenBank encoding for AQP 
genes (for data regarding Artemisia tridentata subsp. tridentata AQP 
genes used in downstream analyses, refer to Table S1). Accession 
numbers of top BLAST hits were recorded, as well as positions of 
hits along scaffolds allowing the identification of genes that were 
fully contained within scaffold sequences. Open reading frames 
(ORFs) were predicted on scaffolds identified by the BLAST analysis 
using the findORFs function from the “ORFik” R package (Tieldnes 
& Labun, 2020). The number of predicted ORFs, strands, and posi-
tions along each scaffold were recorded. To identify ORFs coding for 
AQP codons, ORFs were converted into amino acid sequences and 
BLASTP analyses were run on the online BLAST portal. Top BLAST 
hits for each ORF coding for AQP exons were recorded to further 
refine gene hypotheses (Table S1).
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2.4 | Predicting secondary and tertiary 
protein structures

AQPs are characterized by having six helices, two loops, and the pres-
ence of NPA motifs in loops (Park et al., 2010). The online TMHMM 
server v. 2.0 (http://www.cbs.dtu.dk/servi​ces/TMHMM/) was used 
to predict the number of transmembrane helices (Krogh et al., 2001), 
and a custom R script using base R functions was used to predict 
number, positions and amino acid composition of NPA motifs, and 
number of amino acid residues (R Core Team, 2020; https://github.
com/aemel​ton/Draft​Genom​eMineR). We confirmed locations of 
NPA motifs in loops by using output of the TMHMM analyses. These 
analyses were based on concatenated amino acid sequences result-
ing from the ORFs and BLAST analyses.

The Phyre2 online platform with default parameters (http://www.
sbg.bio.ic.ac.uk/~phyre​2/html/page.cgi?id=index) was used to predict 
and analyze AQP protein tertiary structures, functions, and locate 
amino acid regions where mutations would change functions (Kelley 
et al., 2016). This analysis was performed on AQP amino acid sequences 
with at least five predicted helices and two NPA motifs. Tertiary pro-
tein models were saved in pdb formats, and data on model accuracy 
and coverage, closest protein(s) in Phyre2 database, and locations of 
mutations along proteins were recorded to further validate and infer 
functions of AQP s in Artemisia tridentata subsp. tridentata (Table S1).

2.5 | Phylogenetic analysis

The phylogenetic reconstruction based on amino acid sequences was 
used to (i) confirm the identities of putative AQP genes in Artemisia 
tridentata subsp. tridentata genome and (ii) compare them to those of 
Artemisia annua L. identified via the NCBI BLAST portal to identify 
potential candidates underpinning climate-induced adaptations in 
A. tridentata subsp. tridentata, that may have evolved to function in 
potential new pathways relating to drought stress.

Extracted AQP amino acid sequences were aligned with AQP se-
quences from Artemisia annua and Arabidopsis thaliana (L.) Heynh. 
mined from GenBank. Arabidopsis thaliana AQPs were used as the 
initial queries for Artemisia annua mining from GenBank and for 
BLASTP identification hypotheses for A.  tridentata subsp. triden-
tata due to high level of validation of these proteins (Quigley et al., 
2001). The alignment was performed via the online mafft V.7 portal 
(https://mafft.cbrc.jp/align​ment/serve​r/; Katoh et al., 2019) using 
the E-INS-i algorithm. Phylogenetic reconstructions were performed 
via raxmlGUI 2.0.0-beta.14 (Edler et al., 2020) using the protgamma 
model and 1000 rapid bootstrap replicates.

2.6 | Promoter analysis

Promoter analyses were performed to investigate mechanisms trig-
gering AQP gene expression using the approach described in Lopez 
et al. (2013). One and half kilobases of upstream sequence data were 

extracted from scaffolds containing at least 1500 bp upstream from the 
AQP start codon. Upstream sequences were analyzed for putative cis-
acting sequences (regulatory distal element; RDE) using the Plant Cis-
acting Regulatory DNA Elements (New PLACE) signal scan software 
package (https://www.dna.affrc.go.jp/PLACE/​?actio​n=newplace, Higo 
et al., 1999). These RDEs comprise short nucleotide motifs that occur 
upstream of the start codon of a gene and influence the expression 
of genes. Detected RDEs were sorted into biological categories which 
included light, abscisic acid (ABA), water stress, temperature stress, 
stress hormone, growth, and other stress, and targeted area of ex-
pression (e.g., leaf, aerial tissue, and roots) based on keywords for each 
RDE listed within the New Place database file using a custom R script 
(https://github.com/aemel​ton/Draft​Genom​eMineR). Due to some 
RDE’s having functions in multiple pathways, some RDEs could be cat-
egorized into multiple categories to account for their various functions 
(e.g., many drought-responsive elements, such as DREDR1ATRD29AB, 
respond to both temperature and water stresses; Yamaguchi-Shinozaki 
& Shinozaki, 1994). A Kruskal–Wallis test via the function kruskal.test 
in base R (R Core Team, 2020) followed by Dunn tests via the func-
tion dunn.test in the R package “dunn.test” V.1.3.5 (Dinno, 2017) were 
performed on category count data per gene to determine if there are 
differences in the occurrences of RDEs for any given category, indicat-
ing enrichment of RDEs in certain categories and indicating important 
triggers for the expression of these AQP genes.

A singular value decomposition (SVD) on the occurrence counts 
of RDEs for each category within upstream sequence for each gene 
was used to determine how AQPs may form functional groups, as 
proxy for biochemical pathways, with transcription potentially being 
promoted by similar processes. These analyses were performed using 
the “LinearAlgebra” and “Clustering” v.0.13.5 packages in Julia v.1.5.3 
(Bezanson et al., 2017). Additionally, we performed a k-means clus-
tering analysis on the raw RDE category data to identify clusters of 
genes that have similar drivers of expression and presumably function 
in similar response pathways. To determine the most appropriate k for 
clustering, k-means analyses were performed with k values ranging 
from three to 20 assessed by silhouette analysis using the “Clustering” 
package in Julia. The silhouette analysis aims to assess the cohesion 
of points within clusters and the separation of points from different 
clusters. This allows for the identification of the ideal number of clus-
ters, k, by determining the k value that produces clusters with high 
cohesion and separation. Given that these RDEs play important roles 
in controlling expression, identifying clusters of AQPs based on the 
RDEs in principal component space (PC-space) will allow us to poten-
tially identify important drivers of the expression of these genes.

3  | RESULTS

3.1 | Draft genome assembly

In total, 3.33 million scaffolds containing3.82 million contigs were 
assembled. Contigs covered 97.87% of the total length of the scaf-
folds. These comprise 4.50  Gbp and 4.41  Gbp, for scaffolds and 

http://www.cbs.dtu.dk/services/TMHMM/
https://github.com/aemelton/DraftGenomeMineR
https://github.com/aemelton/DraftGenomeMineR
http://www.sbg.bio.ic.ac.uk/%7Ephyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/%7Ephyre2/html/page.cgi?id=index
https://mafft.cbrc.jp/alignment/server/
https://www.dna.affrc.go.jp/PLACE/?action=newplace
https://github.com/aemelton/DraftGenomeMineR
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contigs, respectively, covering the entirety of the haploid genome 
(1C = 2.98 Gbp; Richardson et al., 2012). The N50 for all scaffolds 
and contigs were 324,094 and 409,868, respectively. The L50 for 
scaffolds and contigs were 3.5 and 2.6 kbp, respectively. Fifty-nine 
scaffolds and 191 contigs greater than 50  kbp were assembled. 
BUSCO predicted 100 (39.2% of orthologues in database) and 1035 
(44.5% of orthologues in database) complete orthologous genes 
from the eukaryote and eudicot databases, respectively. Eighty-five 
(33.3% of orthologues in database) and 844 (36.3% of orthologues 
in database) orthologues were missing from the draft genome for the 
eukaryote and eudicot databases, respectively.

3.2 | Identification and validation of 
Aquaporin genes

Eighty-three scaffolds were identified as containing a total of 84 pu-
tative AQP genes. Of these, 50 scaffolds were predicted to contain 
fully assembled AQP sequences. Scaffold number 128070 contained 
two tandem, fully assembled putative AQP genes. Thus, a total of 
51 AQPs were considered in downstream analyses (Table S1; File S1 
contains scaffolds from which the AQP genes were extracted). Of 
these AQP genes, 11 were identified as NIPs, 21 as PIPs, three as SIPs, 
and 16 as TIPs based on BLASTP searches. Gene length ranged from 
888 to 1658 nucleotides for the 51 AQP genes and included two to 
five predicted exons. Six variants of the NPA motif were found: NPA, 
NPS, NPV, NPT, PPA, and FPA. Relevant gene data (i.e., gene length, 
predicted exon number, and NPA motifs) are listed in Table S1.

3.3 | Predicting secondary and tertiary 
protein structures

A total of 19 putative AQP genes met criteria for Phyre2 analy-
ses. All genes were validated as members of the AQP gene family. 

Identification of TIP proteins using the Phyre2 database suggested 
these unidentified TIPs belong to the TIP2-1 group. Phyre2 predicted 
that the greatest effects of mutations would occur at the NPA mo-
tifs. Mutations expected to affect function were identified in two 
NIP5-1 proteins, which have NPS and NPV motifs (Table S1).

3.4 | Phylogenetic reconstruction

Phylogenetic reconstructions of AQP amino acid sequences from 
Artemisia tridentata subsp. tridentata (51 protein sequences), 
A.  annua (19 protein sequences), and Arabidopsis thaliana (35 pro-
teins sequences) recovered four clades, each comprising a given 
subfamily (Figure 1; File S2 contains aligned amino acid sequences 
used in this analysis). One exception was the Artemisia annua gene 
PWA34518_1. While originally identified as NIP5-1 by BLASTP analy-
sis, PWA34518_1 formed a clade with members of the SIP subfamily. 
Several other A. annua AQPs that were not identified to the subfam-
ily level were found to be members of the TIP subfamily within the 
phylogeny. Phylogenetic reconstructions for AQP genes revealed 
several potential duplication events for AQPs within Artemisia tri-
dentata subsp. tridentata. These putative duplications were particu-
larly common in the PIP and TIP subfamilies, with PIP1-3, PIP1-4, 
PIP2-2, PIP2-4, TIP, and TIP2-1 comprising multiple copies (Figure 1). 
Genes identified as TIP genes for Artemisia tridentata subsp. triden-
tata formed a clade with the TIP2-2 and TIP2-3 genes of Arabidopsis 
thaliana, suggesting these unidentified TIPs are TIP2  genes. TIP2-
1 genes formed a distinct clade sister to the clade containing TIP2-2 
and TIP2-3 genes. Therefore, the TIP genes are most likely TIP2-2 or 
TIP2-3 homologs (Figure 1). Phylogenetic analysis revealed that a PIP 
gene identified via BLAST as a PIP2-1 gene is actually a PIP2-4, as it 
forms a clade with the PIP2-4 and not PIP2-1 genes. The Artemisia 
tridentata subsp. tridentata NIP1-1  gene has also experienced nu-
merous putative duplication events, comprising five AQP genes. 
(Figure 1; Table S1).

F I G U R E  1   Midpoint rooted phylogeny 
of AQP genes from Arabidopsis, Artemisia 
annua, and Artemisia tridentata subsp. 
tridentata. Several genes previously 
identified as TIP genes in Artemisia annua 
via other methods formed a clade with 
the NIP genes, indicating these were 
previously misidentified and belong to the 
NIP subfamily
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3.5 | Promoter anal–ysis

Of the 51 AQP genes retained for further analysis, 29 were on 
scaffolds with at least 1.5  kbp upstream sequence to be included 
in promoter analyses (File S3 contains sequences extracted for this 
analysis). In total, 224 RDEs were identified across all upstream 
sequences. Light, ABA, and stress hormones, including cytokinin 
and auxin, were the most represented categories, with 420, 189, 
and 157 occurrences of classified RDEs in total across all scaffolds, 
respectively. The RDE “CACTFTPPCA1” was the most prominent 
RDE among these genes, with a total of 636 occurrences. Other 
highly prominent RDEs include the following: DOFCOREZM (593), 
CAATBOX1 (515), ARR1AT (423), and GATABOX (373).

Most RDEs play roles in tissue-specific expression, particularly 
in the aerial tissue. The most prominent RDE, CACTFTPPCA1, pro-
motes expression in leaf mesophyll. Some RDEs identified target 
expression in roots: NTBBF1ARROLB (56), OSE1ROOTNODULE 
(43), OSE2ROOTNODULE (105), and ROOTMOTIFTAPOX1 (263). 
These root-specifying promoter elements were most prominent in 
the upstream regions of several NIP and PIP genes, particularly NIP2-
1, PIP1-3, PIP1-4, and PIP2-4. One TIP gene was also found to be 
enriched for ROOTMOTIFTAPOX1.

Results of the Kruskal–Wallis and Dunn tests show that light cat-
egory RDEs are statistically significantly enriched relative to all other 
categories (p-values = .0002 and 0 for ABA and all other categories, 
respectively). ABA category RDEs were statistically significantly 
greater than all categories except light (p-value = .0002) and stress 
hormone (nonstatistically significant difference), with p-values of 
0.0006 for growth, 0.0010 for other stress, and 0 for temperature 
and water stress. Growth category RDEs occurred statistically sig-
nificantly less than light (p-value = 0), ABA (p-value = .0006), stress 
hormone (p-value  =  .0114), temperature (p-value  =  .0097), and 
water stress (p-value  =  .0040) category RDEs. Other stress cate-
gory RDEs occurred statistically significantly more than temperature 
(p-value = .0061) and water stress (p-value = .0024) category RDEs, 
and statistically significantly less than those of light, ABA, and stress 
hormone (p-value  =  .0174) category RDEs. Stress hormone cate-
gory RDEs occurred statically significantly more than temperature 
stress (p-value = 0) and water stress (p-value = 0) category RDEs. 
Temperature stress category RDEs did not occur statistically signifi-
cantly more than RDEs of any other category.

Silhouette analysis results suggested a k of three was most ap-
propriate to describe the clustering of gene promoter sequences in 
PC-space. Clustering in PC-space was not related to the AQP phy-
logeny; at least one member of each subfamily was present in each 
of the three clusters, with members of each gene group also being 
spread out in PC-space and clusters.

SVD of RDE categories (Figure 2) showed that light has the great-
est influence on AQP expression (PC1  =  72% variation explained), 
while a combination of ABA and water stress were the secondary 
drivers of AQP expression (PC2  =  7.5% of variation explained). PIP 
genes were most greatly influenced by PC1, primarily light category 
RDEs, while TIPs were primarily driven by PC2, which included ABA 
and water stress category RDEs. NIP gene RDEs occupied an area 

of PC-space, which was influenced by both PC1 and PC2. The most 
highly represented genes, PIP1-3 and TIP2-1, each show at least one 
copy greatly diverging in PC-space (Figure 2). Several copies of each of 
these two genes also occupy an area of PC-space that indicates their 
expression is largely driven by ABA, water, and temperature stresses.

Assessing RDE enrichment per AQP gene in a phylogenetic 
context revealed that putative AQP paralogues have experienced 
some degree of differentiation (Figure 3). For example, the two PIP1-
4 genes included in promoter analyses differ in their enrichment for 
ABA, temperature stress, and growth categories. The PIP2-4 clade 
exhibits clear differentiation in their enrichment of RDE in all cate-
gories except water stress and stress hormones. PIP1-3 RDEs have 
primarily differentiated in the light and ABA categories. TIP2-1 genes 
have experience clear differentiation of RDEs in all categories except 
the stress hormone category.

4  | DISCUSSION

4.1 | Providing a draft genome to investigate 
drought tolerance

A first draft genome for Artemisia tridentata, a keystone species of 
western North America, was successfully assembled for use in ge-
nome mining and drought adaptation research. The individual used 
for this study was previously estimated to have a diploid genome size 
of 5.95 Gbp (6.09 pg; Richardson et al., 2012). Our draft genome as-
sembly is at least four times that of Artemisia annua (1.38–1.78 Gb; 
Liu et al., 2018; Shen et al., 2018), while maintaining the same number 
of chromosomes (2n = 2x = 18). Draft genome assemblies for both 
species represent essentially complete haploid genomes (Shen et al., 
2018). The draft genome assembled for A. tridentata subsp. tridentata 
was assembled without filtering of homologous scaffolds or assem-
bling haploid genome sets. This does not affect the results of the 
analyses described here, as no homologous scaffolds containing AQPs 
were found. The BUSCO analysis demonstrated that this genome as-
sembly was of sufficient quality to be mined for genes, as nearly two-
thirds of eudicot orthologues (63.7%) were partially or fully recovered. 
While sufficient for gene mining, genes were undoubtedly missed in 
our analyses due to the incontiguous nature of the draft assembly.

The methods described in this study provide a clear method-
ological pathway to validate genes within draft genome assemblies. 
While not all the 84 putative AQP genes were fully assembled within 
scaffolds and were thus excluded from downstream analyses, we 
were able to validate to a high degree the identity of 51 of the fully 
assembled putative AQPs. Given the results of the BUSCO analysis, 
it is likely that around 30% of AQP genes in the genome are left 
to be discovered. Our combination of BLAST, phylogenetic recon-
struction, and prediction of tertiary structure allowed for high con-
fidence validation of many of the putative Artemisia tridentata subsp. 
tridentata AQP genes (Figure 1; Table S1). While not all genes were 
validated using all methods, we can still be confident that they fall 
within the AQP gene family. Many of these genes were validated to 
at least subfamily and clade level (e.g., PIP1-1; Table S1).
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4.2 | Enrichment of AQPs in a drought-
tolerant species

Our results indicate that the genome of drought-tolerant Artemisia 
tridentata subsp. tridentata has at least 51 AQPs (Table S1). This 
number of AQPs is relatively high when compared to other spe-
cies. Based on genome-wide identification, Deshmukh et al. (2016) 
reported the number of AQPs in 31  species, ranging from 23 in 
the moss Physcomitrella patens to 72 in Glycine max (soybeans). 
Within the list presented in this review (Deshmukh et al., 2016), 
only four species have more AQPs than A. tridentata subsp. triden-
tata. Notably, this species has a much higher number of AQPs than 
its congener A. annua, which has 19 AQPs. This difference in gene 
enrichment could be due to whole-genome duplication followed 
by diploidization and adaptation to more arid climates of western 
North America. The average genome size of Artemisia species in 
the North American group of the Tridentatae subgenus is approxi-
mately twice that of other Artemisia species (Garcia et al., 2008; 
Pellicer et al., 2010). The North American group of Artemisia sub-
genus Tridendatae likely diverged from the Asian clade approxi-
mately 10.8  mya (± 1.5  my; Sanz et al., 2011) after a vicariance 
event from Asia to North America via the Bering Land bridge. 
Given the divergence times, difference in genome sizes, and dif-
ferent climatic regimes occupied by the two species (Figure S1 
highlights the difference in occupied climatic niches of these two 
species), it is likely that genomic processes, such as polyploidiza-
tion followed by diploidization, and adaptation to a drought-prone 

and arid environment have driven the evolution of the AQP gene 
family in the genome of A. tridentata subsp. tridentata.

The PIP and TIP subfamilies were the most enriched in the 
Artemisia tridentata subsp. tridentata genome, relative to the A. 
annua genome. Putative duplications of AQPs within the Artemisia 
tridentata subsp. tridentata genome seem to largely fall within the 
PIP and TIP subfamilies (Figure 1). These two subfamilies are the pri-
mary AQPs that function in water transport across the plasmalemma 
and tonoplast (Bienert et al., 2018; Siefritz et al., 2002; Song et al., 
2016). The PIPs and TIPs identified in the Artemisia tridentata subsp. 
tridentata genome almost exclusively have NPA motifs, though one 
FPA and five PPA motifs were identified in proteins of the PIP sub-
family (PIP1-3, PIP2-1, PIP2-2; Table S1). The NPA to PPA mutation 
has been reported in Linum usitatissimum, though otherwise appears 
to be a rare change (Shivaraj et al., 2017). The conservation of these 
motifs is essential for the movement of water across membranes, 
as modifications of the NPA motifs lead to changes in the specific-
ity, including nitrogenous compounds transported by NIPs. The as-
paragine residue in the NPA is highly conserved, as it provides helix 
cap stability and functions in cation exclusion (Wree et al., 2011). 
Therefore, it is likely that the AQPs with FPA and PPA motifs have 
experienced some degree of functional differentiation, though these 
have not been assessed. NIP5-1 contains NPS and NPV motifs that 
would likely alter the function of the gene, per Phyre2 analysis. 
While these are deviations from the typical NPA motif, AQP genes 
with variations of the NPA motif and confirmed function in water 
transport have been identified in other organisms (Ishibashi, 2006).

F I G U R E  2   Result of SVD for RDE 
categories across AQP genes. Three 
distinct clusters were identified in the 
silhouette analysis, each enclosed in 
a convex hull. Each cluster consists of 
genes from multiple AQP subfamilies 
(NIP, purple; PIP, green; and TIP, red). PC1 
explained 75% of variance, while PC2 
explained 7.5% of variance
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4.3 | Light drives AQP expression

The most enriched RDE category presented here was “light,” occur-
ring statistically significantly more than RDEs of any other category, 
with the GATABOX element being the most common. This RDE func-
tions in chlorophyll a/b binding in aerial tissue. The observation of 
light-responsive elements in Artemisia tridentata subsp. tridentata 

AQPs is consistent with several studies that have reported upregula-
tion of AQPs in response to light (Baaziz et al., 2012; Cochard et al., 
2007; Lopez et al., 2013). Moreover, these increases in AQPs expres-
sion were correlated to increases in leaf hydraulic conductivity, pre-
sumably adjusting water supply to transpirational demand (Baaziz 
et al., 2012; Lopez et al., 2013). However, light effects on aquaporin 
expression and leaf hydraulic conductivity vary between species. For 

F I G U R E  3   Heatmap of RDE categories per scaffold along with phylogenetic context for each gene. The value within each cell is equal 
to the number of occurrences of RDEs for a given category within the promoter sequences of each gene. Per Kruskal–Wallis and Dunn test 
results, the light category of RDEs was significantly enriched relative to all other categories. ABA category RDEs were significantly enriched 
relative to all other categories except light. Temperature category RDEs were the least prevalent and did not occur significantly more than 
those of other categories
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example, Juglans regia showed a fourfold increase in hydraulic conduc-
tivity with light, while the increase was minimal upon illumination of 
Salix alba and Quercus rubra (Baaziz et al., 2012; Rockwell et al., 2011). 
Given the large complement of AQPs with light-responsive elements 
in Artemisia tridentata subsp. tridentata (Figure 3), it would be inter-
esting to determine how its hydraulic conductivity response to light 
compares to that of other species. ABA-responsive elements and the 
MYCCONSENSUSAT RDE were also highly enriched. The latter has 
functions in both cold responses associated with CBF/DREB1 genes 
and drought responses associated with dehydration-responsive gene, 
rd22, genes (Liu et al., 2015). This is likely an important promoter ele-
ment for Artemisia tridentata subsp. tridentata, which experiences long 
periods of drought during the summer, and cold to freezing tempera-
tures during the winter (Kolb & Sperry, 1999; Lambrecht et al., 2007).

The presence of many tissue-specific RDEs indicates that many 
of the identified AQPs are expressed primarily in aerial tissues. Since 
many RDEs in these AQPs have roles in light response, their expres-
sion in these tissues would be expected. Also, the RDE analysis sug-
gests special expression in the leaf mesophyll, a tissue enriched in 
chloroplasts where photosynthesis occurs. Artemisia tridentata has a 
compact mesophyll, with air spaces mainly limited to the substoma-
tal cavity (Downs & Black, 1999). Tight packing of cells may increase 
the proportion of transcellular water transport over the apoplastic 
pathway (Maurel & Prado, 2017). Under this scenario, high AQP ex-
pression in the mesophyll and other leaf parenchyma cells may be 
particularly important for regulating leaf water balance. Apart from 
water, AQPs in the mesophyll may facilitate the movement of other 
molecules across membranes, including CO2, which could contribute 
to increase mesophyll conductance to this gas during photosynthesis 
(Carriquí et al., 2019; Flexas, Bota, et al., 2006; Flexas, Ribas-Carbó, 
et al., 2006; Singh et al., 2020). Overall, the presence of leaf-specific 
RDE in several of the identified PIPs and TIPs are congruent with ob-
servations made in other species showing high expression of these 
subfamilies in leaves (Heinen et al., 2009). We also found some PIPs 
and NIPs with promoter elements indicative of root localization. 
Unfortunately, no SIP genes had sufficient upstream sequence to 
meet criteria for inclusion in promoter analyses.

4.4 | Differentiation of the drivers of 
AQP expression

Comparative analyses provided evidence for RDE content differ-
entiation among homologs of some AQP genes, particularly PIP1-3 
and TIP2-1. These genes are most highly represented in the RDE 
analyses, with four copies each, and each had at least one copy that 
took on novel functions relative to the other copies. Copies of these 
genes, and genes with multiple copies, do not occupy the same PC-
space as members of their homologs (Figure 2). In some cases, a copy 
of a gene may occupy quite distant space from other gene copies. 
This indicates that promoter sequence differentiation, to varying 
degrees, has occurred in these genes. Given the results of SVD and 
phylogenetic comparisons, the PIP1-3 and TIP2-1 genes appear to be 

strong candidates for future research as drought tolerance genes in 
A. tridentata subsp. tridentata. Both genes occur in multiple copies 
within the genome, and they have experienced RDE category dif-
ferentiation (Figures 1–3). These genes also have copies that have 
diverged in promoter sequences to likely play a greater role in ABA 
and drought stress pathways (Figure 2). So, while these genes may 
share similar amino acid sequences with their respective homologs, 
they do exhibit differentiation RDE composition, suggesting differ-
ences in biological pathways that would drive their expression.

4.5 | Perspectives

Overall, this research provides genomic resources and valuable hy-
potheses for further work on Artemisia tridentata subsp. tridentata. 
While our methods do not replace larger G2P experiments, they do 
offer a more rapid and cheaper method to acquire and analyze data 
that will generate testable G2P hypotheses, which can lead to more 
focused and efficient experiments. We will be able to test such hy-
potheses thanks to the development of a novel in vitro method 
of propagation developed specifically for A-  tridentata subsp. tri-
dentata (Barron et al., 2020). We are currently in the process of 
generating several individual lines, which will be used in generat-
ing more higher quality draft genomes, assembling a phased diploid 
genome for this taxon, and to conduct genotype-by-environment 
experiments.

5  | CONCLUSIONS

We see clear evidence that the genome of the drought-tolerant 
taxon, Artemisia tridentata subsp. tridentata, contains far more AQP 
genes, particularly PIPs and TIPs, than the genome of a nondrought-
tolerant congeneric species, A.  annua. This is likely due to in situ 
processes within the genomes of Artemisia tridentata and the North 
American Artemisia clade. This research has also led to important hy-
potheses generation for future research, particularly that PIP1-3 and 
TIP2-1 genes could potentially confer increased drought adaptation 
in this foundational, keystone species.
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