Environmental Science and Pollution Research (2023) 30:25119-25140
https://doi.org/10.1007/5s11356-021-17273-0

CHALLENGES IN MANAGING AND RISK ASSESSMENT OF EMERGING q
ENVIRONMENTAL POLLUTANTS Check for

updates

Comprehensive insight into triclosan—from widespread occurrence
to health outcomes

Maja Milanovi¢' @ - Larisa Duri¢' - Natasa Milosevi¢' - Natasa Mili¢'

Received: 17 May 2021/ Accepted: 25 October 2021 / Published online: 6 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to
endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could
be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and
antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan
in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even ground-
water. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of
triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs
thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and
the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic
organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that
further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full
commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan
good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of
exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.

Keywords Triclosan - Antimicrobial agent - Personal care product - Endocrine disrupting chemical - Emerging
environmental pollutant - Environmental pollution - Adverse health effects

Introduction

Humans are exposed to the vast range of chemicals in every-
day life, and the major issue nowadays presents substances
that could interfere with endocrine system through alteration
of receptor expression and/or hormone synthesis, metabo-
lism, transport, distribution and clearance (Milanovi¢ et al.
2016; Gao et al. 2021; La Merrill et al. 2020). Endocrine
disrupting chemicals (EDCs) are defined as ‘an exogenous
substance or mixture that alters function(s) of the endocrine
system and consequently causes adverse health effects in an
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intact organism, or its progeny, or (sub)populations’ (Euro-
pean Commission 2020).

EDCs are all around us, in food, food contact materi-
als, textile, electronics, plastic, medical devices, cosmetics,
personal care products, etc. Although the impact of chronic
EDC exposure on human health represents relatively new
toxicological and eco-toxicological issue, the concerns of
the various scientific institutions and regulatory bodies
worldwide are rapidly growing. The reasons are reflected in
the increased trends of endocrine-related diseases and their
evidence-based association with EDCs (Mili¢ et al. 2015;
Milosevic et al. 2017, 2018, 2020; Milanovié et al. 2020).
However, EDCs are a heterogeneous set of chemical com-
pounds, and the information about the relationship between
exposure to an EDC and a certain disorder are mostly incom-
plete. Consequently, there are still inconsistencies in the
regulation of EDCs.
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Fig. 1 Sources and pathways of
human exposure to triclosan
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Triclosan (TCS, 5-chloro-2-(2,4-dichlorophenoxy) phe-
nol) is a synthetic, multi-purpose antimicrobial agent which
could be found as an ingredient in mouthwashes, tooth-
pastes, soaps, disinfectants, deodorants, clothing textiles,
furniture and other materials (Dhillon et al. 2015). TCS in
commercial products could also be named Irgasan (Lee et al.
2019). It has been estimated that 1500 tons of TCS is glob-
ally produced per year, and 132 million liters of TCS-con-
taining products are used annually only in the USA (Althili
and Lee 2019). Probably, the production rates have changed
since the outbreak of coronavirus disease 2019 (COVID-19)
due to the high demand for disinfection (Chu et al. 2020;
Ejtahed et al. 2020; Usman et al. 2020).

Halogenated biphenyl ether structure of TCS is stable
to hydrolysis (in the pH range 4-9) and is related to other
EDC:s such as bisphenol A (BPA) and dioxins (Montaseri
and Forbes 2016). The US National Institute of Environmen-
tal Health Sciences (NIEHS) and Environmental Protection
Agency (EPA) declare TCS as an EDC (NIEHS 2020), while
according to the European Food Safety Authority (EFSA)
and European Chemical Agency (ECHA), it is still under
assessment as EDCs (ECHA 2020). The environmental and
human toxicology data about TCS suggest the acute toxic-
ity to aquatic organisms and potential human carcinogenic-
ity, mild genotoxicity, endocrine disruption and induction
of antimicrobial resistance (Huang et al. 2014a; Li 2021).
However, the adequate regulatory evaluation of TCS usage
and exposure limits are still incomplete.

The TCS use in the over-the-counter antiseptic wash prod-
ucts (liquid, foam, soaps and body washes) has been banned by
the United States Food and Drug Administration (FDA) since
2016. However, the hand sanitizers, wipes and other TCS-con-
taining products are not yet regulated by FDA (FDA 2016).
On the contrary, the use of TCS as biocide as well as in food
contact materials has been banned in the European Union,
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while its application in personal care products is still allowed
(European Commission 2020). According to the European
Commission as well as the national standards set by Canada,
the USA and China, the maximum allowed TCS concentration
in soaps, deodorants and mouth products should not exceed
0.3% (w/w) (Wang and Liang 2021). Japan decided to decrease
the allowable TCS limits in cosmetic products (0.1%), while
there is still no rule in Norway regarding TCS maximum
allowable concentration (Cosmetic Ingredient Review (CIR)
2010). Besides the differences in regulations of some cases, it
presents a real challenge to ensure compliance and additional
efforts that could be required. Today, disinfectants and antisep-
tic wash products are essential in the control and prevention of
devastating spread of SARS-CoV-2 virus (Dhama et al. 2021).
However, the excessive use and disposal of TCS containing
disinfectants and antiseptics raise concerns to the negative
effects on the human health and the environment (Mukherjee
et al. 2021). Therefore, further efforts regarding the monitor-
ing of possible related TCS health effects and safety precau-
tion measures are necessary in order to achieve not only the
harmonization of the global legislation regarding TCS but also
the long-term health and environmental benefits.

This paper aims to provide an overview of the potential
sources of TCS exposure with the detected concentrations in
the environment and biological matrices, methods of analy-
ses and its removal. The special attention is paid to the TCS-
associated risk to human health.

Sources of TCS exposure

Possible sources of human exposure to triclosan are presented
in Fig. 1. Over 80% of TCS usage is contributed to cosmetics,
various personal care products and household cleaning prod-
ucts which contain mostly between 0.1 and 0.3% of TCS (Gao
et al. 2018). However, TCS-containing personal care products
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are recognized as the primary source of TCS, although the
maximum allowed concentration of TCS in different products
varies worldwide. Besides toothpastes, antibacterial and deo-
dorant soaps, dishwashing liquids and antiperspirants/deodor-
ants, TCS is found in a wide range of consumer products as a
material preservative (kitchen utensils, toys, clothes, fabrics,
etc.) (Dhillon et al. 2015; Zhu et al. 2020).

Based on the TCS exposure study conducted in Korea,
the systemic exposure dosage (SED) was 0.4952 pmol/kg of
body weight per day depending on the sum of representative
cosmetic and oral care products. If only the rinse-off cosmet-
ics, deodorants, color cosmetics as well as oral care products
were considered, SED would be 0.1635 pmol/kg of body
weight per day (Lee et al. 2019; Park et al. 2019). According
to the Scientific Committee on Consumer Safety (SCCS) no-
observed-adverse-effect level (NOAEL) of TCS is 41.44 pmol/
kg of body weight per day based on the established chronic
hematoxicity and the decreased spleen mass in rats, whereas
exposure to TCS through inhalation was not considered. How-
ever, EPA calculated NOAEL remained almost three times
higher, 103.61 pmol/kg of body weight (Scientific Committee
on Consumer Safety (SCCS) 2011).

Besides the direct use of TCS products, the exposure to
TCS via air, surface water, drinking water and soil is also pos-
sible and could lead to the long-term exposure to TCS. It has
been estimated that more than a half of the amount of the total
TCS consumed is directly discharged into the environment
(Huang et al. 2014a).

Occurrence of TCS in different environmental
matrices

Air

Considering the low volatility of TCS, the TCS mass dis-
tribution in air is less than 1%, and it is believed that air is
the least migration pathway for TCS (Zhang et al. 2021).
Therefore, the limited number of studies has been available
in the literature up to now. Regarding the frequent usage
of TCS as a material preservative, it was detected in 100%
of the indoor dust samples (Zhu et al. 2020). Interestingly,
based on the study conducted in France, TCS concentra-
tions varied between the observed locations (house, apart-
ment, day nursery and office), and the office was identified as
the most contaminated site (0.794 pmol/m3) (Laborie et al.
2016). The TCS was also measured in 100% of indoor dust
from Beijing at the levels up to 4075.4 nmol/kg (Wang et al.
2021). However, TCS was found in much lower concentra-
tions (up to 759.8 nmol/kg) in indoor dust samples in Bel-
gium (Geens et al. 2009a).

In the recently published study, the positive correlations
were found between urinary TCS levels and indoor dust

samples (Zhang et al. 2021). Based on the paired human
urine and indoor dust samples, the addition of indoor dust
ingestion to the total TCS exposure was minor (Zhang et al.
2021; Wang et al. 2021). However, the obtained findings
imply that indoor dust is also an important source of human
exposure to TCS.

Occurrence and removal of TCS from wastewater

TCS-containing personal care products are recognized as
the primary source of TCS in wastewater. It is supposed
that TCS reaches surface water, ground water, soil and
ultimately drinking water via municipal and industrial
wastewater effluent, due to the incomplete removal and/
or lack of wastewater treatment plants (WWTPs) (Huang
et al. 2014a).

Although, the highest TCS concentration was meas-
ured in raw wastewater in the USA (297.7 nM), TCS was
detected at high level in both raw and treated wastewater in
South Africa (60.8 nM versus 44.9 nM, Table 1) (Kumar
et al. 2010; Lehutso et al. 2017). The available wastewa-
ter treatment technologies vary among the countries, and
the differences are more pronounced between developing
and developed countries. Advanced treatment methods are
relatively scarce in the developing world (Wee et al. 2020).
Some cities, even in Europe, are still without an urban waste
water treatment plant (Milanovié et al. 2016).

The increased TCS concentrations in influent were fol-
lowed with the decreased in effluent in Australia (Ying and
Kookana 2007), Thailand (Juksu et al. 2019) and UK (Petrie
et al. 2016) (Table 1). The TCS removal from wastewater
depends strongly on its physicochemical properties (Lee
2015). The lipophilic character of TCS is related to the high
sorption potential. TCS is mostly removed via biodegrada-
tion or adsorption, and WWTP removal efficiency could be
up to 99% (Olaniyan et al. 2016). Some of the commonly
applied biological treatment methods are activated sludge
process, trickling filters, oxidation ditches and rotating bio-
logical contactors (Jagini et al. 2019). It was observed that
the removal efficiency was more than three times higher dur-
ing the aerobic conditions compared with anaerobic (97%
versus 30%) (Gangadharan et al. 2012). Additionally, the
removal efficiency could be affected by temperature, pH
value as well as by the lipid, protein and carbohydrate con-
tents (Winkler et al. 2007).

Activated carbon, carbon nanotubes, zeolite, clay and the
adsorption with biochar were also tested for the removal
of TCS (Kaur et al. 2018). Additionally, polymeric resins
showed high adsorption of TCS (99%) (Solak et al. 2014),
and among different types of membrane technologies,
ultrafiltration was observed as the highly efficient method
(Sheng et al. 2016). Although the adsorption is efficient (°
80%) in TCS removal, the large quantity of the solid residue
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requires the further treatment (Luo et al. 2019). The efficient
removal from the sludge could be met by trickling filters ("
90%) (Winkler et al. 2007). However, in the sewage sludge,
the microbial activity transforms TCS to methyl triclosan
(MTCS). After biological treatment, MTCS was detected
in wastewater (mean 0.037 nM), treated sludge (mean
0.446 nmol/g) as well as in surface water in the concentra-
tions up to 0.02 nM (Tohidi and Cai 2015; Wang and Kelly
2017).

Nevertheless, the main removal TCS pathway from water
sources is still oxidation. Particularly, photocatalysis is more
appropriate for TCS removal from wastewater (Hippargi
et al. 2021; Kaur et al. 2020). TCS is identified as biode-
gradable, photo-unstable, and chlorine and ozone readily
reactive. Although oxidation techniques (such as chlorina-
tion, ozonation, Fenton processes, photolysis/photocatalysis
and electrochemical oxidation) demonstrated the high TCS
removal efficiency, chlorination and photooxidation can
result in the formation of hazardous compounds (Bedoux
et al. 2012; Luo et al. 2019). Chlorinated TCS derivatives
and dioxins such as 2,8-dichlorodibenzo-P-dioxin (2,8-
DCDD), 2,4-dichlorophenol and 2,4,6-trichlorophenol are
more toxic than the parent TCS (Aranami and Readman
2007; Olaniyan et al. 2016; Reiss et al. 2002). These com-
pounds are associated with serious effects such as genotoxic-
ity, mutagenicity and carcinogenicity (Adithya et al. 2021).
It is worth noting that chlorination triggers the endocrine
disruption and results in 30-fold higher TCS anti-estrogenic
activity (Li 2021). The TCS degradation products seem to
be more persistent with higher bioaccumulation potential,
due to its increased lipophilicity and volatility (Tohidi and
Cai 2015). Considering all the facts mentioned above, the
regular monitoring programs and the comprehensive risk
assessment of TCS and TCS degradation products in the
surface water are needed in order to protect better both envi-
ronment and health.

Surface water

Besides the accomplished advances in WWTPs, the com-
plete removal of TCS is still hard to achieve. Therefore, in
several studies conducted worldwide, TCS was detected in
surface water despite the lipophilic nature and easy absorp-
tion into the sediment and sewage sludge (Table 1).

As a part of the priority list review process within the
Water Frame Directive, the Joint Research Centre conducted
a large survey in 10 countries at 686 sampling sites, and
TCS was quantified in more than 40% inland whole water
samples (in total 5430 analyzed samples) with the maximum
detected concentration of 96.7 nM (Carvalho et al. 2016). It
is worth noting that TCS was prioritized as one of the top ten
specific pollutants among 500 pollutants in the Elbe River
basin (von der Ohe et al. 2011). In Europe, the detected

TCS concentrations in different river bodies significantly
varied from 0.207 nM in Denmark to 0.770 nM in Spain
(Esteban et al. 2014; Matamoros et al. 2012). The measured
concentrations of TCS were significantly higher in India (up
to 17.8 nM), South Africa (up to 3.1 nM) and Canada (3 nM)
compared to Japan (0.107 nM), China (0.227 nM) and the
USA (1.1 nM) (Lalonde et al. 2019; Ma et al. 2018; Madiki-
zela et al. 2014; Nishi et al. 2008; Ramaswamya et al. 2011).

Owing to the bioaccumulation potential (von der Ohe
et al. 2012), TCS presence was detected in sediment and
aquatic organisms such as wild fish plasma, quagga mus-
sels and fish (Bai and Acharya 2019; Das Sarkar et al. 2020;
Juksu et al. 2019; Yao et al. 2019). TCS was even found in
the 30-year-old sediment cores (Singer et al. 2002). Hence,
TCS is proposed as a contaminant that is mainly associated
with the acute and genetic toxicity in the sediment (Chen
et al. 2015).

Based on the reported values given in Table 1, TCS con-
centrations in surface water were several times higher than
the predicted no observed effect concentration (PNEC) of
TCS set by European Commission (0.069 nM). Hence, the
current prioritization methodology of TCS is questionable
due to the growing resistance of the vast groups of bacteria
and the demonstrated TCS toxicity toward different aquatic
organisms at the environmental levels (Khatikarn et al. 2018;
Lydon et al. 2018; Westfall et al. 2019).

Groundwater

Due to the widespread exposure, TCS could be even found
in groundwater samples. Despite the limited number of stud-
ies, TCS levels in groundwater ranged from 0.0001 nM in
Zambia, 0.183 nM in the USA to even 0.235 nM in Spain
(Karnjanapiboonwong et al. 2011; Pintado-Herrera et al.
2014; Sorensen et al. 2015).

Drinking water

Regarding the drinking water samples, TCS was measured in
the USA in the extremely high concentrations up to 2.54 nM
(Perez et al. 2013). TCS was also detected in drinking water
samples in Malaysia (up to 0.034 nM), China (0.05 nM) and
Taiwan (up to 0.356 nM) (Yang et al. 2014; Wee et al. 2020).
In bottled water, TCS was detected with high frequency (in
18 out of 21 samples in China), but in lower concentration
(0.033 nM in bottled water versus 0.05 nM in tap water) (Li
et al. 2010).

Soil
Due to the high lipophilicity, TCS is easily adsorbed into

sewage sludge and can be found in the biosolids and agricul-
tural soils, presenting a high risk for entering the food chain
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via agricultural products. The application of recycled water
for irrigation purposes is also associated with the occur-
rence of TCS in soils (Mendez et al. 2016). Although about
50% of biosolids are land applied in the USA, the available
data about the TCS concentration in soil are still limited.
TCS levels in soil samples, after the application of biosol-
ids, ranged from 0.562 to 3.52 nmol/kg (Cha and Cupples
2009). In another study, TCS was measured in much higher
concentration (331.6-552.6 nmol/kg) after the land applica-
tion of biosolids (Kinney et al. 2008). In sludge, detected
levels of TCS were 3.48 nmol/g in Thailand, whereas in
biosolids 32.05 nmol/g in the USA and even 57.9 nmol/g in
Australia (Cha and Cupples 2009; Juksu et al. 2019; Ying
and Kookana 2007).

The half-life of TCS in aerobic soil was 18 days (Dhillon
et al. 2015), and the bioaccumulation potential of triclosan
was observed in different fruits, root crops, radish, soybean
plants, lettuce and pinto beans (Karnjanapiboonwong.et al.
2011; Calderon-Preciado et al. 2012). TCS was found in
edible parts of onions (up to 1.5 nmol/g) when the plant was
cultivated in irrigated soil with TCS environmental concen-
trations (0-5 nM) (Mendez et al. 2016). In radish almost the
same TCS concentration was obtained as in the cultivated
soil (31.8 umol/kg versus 34.2 umol/kg) (Pannu et al. 2012).
Nevertheless, it was found that biosolid amendment of soils
resulted in the increased persistence, plant accumulation and
overall ecotoxicological risk of TCS (Fu et al. 2016).

TCS pharmacokinetics

Considering the fact that TCS was measured in various types
of environmental compartments, it can be considered as a
ubiquitous pollutant. Hence, oral ingestion can be identi-
fied as the main source of TCS uptake (Lu et al. 2018). The
ingestion of TCS is followed by a rapid gastrointestinal
absorption and median urinary excretion of 54%, within
4 days (Sandborgh-Englund et al. 2006). On the contrary,
after dermal exposure, which is identified as the second main
exposure route, less than 10% of TCS is absorbed (Quecken-
berg et al. 2010). Additionally, TCS can be absorbed through
the oral mucous membrane (Weatherly and Gosse 2017).
Owing to the lipophilic properties, TCS is mainly dis-
tributed in liver and adipose tissue. During the metabolism
mostly performed in liver, more polar TCS metabolites
are formed (Moss et al. 2000). In an in vitro study, using
human and rat liver fractions, it was found that in phase
I, glutathione adducts and aromatic hydroxylation products
were formed followed by sulphation and glucuronidation in
the phase II (Guesmi and Sleno 2020). The cleavage process
resulted in the formation of 2,4-dichlorophenol and 4-chlo-
rocatechol that were detected in rat urine and feces (Fang

@ Springer

et al. 2010). However, TCS can also be directly conjugated
and is mainly excreted in urine as TCS-glucuronide and
TCS-sulphate (Sandborgh-Englund et al. 2006).

Regardless the route of exposure, TCS is primary
excreted via urine, with the elimination half-life around
11 h (Queckenberg et al. 2010; Sandborgh-Englund et al.
2006). Therefore, urinary TCS is predominantly used as a
biomarker of TCS exposure.

Methods of TCS analysis
Extraction methods

The analysis of environmental pollutants at trace and ultra-
trace levels is a complex task and presents a real challenge
(Wise et al. 2006). The protocols for TCS analysis in vari-
ous matrices involve different sample preparation methods
(Table 1). One of the key challenges in the development of
reliable preconcentration step is the hydrophobic nature of
TCS and the fact that TCS is usually present in a complex
mixture with a great number of pollutants and degradation
products.

A rapid and economic enzyme-linked immunosorbent
assay (ELISA) together with the different types of eco-
friendly microextraction techniques has been developed
in recent years for monitoring of TCS exposure such as
air-assisted liquid-liquid microextraction (AALLME),
microextraction by packed sorbent (MEPS), stir bar sorp-
tive extraction (SBSE) and vortex assisted-supramolecular
solvent-based microextraction (VA-SSME) (Ahn et al. 2012;
Gonzélez-Marifio et al. 2011; Mpupa et al. 2017; Rocha
et al. 2019).

However, liquid/liquid extraction (LLE) and solid-phase
extraction (SPE) are still the most popular methods for the
separation and enrichment of TCS before further analysis.
High TCS recoveries at low concentrations can still be met
for surface water, groundwater and even drinking water
(Table 1). LLE involves large quantities of organic solvents
(hexane, dichloromethane, etc.), whereas C18 and HLB car-
tridges are needed for the SPE technique (Gonzalez-Marifio
et al. 2011). Both extraction methods can cause loss of trace-
level analyte due to the multi-step procedure (Arditsoglou
and Voutsa 2008; Gatidou et al. 2007; Li et al. 2010, 2013;
Pirard et al. 2012; Schebb et al. 2011).

To tackle TCS in air and soil samples, pressure liquid
extraction (PLE) and accelerated solvent extraction (ASE)
can be used (Cha and Cupples 2009; Laborie et al. 2016;
Kinney et al. 2008). Ultrasonic extraction and the combina-
tion of microwave-assisted extraction with SPE are reliable
techniques in TCS sediment analysis (Azzouz and Balles-
teros 2016; Juksu et al. 2019; Chen et al. 2020). Soxhlet
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extraction and SPE (QuEChERS) can also be applied for
TCS extraction from biota (Bai and Acharya 2019; Das
Sarkar et al. 2020; Juksu et al. 2019; Yao et al. 2019).

In order to determine the total TCS (free and conjugated)
in urine samples, the incubation with f-glucuronidase and
sulfatase enzymes must be performed, prior to the extrac-
tion process (Moos et al. 2014; Sandborgh-Englund et al.
2006). Again, SPE is mostly used as preconcentration step
prior the further chromatographic analysis. Urine is gener-
ally accepted as the matrix of choice for biomonitoring to the
TCS exposure, while other biological fluids, such as blood,
breast milk and amniotic fluid, are rarely used (Azzouz et al.
2016; Iyer et al. 2018; Shekhar et al. 2017). The cumulative
exposure to TCS could be evaluated by analysis of human
nails (Shi et al. 2013).

Analytical methods

In last decade, owing to the great improvements in instru-
mentalization, the detection of TCS in water samples is even
possible in 10~* nM concentrations (Table 1). Classical
high-performance liquid chromatography (HPLC) coupled
with visible (VIS), ultraviolet (UV) or diode array detector
can be unable to fulfill the required limit of the detection
(LOD) and quantification (LOQ) both in environmental and
biological samples.

Actually, chromatography coupled with mass spectrom-
etry (GC-MS) allows the routine detection of TCS in differ-
ent samples (Table 1). After the extraction, a derivatization
step is required for GC-MS analysis due to the TCS low
volatility. The substances like 2,3,4,5,6-pentafluorobenzyl
bromide, pentafluorobenzoyl chloride (PFBCI), N,O-bis (tri-
methylsilyl) trifluoroacetamide (BSTFA), trimethylchlorosi-
lane (TMCS) and pyridine are commonly used as derivatiza-
tion agents (Azzouz et al. 2016; Gatidou et al. 2007; Geens
et al. 2009b; Provencher et al. 2014).

Liquid chromatography coupled with mass spectrom-
etry (LC-MS) or tandem mass spectrometry (LC-MS/MS)
equipped with C8 or C18 column are commonly applied for
the development of rapid and sensitive analytical methods
(Table 1). Particularly, the tandem MS ensures selective TCS
detection and high sensitivity even at pM level. Considering
the fact that TCS levels in groundwater are expected to be
low, time of flight (TOF-MS) detector can meet fM level
sensitivity (Table 1) (Pintado-Herrera et al. 2014). Although
current analytical method is reliable and sensitive, the over-
all processes are still complex and expensive.

In spite of the significant improvement in the TCS analy-
sis, the development of an appropriate, simple and inexpen-
sive technique to monitor TCS regularly still presents a real
analytical challenge due to the high lipophilicity of TCS,
complexity of matrices and low concentrations.

Possible adverse effects of TCS
In vitro analyses

Bearing in mind the TCS properties, the exposure routes and
ubiquitous occurrence in the environment, several in vitro
toxicity screenings were conducted. The summarized find-
ings are presented in Table 2.

The TCS exposure caused a significant hippocampal
neuronal function damage and was related to the decreased
long-term memory formation (Arias-Cavieres et al. 2018),
while based on murine cardiac skeletal muscle cell experi-
ments TCS led to the dysregulation of excitation—contrac-
tion coupling, which could result in serious complications
such as heart failure and arrhythmias (Cherednichenko et al.
2012).

TCS acts as estrogenic agonist and antagonist based on
the experiments conducted on various breast cancer cells
(Huang et al. 2014b; Henry and Fair 2013). Thus, antagonist
effects of TCS were also observed on glucocorticoid, andro-
genic and thyroid receptors (Kenda et al. 2020). Different
mechanisms of in vitro disruption of thyroid homeostasis
were suggested such as dose-response inhibition of T4 to
T3 conversion (Butt et al. 2011) as well as a non-competitive
inhibition of iodide uptake in rat thyroid follicular cells and
thyroid peroxidase activity in rat microsomes (Wu et al.
2016).

TCS impact on early embryonic development (Kim et al.
2020), particularly on rodent neurons, was recently stud-
ied (Szychowski et al. 2015, 2019; Tran et al. 2020). The
disturbed differentiation and development of various stem
cells were observed (Cheng et al. 2019; Guo et al. 2012;
Park et al. 2016). The observed developmental toxicity
was the consequence of different apoptotic processes. The
mechanisms include morphological and functional changes
of mitochondria with the increased production of reactive
oxygen species (ROS). Oxidative stress was also related to
the human thyroid follicular epithelial cell toxicity (Zhang
et al. 2018) and to the observed effects on primary human
keratinocytes, NIH-3T3 mouse fibroblasts and RBL-2H3
mast cells (Weatherly et al. 2018).

Today, there is a rising concern that the everyday expo-
sure to TCS and related compounds in personal care prod-
ucts potentially increase the risk of cancer incidence. In this
regard, TCS could increase proliferation, migration and
invasion of human prostate cancer cells (Kim et al. 2015),
human lung carcinoma cells (Winitthana et al. 2014) and
both estrogen positive and estrogen negative human breast
cancer cells (Farasani and Darbre 2020; Lee et al. 2014).
Wau et al. (2015) also observed the proliferation of mouse
epidermis-derived cells. These findings are worrying since
the consumption of certain hygiene products leads to the
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Table 2 In vitro triclosan toxicity

Experimental model TCS dose Effects Reference

Hippocampal slices from male rats, 1, 5 and 10 pM | Hippocampal neuronal functions Arias-Cavieres et al. (2018)
hippocampal cell cultures from the
rat embryos

Neural stem cells from Sprague 1 to 50 pM 1 Neurodegenerative effects 1 ROS activa- Park et al. (2016)

Dawley rat embryos

Cortical neurons from mouse
embryos

Mouse neocortical neurons from
fetuses of pregnant female Swiss
mice

Murine cardiac and skeletal muscle
cells

Human liver microsomes

FRTL-5 rat thyroid follicular cells,
rat thyroid microsomes

Nthy-ori 3—1 human thyroid follicu-
lar epithelial cells

GH3.TRE-Luc thyroid-responsive
rat pituitary tumor cells

GH3 rat pituitary somatolacto-
trophic cell line

MCF-7

MCF-7 BOS
MCF-10F, MDA-MB-231
MDA-kb2

AR-EcoScreen hamster ovary cell
line cells, hERa-HelLa-9903

CV-1 African green monkey kidney
cells

Primary human keratinocytes, NIH-
3T3 mouse fibroblasts, RBL-2H3
mast cells

JB6 Cl 41-5a mouse epidermis-
derived cells

Human mesenchymal stem cells

Porcine oocytes

Porcine parthenogenetic embryos

1 nM to 100 pM
0.01 pM and 1 pM

10 pM

0.5, 1 and 10 pM

400 pM (ICs)

21.3 pM (inhibition constant
K,), 165.8 uM (ICs)

10 yM

5and 10 pM
1073,0.1 and 10 uM

0.1 pM
0.1to 10 pM

103t0 1 yM
0.007 to 691 mM
0.1 yM

5and 10 pM

5and 10 pM
107 to 1 pM

11020 pM

0.01 to 100 pM

0.156 to 2.5 pM
1, 10 and 100 pM

50 and 100 pM

tion
1 Apoptosis
1 Apoptosis

| Proliferation

1 Apoptosis

1 Neurotoxicity via NMDAR activation
1 ROS production

1 LDH release

1 Apoptosis

| Excitation—contraction coupling

| T4 to T3 conversion

| Sodium/iodide symporter-mediated
iodide uptake

| Thyroid peroxidase activity

1 Oxidative stress and ROS production

| Viability

1 p38 pathway

Thyroid receptor antagonist

1 CaBP-9 k mRNA and protein estrogenic
activity via ER-dependent pathway

1 Migration and invasion

1 Cell growth via ER-mediated signaling
pathway

1 Cyclin D1 expression

1 p21 expression

Estrogenic effect

Estrogenic and anti-estrogenic

1 Migration and invasion

Glucocorticoid, estrogenic, androgenic,
thyroid receptor antagonist

Androgen receptor antagonist Estrogen
receptor antagonist

Weak estrogenic effect

1 Morphological changes and

| Membrane potential of mitochondria

1 ROS production Endoplasmic reticulum
and mitochondrial Ca®* levels alteration

1 Proliferation

| Adipocyte differentiation

| Meiotic maturation and cumulus cell
expansion

1 Mitochondrial superoxide levels and
mediated apoptosis

| Early embryonic development
1 ROD-related oxidative stress
1 Mitochondrial dysfunction

Szychowski et al. (2015)
Tran et al. (2020)

Szychowski et al. (2019)

Cherednichenko et al. (2012)
Butt et al. (2011)
Wu et al. (2016)

Zhang et al. (2018)

Kenda et al. (2020)
Jung et al. (2012)

Farasani and Darbre (2020)
Lee et al. (2014)

Huang et al. (2014b)
Henry and Fair (2013)
Farasani and Darbre (2020)
Kenda et al. (2020)

Kenda et al. (2020)
Huang et al. (2014b)

Weatherly et al. (2018)

Wu et al. (2015)

Guo et al. (2012)
Park et al. (2020)

Kim et al. (2020)
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Table 2 (continued)

Experimental model TCS dose

Effects

Reference

Mouse embryonic stem cells (ESCs) 1.7 to 138.1 pM—cardiac
differentiation, 0.01 to

8.6 pM—osteogenic dif-

ferentiation
LNCaP 0.01 to 10 pM
NCI-H460 2.5,5and 7.5 pM

| Cardiac and osteogenic differentiation

1 Proliferation and migration

Cheng et al. (2019)

Kim et al. (2015)

1 Growth, migration, invasion and survival Winitthana et al. (2014)
via the epithelial-to-mesenchymal transi-
tion process

chronic daily exposure to TCS through the dermal route.
However, it remains unanswered if the studied effect is rel-
evant to humans (Wu et al. 2015).

In vivo analyses

Some of the toxicity mechanisms of TCS were confirmed
in the in vivo studies on rodents (Table 3). Multiple neu-
rodegenerative TCS effects were determined in mice and
rats, including reduced spatial memory performance, anxi-
ety-related behavior and reduced neuromuscular functions
(Arias-Cavieres et al. 2018; Tabari et al. 2019). Neurobehav-
ioral toxicity was also observed in the mice offspring after
subcutaneous treatment with TCS (Tran et al. 2020).
Additionally, cardiovascular and skeletal muscle toxic-
ity was also confirmed in vivo in mice (Cherednichenko
et al. 2012). Regarding reproductive health, the placenta
might be particularly susceptible to TCS accumulation and
TCS-induced dysregulation of endocrine function (Feng
et al. 2016). Endocrine disrupting properties of TCS were
also examined in various animal models within a wide
range of doses and dosing regimens, which makes the
obtained results difficult to compare. For instance, admin-
istration of TCS in concentration up to 0.345 mmol/kg/day
resulted in a decrease of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) in female mice (Cao
et al. 2018), while at the higher oral dose (0.639 mmol/
kg/day), increased both FSH and LH were measured in
Sprague Dawley rats (Abd-Elhakim et al. 2018). However,
a comparable reduction in thyroid hormones, T3 and T4,
was observed in male Wistar albino rats (Taha et al. 2020),
female Sprague Dawley rats (Abd-Elhakim et al. 2018) and
female mice (Cao et al. 2018). The findings are in agree-
ment with the in vitro data suggesting TCS hypothyroid-
ism-inducing effects (Butt et al. 2011). The parameters of
metabolic disorders, such as increased serum glucose and
lipid levels, as well as morphological and functional liver
changes were measured in TCS-treated rodents (Huang
et al. 2020; Ma et al. 2020; Yang et al. 2015; Yueh et al.
2020). The conducted animal studies revealed that TCS
possessed a certain hormonal activity, especially on female

sex hormones. Furthermore, an endocrine receptor (ER)-
dependent signaling pathway of breast tumor growth in
mice was proposed (Lee et al. 2014).

Considering the antimicrobial activity, TCS was also
associated with the decreased gut microbiota diversity
in treated animals (Yang et al. 2018; Yueh et al. 2020).
Besides this fact, proinflammatory TCS potential was
responsible for the adverse effects noticed on the pulmo-
nary and digestive systems, liver and spleen (Mohammed
et al. 2017; Yang et al. 2018). TCS impact on the immune
system was recently studied by Shane and co-authors
(Shane et al. 2020).

Although animal studies suggest that TCS represents a
hazardous substance for different body systems and bio-
chemical processes, epidemiological studies are needed to
test the hypotheses.

Epidemiological studies

Most of the available epidemiological studies regarding the
adverse effects of TCS are focused on developmental toxic-
ity and involve women, or women-children’s pairs (Table 4).
This is reasonable due to the estrogen-dependent toxicity
pathways observed in vitro and in vivo. In a prospective
cohort study, gestational and childhood TCS concentrations
were positively associated with hyperactivity, attention and
behavior disorders (Jackson-Browne et al. 2019). Moreover,
it was concluded that TCS prenatal exposure might affect
the intelligence and academic performance of children of
the ages 7 and 8 (Jackson-Browne et al. 2020; Tanner et al.
2020). Although ROS activation and apoptosis induction
were observed in vitro in undeveloped neurons (Park et al.
2016), the mechanisms of this neurodevelopmental impair-
ment related to TCS exposure were not clarified. The poten-
tial relationship between TCS exposure and the decreased
cognitive functioning and induced hypothyroidism was sug-
gested (Jackson-Browne et al. 2019), both in the in vivo and
in vitro studies (Butt et al. 2011; Zhang et al. 2018). The
thyroid hormone homeostasis could be particularly vulner-
able to EDCs in pregnancy, and accordingly, an association
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between lower maternal and neonatal thyroid hormones and
maternal urinary TCS levels was also found in a prospective
birth cohort study (Wang et al. 2017).

The increased TCS maternal urinary concentrations, as
indicators of prenatal TCS exposure, were inversely associ-
ated with the anthropometric measures and anogenital dis-
tance in boys, with a borderline statistical significance, but
not in girls waging to the anti-androgenic activity of TCS
(Lassen et al. 2016). Another study, conducted on pregnant
women of the Chinese urban cohort, observed the higher
birth weight of female children, as well as the higher risk for
development of gestation diabetes mellitus (GDM) (Ouyang
et al. 2018). These effects could mainly be attributed to an
increased maternal body mass index (BMI), but without sta-
tistical significance. Besides, insulin resistance and thyroid-
mediated metabolic effects could cause elevated GDM risk
(Ouyang et al. 2018).

On the contrary, Huo and co-authors (2018) found rela-
tively low TCS concentrations in the urine samples of preg-
nant Chinese women, with no consistent associations with
birth outcomes (Huo et al. 2018). No association was found
between impaired glucose metabolism in pregnant women
(Shapiro et al. 2018), nor in a cross-sectional study involv-
ing men and women (Ward et al. 2020). With regard to these
results, it is worth noting that the data regarding the associa-
tion of TCS exposure with metabolic disorders are inconsist-
ent and should be further investigated.

The prevalence of other endocrine-related disorders, spe-
cific to the female population: osteoporosis (tightly related
to thyroid hormones and estrogen activity) and polycys-
tic ovary syndrome (associated with the impaired glucose
metabolism and women infertility) were also found to be
increased in women with elevated TCS urinary levels (Cai
et al. 2019; Ye et al. 2018).

In children, both girls and boys, TCS urinary levels were
associated with allergic sensitization to inhalant allergens
(Bertelsen et al. 2013). However, the molecular basis of this
adverse effect was not investigated despite the high inci-
dence rate of allergic reactions.

Having in mind the widespread exposure to TCS on daily
basis, more epidemiological studies on a large number of
participants of different age and health status are necessary
in order to understand the underlying mechanism and the
health problems associated with TCS.

TCS and COVID-19

The outbreak of COVID-19 disease set an important require-
ment to achieve the highest levels of hygiene, particularly
hand hygiene (Rundle et al. 2020). Therefore, the increased
use of antibacterial soaps and disinfectants during the

COVID-19 pandemic was followed with the increased expo-
sure to TCS (Ejtahed et al. 2020; Usman et al. 2020). The
non-alcohol-based sanitizers usually contain TCS instead
of alcohol as antimicrobial or disinfecting agent (Atolani
et al. 2020). TCS is a broad-spectrum antibacterial agent
with antifungal effects. Interestingly, during the outbreak
of severe acute respiratory syndrome (SARS) in 2003, it
was determined that only 0.05% of TCS ensures ‘at least a
3-log reduction of the virus from the surface without any
virus recovered in any of the wells within a 30-s contact
time’ (Dellanno et al. 2009). Consequently, it was believed
that TCS poses virucidal efficacy also against SARS-CoV-2
strain (Ejtahed et al. 2020).

Full commitment to the principles of personal hygiene
remains a major action for the prevention of transmission of
SARS-CoV-2 virus. Apart from the fact that TCS induces
Staphylococcus aureus and Escherichia coli resistance to
antibiotics, the repeated exposure to TCS can also result in
skin and gut microbiome alterations followed with the devel-
opment of chronic disease (Ejtahed et al. 2020; Subramanya
et al. 2021). In this context, if the harmful compound as TCS
is present in personal care products, compliance with health
recommendations can have negative impact to both human
health and environment.

Conclusion

On the basis of the available literature data, it is high time
to consider TCS as a rapidly growing environmental issue,
especially now during the COVID-19 pandemic when
the high level of sanitation and personal hygiene is con-
stantly required. Despite the TCS antibacterial and antifun-
gal effects as well as suggested virucidal efficacy against
SARS-CoV-2 strain, the alarming results about the negative
consequences of the permanent exposure to low TCS levels
should strengthen the critical revision of current interna-
tional standards regarding TCS and necessitate the establish-
ment of the stricter measures at worldwide scale. However,
the awareness among the policy-makers and stakeholders is
still lacking. Further follow-up studies conducted on a large
number of participants will expand the current knowledge
about the TCS-induced health effects. The reevaluation and
harmonization of current legislation regarding the utilization
of TCS in different products are of high demand together
with the new prioritization methodology which will consider
TCS as a priority substance included in the regular moni-
toring programs worldwide. Both environmental and health
risks associated with TCS cannot be reduced without proper
management and full commitment to adequate legislation
in compliance with the environmental protection in order to
obtain a good ecological status.

@ Springer
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