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ABSTRACT

Hematopoietic stem cell transplant (HSCT) plays a central
role in the treatment of hematologic cancers. With the
increasing survival of patients after HSCT, survivorship
issues experienced by this population have become an
important outcome. Cognitive impairment is an
established sequela of HSCT, with studies to date esta-
blishing its presence, associated risk factors, and clinical
phenotype. There are multiple potential contributors to

cognitive impairment after HSCT. Efforts are ongoing to
further characterize its clinical phenotype, associated
biomarkers, and biologic underpinnings. A fundamental
knowledge of post-HSCT cognitive impairment is of value
for all clinicians who interface with this population, and
further academic efforts are needed to more fully under-
stand the impact of this cancer treatment on brain
health. The Oncologist 2021;26:e2021–e2033

Implications for Practice: As survival outcomes after hematopoietic stem cell transplant (HSCT) improve, an awareness of
the post-treatment challenges faced by this population has become central to its care. HSCT can have a sustained and broad
impact on brain health, causing cognitive dysfunction, fatigue, disturbed mood, and sleep. In affected patients, autonomy,
return to work, relationships, and quality of life may all be affected. A fundamental fluency in this area is important for clini-
cians interfacing with HSCT survivors, facilitating the identification and management of cognitive dysfunction and concur-
rent symptom clusters, and stimulating interest in these sequelae as areas for future clinical research.

INTRODUCTION

Hematopoietic stem cell transplant (HSCT) has revolution-
ized the treatment of hematologic cancers and certain non-
malignant conditions. Through manipulation of the immune
system, HSCT can afford potentially curative treatments to
patients whose conditions were once deemed terminal.
However, the potency of this intervention is not without
consequence. Many of the post-transplant sequelae have
been well characterized, including infectious complications,
autoimmune phenomena, chemotherapy toxicities, and

end-organ dysfunction [1]. An area that has received less
attention to date is the impact of HSCT on brain and cogni-
tive functioning.

Over one third of patients with autologous and alloge-
neic stem cell transplants disagree with the statement “life
has returned to normal” at 2 years after transplant [2], a
time when most of these patients are out of hospital and
off active treatment. Of those alive at 5 years, only 60%
had returned to full-time work [3]. These data suggest
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pervasive functional changes that are sustained beyond the
acute post-transplant period. Changes in neurocognitive
function have been identified as a significant issue among
patients and caregivers after HSCT [4]. Neurocognitive
impairments may also affect survivors’ independence and
sense of personal agency. Improved patient survival out-
comes have increased the importance of long-term survi-
vorship issues, such as cognition, within this population.

Research on cognitive impairment in post-HSCT is in its
infancy, but it is estimated that nearly half of all patients
show some change from baseline cognitive function after
transplant [5]. For this reason, clinical awareness of cogni-
tive impairment among HSCT recipients has been advo-
cated, with recommendation for annual clinical monitoring
of cognitive deficits [6]. It is essential that clinicians caring
for HSCT recipients are aware of potential cognitive changes
associated with treatment, given the potential significance
of their impact. The biologic processes incited by HSCT are
complex, making it challenging to study the underlying neu-
robiological mechanisms of cognitive changes. This narra-
tive review summarizes the current literature surrounding
the nature of cognitive dysfunction after HSCT, potential
contributing factors and associated biomarkers, and ave-
nues for further intervention and research. We first provide
an overview of the HSCT procedure, describe the cognitive
changes and associated risk factors reported in this popula-
tion, explain potential underlying mechanisms of cognitive
changes in HSCT recipients, and discuss clinical implications
including considerations for returning to work and manag-
ing symptoms.

MATERIALS AND METHODS

A narrative review of relevant academic literature was per-
formed by the authors. Levels of evidence were not
assessed prior to inclusion. The review is limited to publi-
shed data; no unpublished data were included.

THE HSCT PROCEDURE

The standard process for HSCT involves a conditioning regi-
men followed by the transplantation. Regimens are of vari-
able intensity and toxicity, with regimens dependent on the
underlying malignancy, patient comorbidities, performance
status, and risk of graft rejection. In autologous transplant
the recipient’s endogenous stem cells are collected and
then reinfused after high-dose chemotherapeutic condition-
ing. In allogeneic transplant the patient’s stem cells are rep-
laced with closely matched donor cells. With the goal of
eradicating marrow cells, myeloablative regimens are gen-
erally characterized as having the greatest potential for tox-
icity (both acute and chronic), whereas nonmyeloablative
regimens are generally chosen for their greater graft-ver-
sus-tumor immune effect. The type of conditioning regimen
and transplant differentially affect the underlying malignant
condition, as well as the patient’s other organ systems.

The transplant procedure and associated hospitalization
renders HSCT recipients vulnerable to a host of medical
complications. An illustration of the transplant period is
provided in Figure 1. Bone marrow transplant–related

complications can be broadly classified into early/acute
(<3 months after HSCT) and late/chronic (>3 months after
HSCT). In the early post-transplant period, hematologic
complications, such as profound cytopenias, can render
patients vulnerable to vascular and infectious complica-
tions, including central nervous system (CNS) infections.
Mucositis and diarrheal illness from infection or acute graft-
versus-host disease (GVHD) can lead to nutritional compro-
mise, and patients may require total parenteral nutrition to
supplement deficiencies from oral intake. Pulmonary, renal,
and hepatic dysfunction also occur at increased frequency,
with many organ toxicities being linked to chemotherapies
used as part of the HSCT regimen. Along with poly-
pharmacy, these multiorgan toxicities contribute to the high
incidence of delirium in this population, which is estimated
at 50% in the month after transplant [7]. GVHD is a com-
mon and significant complication of allogeneic HSCT where
the alloreactive donor T lymphocytes recognize histocom-
patibility antigens on host cells and initiate secondary
inflammatory response.

Chronic issues after HSCT are also well characterized in
the literature. Chronic GVHD and its treatments can be pro-
foundly debilitating for patients and contribute to organ
failure, infection, immune dysregulation, and functional dis-
ability. Acute GVHD is the most important risk factor for
development of chronic GVHD, which is the leading cause
of nonrelapse late mortality in allogeneic HSCT survivors. A
breadth of end organs may be implicated in GVHD, includ-
ing, rarely, the central nervous system [8]. Risk of GVHD
often requires long-term immunosuppression to prevent
graft rejection. End-organ toxicities, including cardiovascu-
lar risks, renal failure, CNS changes, and hepatic toxicity
(to name a few), can thus be chronic. Aside from chronic
GVHD, which is attributed to the cell graft itself,
chronic organ toxicities have also been attributed to che-
motherapy and radiation during HSCT conditioning.

IDENTIFICATION AND CHARACTERIZATION OF COGNITIVE

IMPAIRMENT

Trajectory and Nature of Deficits
Prior to HSCT, it is estimated that up to half of individuals
experience impairment in one or more cognitive domains
[5, 9–15], with deficits in attention, executive function, ver-
bal fluency, verbal learning and memory, graphomotor
speed, and motor functioning identified [11, 15, 16].
Dynamic multidomain impairment has been identified in
the acute post-transplant period. One month after HSCT,
deficits in learning, memory, and motor functioning have
been identified, with nearly half of HSCT recipients experienc-
ing a decline from their pre-HSCT baseline [5].

These acute deficits often evolve into chronic
neurocognitive change. Between 2 and 6 months, declines
in verbal memory, complex attention, graphomotor processing
speed, verbal fluency, and motor functioning have been found
when analyzing populations of both allogeneic and autologous
HSCT recipients [10, 15]. At 3 months after HSCT, Jones and
colleagues (2013) found that almost half of patients in their
53-patient cohort had a clinically significant decline in
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learning, memory, and/or executive function compared with
performance at 1 month [5]. In another cohort of HSCT recipi-
ents evaluated at 6 months after transplant, half had a deficit
in at least one cognitive domain, with greatest impairment
found in psychomotor speed followed by complex executive
functioning [17]. Of note, although many of these studies ana-
lyze autologous and allogeneic HSCT recipients as a collective,
the incidence of cognitive impairment does appear to be dis-
tinct between the groups, with allogeneic recipients having
nearly double the incidence of cognitive impairment in com-
parison with autologous recipients [18].

Longitudinal studies examining the trajectory of cogni-
tive functioning following HSCT have identified domain-
specific deficits. Harder and colleagues (2007) found that at
20 months, those who underwent HSCT exhibited poorer
performance across measures of attention, complex atten-
tion, and verbal memory compared with a disease-specific
reference group [11].

At 36 months, poorer performance in executive func-
tion, verbal speed, processing speed, auditory memory, and
fine motor dexterity for those who underwent full-intensity
allogeneic HSCT compared with healthy controls has been
identified [18].

Conversely, other studies have identified improvements
in function at 12 to 18 months across similar cognitive
domains, including attention, working memory, executive
functioning, graphomotor processing speed, verbal fluency,
and verbal learning and memory, with these improvements
extending out 5 years in one study [11, 15, 16, 19, 20].
Despite these improvements, however, compared with
healthy controls, 35%–40% of allogeneic and approximately
19% of autologous HSCT recipients showed evidence of
global cognitive impairment 3 to 5 years after transplant
[18, 20]. The trend toward improvement over time may be
related in part to an interaction effect between time at
evaluation and cancer diagnosis. For example, one prospec-
tive study found longitudinal improvement in verbal fluency
among patients with chronic myeloid leukemia when com-
paring baseline performance with performance at 12 and
18 months, but this change was not seen in patients
transplanted for myelodysplastic syndrome [21]. This may
suggest that the disease pathology itself plays a role in cog-
nitive dysfunction.

Neuroimaging Biomarkers
Neuroimaging evaluations have been limited in adult-onset
cancers and patients undergoing HSCT thus far. Several
studies have noted white matter abnormalities on magnetic
resonance imaging (MRI) in HSCT recipients [22–28]. In
their study on neurologic and cognitive statuses and brain
MRI in long-term survivors (average 34 months

�26 months) of allogeneic HSCT, Padovan and colleagues
found that two thirds of their subjects (33 in 55, total) had
pathological MRI findings [25]. The MRI scans demonstrated
white matter lesions in 54%, mainly in the frontal, parietal,
or temporal lobes. Among their tested predictors (older age
[>40 years], intrathecal methotrexate, total body irradiation
[TBI], lengthier period since transplant [>25 months], blood
pressure, long-term cyclosporine medication, micro-
angiopathy early after bone marrow transplant, chronic
GVHD evolved from acute GVHD, corticosteroid use, and
marrow donor status), only older age (odds ratio [OR], 4.0;
confidence interval [CI], 1.1–15.3), intrathecal methotrexate
(OR, 1.8; CI, 0.3–10.1), long-term cyclosporine (OR, OR, 2.6;
CI, 0.8–8.1), microangiopathy (OR, 1.7; CI, 0.4–6.4), chronic
GVHD evolved from acute GVHD (OR, 5.3; CI, 1.3–21.4), and
corticosteroid use (OR, 3.1; CI, 0.9–10.6) were associated
with pathological MRI. However, Correa and colleagues con-
ducted two studies of patients receiving chemotherapy and
HSCT with or without TBI. In the first [9], patients who
received high-dose chemotherapy with HSCT demonstrated
a significant decrease in bilateral middle frontal gyrus vol-
ume over time compared with controls. There were no sig-
nificant correlations between brain volumes and cognitive
test performances, making these results difficult to inter-
pret in terms of their clinical meaning.

The follow-up study by Correa et al. involved a subset of
the prior cohort and focused on quantification of white
matter integrity using diffusion tensor imaging [29].
Patients who received HSCT demonstrated significant
decreases in mean and axial diffusivity over time compared
with controls, which was correlated with improved cogni-
tive test scores. However, patients who received allogeneic
HSCT demonstrated regions of higher mean and axial diffu-
sivity and lower fractional anisotropy 1 year after transplant
compared with those who received autologous HSCT. These
findings suggest that compromise to white matter tract
integrity may contribute to cognitive impairment after
transplant.

The literature on structural changes in the brain after
HSCT has collectively included patients with varying under-
lying cancers and disorders, including hematologic malig-
nancy (most common) both with and without CNS
involvement, breast cancers, and nonmalignant hemato-
logic disorders. Despite the modest number of studies, the
breadth of significant findings on neuroimaging across diag-
noses suggest that these structural changes (or, perhaps, a
greater proportion of them) may be due to risk factors
other than the diagnoses themselves. In fact, some studies
found no association between finding on neuroimaging and
underlying disease [25]. Below, we synthesize the literature
on the risk factors already supported by research.

Figure 1. Transplant timeline.
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White matter abnormalities seem to be a consistent
finding thus far in an albeit small body of literature [22–28].
White matter pathways are critical for supporting inte-
grated communication between different specialized infor-
mation processing centers in the brain. White matter
damage has been observed in other cancers as well and
tends to be attributed to chemotherapy and/or radiation
treatments [30, 31]. Lower white matter integrity among
allogeneic HSCT recipients noted in the study by Correa and
colleagues were attributed to differences in chemotherapy
regimens prior to transplant and/or factors associated with
disease biology. Decreased diffusivity in certain brain
regions, which, in general, tends to reflect higher white
matter integrity, could indicate improvement over time in
HSCT recipients, a finding associated with better cognitive
performance. Other brain regions of decreased diffusivity
were correlated with lower cognitive scores. These findings
illustrate an important caveat in neuroimaging research: as
with most biologic processes, more is not always better
with respect to brain structure and function, as has been
illustrated in studies of other cancer types [32, 33].

Additionally, associations between structural brain
changes and neurological status or cognitive impairment
are inconsistent across studies. Pathological findings on
neuroimaging did not always correlate with clinical findings.
Padovan and colleagues found that, although intrathecal
methotrexate was associated with pathological MRI results,
it had no clear effect on clinical status, and although time
since transplant indicated increased cognitive and neurolog-
ical deficits, time had little association with MRI outcomes
[25]. Correa and colleagues, in contrast, found modest cor-
relations among mean diffusivity and cognitive performance
[29].

Neuroimaging studies are costly, limited by contraindica-
tions that many patients with cancer possess (e.g., surgical
implants, anxiety, pain), and can be biased toward patients
who are healthier. The clinical interpretation of neuroimag-
ing findings is often difficult because of, in no small part,
limitations of the behavioral assessments that are used as
clinical correlates. Despite the limitations, neuroimaging
assessments offer unique insights regarding the
neurobiologic mechanisms underlying cognitive impair-
ment. Neuroimaging assessments also tend to be more sen-
sitive measures of outcome compared with many
behavioral tests [34]. Accordingly, neuroimaging metrics
tend to show greater effects of breast cancer and its treat-
ments on brain function compared with neuropsychological
tests, for example [35–37].

Neuroimaging may be useful for predicting cognitive
outcomes after cancer [38, 39] and could be implemented
to identify high-risk patients in order to inform treatment
decision-making or prioritize patients for early interven-
tions/prehabilitation. Specific brain networks corresponding
to gene expression networks [40, 41] show neurotransmit-
ter receptor fingerprints [42] and unique metabolic patterns
[43, 44] that could guide investigations of molecular mecha-
nisms of cognitive impairment and associated treatment
development. Many analogous neuroimaging measures can
be obtained in animal models, which may provide a point
of preclinical translation [45, 46]. Further neuroimaging

research, especially with longitudinal designs, is needed in
HSCT. Guidelines have been published to help improve
standardization of neuroimaging studies of cancer-related
cognitive impairment [47].

RISK FACTORS FOR NEUROCOGNITIVE IMPAIRMENT

AFTER HSCT
Patients with hematologic malignancies, comprising the
majority of patients receiving HSCT, have an increased inci-
dence of baseline cognitive impairment, with 15%–32% of
patients demonstrating pretreatment cognitive impairment
prior to HSCT [48]. Pretreatment impairment is also an
established risk factor for post-HSCT cognitive impairment
[49]. Certain common therapeutics used in many standard
regimens, including methotrexate [29], cytarabine [29],
cyclosporine [28], total body/cranial irradiation [28, 44],
and corticosteroids and immunosuppressants [28, 44], have
been implicated in cognitive changes that occur even
before patients reach HSCT. Various baseline demographic
factors have also been found to increase the likelihood of
developing cognitive changes after HSCT, including age,
minority status, and educational background [5, 49]. These
variables contribute to cognitive reserve [50, 51], affecting
the brain’s resiliency to aging and neurotoxic insults. Of
note, however, many of these studies have heterogeneous
patient populations and small sample sizes, rendering more
detailed understanding of these factors in the population of
HSCT recipients a challenge.

HSCT treatment-related factors may also influence cog-
nitive outcomes. Given the complexity of HSCT regimens,
their evolution in recent decades, and the small sample
sizes of many studies, a granular approach to each thera-
peutic element and its impact on patient outcomes is chal-
lenging. Multiple variables, including the number of
induction cycles, history of prophylactic cranial irradiation,
TBI, intrathecal chemotherapy, prior chemotherapy regi-
mens, transplant type, donor relationship, length of hospital
stay, and days until engraftment, have all been associated
with poorer cognitive outcomes [5, 18, 49]. In prospective
study of 477 HSCT recipients, those treated with
myeloablative allogeneic HSCT showed greater impairment
in verbal fluency and processing at 6 months after HSCT
than reduced-intensity autologous HSCT recipients [18].
After 3 years, however, reduced-intensity autologous HSCT
recipients displayed poorer performance across measures
of executive functioning, verbal fluency, and working mem-
ory, whereas only fine motor dexterity was shown to be
reduced for those who underwent myeloablative allogeneic
HSCT, suggesting a delayed decline in those undergoing
autologous transplant. At 3 years after HSCT, global cogni-
tive impairment rates were 18.7% in those receiving autolo-
gous transplant versus 35.7% in those with allogeneic
transplant [18]. Notably, the outcomes varied by intensity
of the applied therapy in the latter group, with those having
myeloablative treatment having marked early cognitive
impairment, and those having reduced-intensity allogeneic
transplant having less severe and more delayed cognitive
changes. These findings support intensity of cytotoxic che-
motherapy as having a direct contribution to the more
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pronounced cognitive impact of allogeneic transplant, in
comparison with autologous HSCT. Additional contributors
to their distinct outcomes may include the increased inci-
dence of autoimmune phenomena in patients with alloge-
neic transplant [52], with potential for chronic
proinflammatory state affecting brain health, even in the
absence of frank GVHD. With GVHD, these patients are also
more likely to require chronic calcineurin inhibitors, which
may themselves be neurotoxic, causing posterior reversible
encephalopathy syndrome, tremor, and thrombotic micro-
angiopathy [53]. This population is also more vulnerable to
post-transplant infections; both CNS and systemic infections
have the potential to affect cognitive performance. These
multiple variables likely contribute to the poorer cognitive
outcomes of allogeneic transplant recipients.

Discrepancies in the cognitive outcomes for different
transplant types may be secondary to different biologic
contributors to these processes or to the conditioning regi-
men that is used prior to transplant. Although some studies
have demonstrated no significant association between
cognitive decline and specific therapeutic exposures
[13, 14, 18], the complexity and variability of the regimens,
as well as small sample sizes, involved in the aforemen-
tioned studies make drawing conclusions about treatment
effects difficult, and more rigorous studies are needed.

Post-transplant complications can have a significant
impact on neurocognitive function. In a prospective study
that evaluated patients at baseline, 6 months, and
12 months, length of hospital stay was a significant risk for
neurocognitive decline [49]. The length of hospital course
may be seen as a proxy for post-transplant recovery. As
noted earlier in this review, post-transplant delirium is esti-
mated to occur in half of all transplant recipients [7]. Delir-
ium is a robust predictor of long-term cognitive
impairment, with duration of delirium being an indepen-
dent predictor of impairment on objective cognitive testing
in medical intensive care unit patients [54], as well as
increased incidence of age-related cognitive decline [55].
The magnitude and nature of the impact of delirium during
hospitalization for HSCT on cognitive outcomes requires fur-
ther definition, but the literature in other populations sug-
gests it is likely contributory. CNS infections and nutritional
deficiencies can also be significant contributors during this
period. Additionally, presence of relapse, systemic steroid
treatment, and presence of GVHD have been identified as
long-term contributors to cognitive impairment after
HSCT [49].

Ascribing the contributions of specific risk factors for
neurocognitive impairment after HSCT is thus difficult. Stud-
ies are limited by the diverse background stories that
accompany each participant when they arrive to HSCT,
including their psychosocial status, medical history, previous
treatment with chemotherapy and radiation, immunosup-
pression, and likely (although severely unstudied) their
genetic and epigenetic factors. In addition, their peri-
transplant regimens (such as pre-HSCT conditioning, infec-
tions, length of stay, metabolic complications, GVHD, and
acute toxicities) coupled with nuances of measurement
across studies (time since transplant, number of transplant,
time since diagnosis, operationalization of neurologic and

cognitive changes) make the concept inherently difficult to
describe using any one theory or framework. Likely
(as suggested by authors of previous work) the best expla-
nation of risk factors for neurocognitive impairment after
HSCT is that many factors represent a variety of insults and
contribute (albeit perhaps unequally) a cumulative effect
on neurocognitive outcomes [25, 28, 29].

MECHANISMS OF COGNITIVE IMPAIRMENT AFTER HSCT
Post-HSCT cognitive impairment is likely multifactorial, with
biologic, psychological, and social factors contributing to its
development, as outlined in Figure 2.

Inflammation
Proinflammatory cytokine activity in patients with non-CNS
cancers has been linked to cognitive dysfunction [56–60].
Preclinical models indicate that some chemotherapies may
upregulate expression of certain inflammatory markers
(tumor necrosis factor [TNF]-α, interleukin [IL]-1) [4, 61],
resulting in neuroinflammation and neurocognitive dysfunc-
tion. A recent study by Hoogland and colleagues [62] dem-
onstrated that elevated circulating proinflammatory
cytokines (IL-6, soluble TNF receptors) were significantly
associated with poorer cognitive function after allogeneic
HSCT. It is well known that many chemotherapies used in
HSCT pose a risk for inflammation or neurotoxicity; how-
ever, evidence supporting these underlying mechanisms of
HSCT cognitive impairment is lacking [4, 61].

An interrelationship between CNS immune biomarkers
and cognitive function has been identified [63, 64], but this
relationship in the population of HSCT recipients is not fully
developed. One study found that higher levels of circulating
IL-6 were associated with poorer executive function in
patients with acute myeloid leukemia or myelodysplastic
syndrome [65]. These levels, as well as TNF-α and IL-1
receptor antagonist levels, were also associated with quality
of life and fatigue. Certain transplant sequelae such as
GVHD, or allogeneic/unrelated donors, may also have the
potential to lead to chronic subclinical CNS inflammation.
This theory is supported by the finding of more complica-
tions in patients with alternative donor allogeneic HSCT,
rather than those who had human leukocyte antigen–
identical siblings or autologous transplants [66], and by a
meta-analysis showing autologous transplant recipients
demonstrating greater improvement in cognitive function
over time [67]. Importantly, metabolic encephalopathy and
CNS infections are the first and second (respectively) most
prominent sources of post-HSCT neurological complications
[55]. Inflammation as a result of either metabolic complica-
tions or primary infectious pathology is considered a major
mechanism for neurocognitive changes after transplant.

Proposed contributions of inflammation to post-
transplant cognitive impairment are illustrated in Figure 3.

CNS GVHD
GVHD is a donor T-cell–mediated response that can affect
allogeneic HSCT recipients months to years after transplant
[68]. GVHD may involve profound immune dysregulation,
multiorgan dysfunction, and poorer quality of life in
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survivors of allogeneic HSCT [69]. GVHD most often pre-
sents in the liver, gastrointestinal tract, and skin and more
rarely may affect the CNS [8, 68]. There is ongoing debate
regarding CNS manifestations in the post-HSCT period and
its precise phenotype, although diagnostic criteria have
been proposed [8]. In the last decade, three primary mecha-
nisms of CNS GVHD have been postulated: vasculitis/
angiitis, encephalitis, and demyelination [8, 70, 71]. How-
ever, patients with mild cognitive impairment after HSCT
may not routinely receive spinal fluid testing or other
paraclinical tests to look for CNS inflammation, opening the
possibility of smoldering CNS inflammation in some patients
that is thus far underidentified.

Microbiome Alterations
The microbiome is the collection of bacteria and microor-
ganisms that naturally inhabit a host’s body [72]. The
impact of the microbiome in human health and disease has
been increasingly recognized in recent years [73]. Chemo-
therapy and cancer itself may have a direct impact on the
microbiome [74]. Disruption and de-diversification of
the microbiota (dysbiosis) may lead to systemic inflamma-
tion, ultimately resulting in neuroinflammation through the
neurophysiologic cascade and cognitive sequalae in patients
with who receive chemotherapy [74–76]. A landmark study
by Taur et al. [77] demonstrated that, after receiving alloge-
neic HSCT, recipients’ gut diversification markedly

Figure 2. Contributors to the development of cognitive impairment after hematopoietic stem cell transplant. Adapted from
Engel [169].

Figure 3. Proposed contributions of inflammation to post-transplant cognitive impairment.
Abbreviations: Aβ, amyloid beta; IL-1RA, interleukin-1 receptor antagonist; IL-6, interleukin-6; TNF-alpha, tumor necrosis factor
alpha.
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decreased. The gut-brain axis can also be threatened by
way of epithelial injury, also termed barrier breach. Chemo-
therapies, radiation, and infection are risk factors for epi-
thelial injury. Transient bacteremias upregulate the
systemic inflammatory cascade [74]. These studies highlight
the established relationship between gut and brain biology,
and the potential for HSCT to influence the biology of both.
Although literature regarding the relationship between the
gut microbiome and cancer-related cognitive impairment is
lacking, research to date does support a link with cognitive
performance. In murine models, alterations in gut micro-
biota are associated with changes in learning and memory
[78, 79] and neurobiologic alterations in brain-derived neu-
rotropic factor levels [80] and hippocampal serotonin levels
[81]. Human studies in this area are few but do support a
relationship [82, 83] that warrants further exploration.

Neurovascular Changes
Certain drugs used in some HSCTs are known to cause
injury to the neurovascular system and neural progenitor
cells. Calcineurin inhibitors such as cyclosporin and
tacrolimus can damage the vascular endothelium [58]. Sub-
dural hematoma is a cerebrovascular event that may occur
in either autologous or allogeneic HSCT, with a documented
incidence of at least 2.6% [58]. Subdural hematoma risk fac-
tors in this specific population include prolonged thrombo-
cytopenia with refractoriness to platelet transfusions,
arterial hypertension, acute GVHD, and fibrinogen serum
levels. Thrombotic events are also described, with links to
chronic GVHD and steroid treatment, infections, and in the
case of hemorrhagic infarcts, multiple organ failure [55].
Cerebral infarcts after HSCT have also been associated with
nonbacterial thrombotic endocarditis, although not all cases
co-occur [55]. The aforementioned first mechanism underly-
ing CNS GVHD, cerebrovascular disease, is a function of vas-
culitis in the brain marked by inflammatory markers and
(in some cases) white matter changes [58]. Insults to the
small and medium arterial vessels of the meninges and
cerebral parenchyma may be caused by neurotoxic chemo-
therapy or radiation, although definitive diagnosis requires
brain biopsy. Transplantation-associated thrombotic micro-
angiopathy is another pathology of endothelial origin and
arterial thrombosis, which may be linked to increased C5b-9
serum concentration (during complement activation) or to
genetic expression of various proteins involved in the coag-
ulation pathway [58].

Oxidative Stress
Oxidative stress has been described as a mechanism under-
lying neurocognitive changes in recipients of chemotherapy
and HSCT [64, 65]. Reactive oxygen species (ROS), which
are produced as a normal part of respiration and energy
metabolism, may accumulate intracellularly and disrupt cell
apoptosis and regulation while increasing inflammation
[65]. Oxidative stress from ROS has been implicated in cer-
tain behavioral toxicities like mild cognitive impairment,
and there is evidence suggesting that it may be a mediator
in chemotherapy-induced cognitive impairment [65].

Accelerated Brain Aging
A leading conceptual framework for the neurobiologic
changes that occur in patients with cancer is accelerated
brain aging. Many of the processes already discussed,
including oxidative stress, microtubule instability, and
impaired functional connectivity, are found in normal brain
aging and appear to contribute to cancer-related neurotox-
icity [84–86]. This process is likely at play in patients who
have received HSCT. Although studies to date are limited,
one study of patients with multiple myeloma who had
undergone autologous stem cell transplant found an associ-
ation with changes in p16INK4a, a cellular marker of physio-
logic aging, consistent with 33.7 years of chronologic age.

GENETIC BIOMARKERS

Molecular mechanisms of cognitive impairment have been
suggested to explain individual susceptibility to cognitive
impairment in patients with cancer [87, 88] and in older
healthy individuals [89]. The established association of vari-
ants along the APOE gene in Alzheimer’s disease [90] have
shown a mixed association pattern in populations of
patients with cancer [91]. It has been linked to cognitive
decline in patients with breast cancer [92] but not in
patients with colorectal cancer [93]. The most recent sys-
tematic review of genetic risk factors for cognitive impair-
ment in populations of patients with cancer maintains the
inconsistent nature of evidence on the role of APOE vari-
ants [94]. Genetic risk variants on COMT [95, 96] and DNA
repair and oxidative stress genes [97, 98] have been
reported in breast cancer survivors and GNB3 in prostate
cancer survivors [99]. Although variants on BDNF gene have
been repeatedly studied, no clear significant association
with cancer-related cognitive impairment has been identi-
fied to date [94]. In HSCT recipients, the evidence on
genetic determinants of cognitive impairment is similarly
scarce. In one study, variants across DNA repair, blood-brain
barrier, and telomere homeostasis genes were associated
with global cognitive deficits after transplant [100]. It is
important to note that all studies reported to date rely on a
candidate gene approach with its inherent limitations and
possibility of missing novel associations. Nonetheless, candi-
date genetic variants were shown to enhance risk predic-
tion of cognitive impairment following HSCT beyond that
offered by clinical and demographic characteristics [100].
Utility of genetics in identifying high-risk individuals will
only be realized through full characterization of genetic risk
of cognitive impairment in HSCT recipients and warrants
further investigation.

PRACTICAL IMPLICATIONS

Psychoneurological Symptom Clusters
Cognitive impairment frequently co-occurs with other
symptoms, including sleep disruption, fatigue, anxiety, and
depression, in patients with and survivors of cancer
[101–103]. Co-occurrence of two or more of these symp-
toms is referred to as a psychoneurological symptom cluster
[101, 104–106]. Symptom clusters have a larger impact on
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quality of life and functional status than individual symp-
toms [107–109], and increased symptom burden has been
associated with decreased survival [110, 111]. Therefore, it
is important for providers caring for HSCT recipients to
consider their cognitive symptoms within the context of
psychoneurological symptom clusters. Given that the com-
ponent symptoms of psychoneurological symptom clusters
are each multidimensional and are likely to be interrelated,
it can be difficult to tease out their relative contribution to
cognition dysfunction, particularly within the context of
post-transplant neurobiologic alterations. In addition,
although symptoms such as depression, fatigue, and sleep
changes have all been associated with self-reported cogni-
tive changes in populations of patients with breast cancer
[112], the literature examining the relationship of these fac-
tors to performance on objective cognitive measures has
been mixed [113], and exploration in the population of
HSCT recipients specifically is lacking. A better understand-
ing of symptom clusters and their mechanisms may guide
development of clinical management strategies that can
address multiple symptoms simultaneously [114].

Fatigue
Sustained and intensive cancer treatment is an established
risk factor for cancer-related fatigue [115]. Persistent mod-
erate to severe fatigue has been estimated to occur in more
than 40% of patients following HSCT [116] and has been
found to be an independent predictor of quality of life in
this population up to 5 years after transplant [117]. The bio-
logic underpinnings of cancer-related fatigue are broad, but
potential etiologies in the population of HSCT recipients can
be postulated. Neuroinflammation as well as systemic
inflammatory response are some of the mechanisms that
putatively underlie both fatigue and cognitive dysfunction
in patients with cancer, as well as in other populations of
patients who undergo HSCT [118, 119]. Furthermore, a
breadth of comorbid conditions, including metabolic disor-
ders, chronic anemia, chronic infections, polypharmacy, and
deconditioning, also have the capacity to affect fatigue. The
relationship of fatigue to cognitive performance in patients
with cancer is not fully elucidated, however, and is unlikely
to be linear. One study in patients with breast cancer that
evaluated between-persons and within-persons perfor-
mance on cognitive tasks as they relate to fatigue ratings
found that objective cognitive performance on tasks of
processing speed were not affected by average level
fatigue; however, on within-persons comparison, longer
response latencies were noted when a patient with breast
cancer had more fatigue [120]. The nature of the relation-
ship between fatigue and cognition has been mixed.
Although there appears to be some interdependence of
fatigue on cognition, a prospective study of 75 patients with
breast cancer undergoing chemotherapy found their trajec-
tories to be distinct, suggesting there may be distinct bio-
logic underpinnings and contributors to both [121]. Other
work in the population of patients with breast cancer has
found a direct relationship between cognitive symptoms, but
not cognitive performance, and fatigue [122]. Another study
in fatigued cancer survivors supports this, with direct interven-
tion aimed at improving fatigue leading to improved perceived

cognition but not objective cognitive testing [123]. At this
time, further study in the population of HSCT recipients is
needed to better understand their profile.

Depression
Identification and management of depression and depres-
sive symptoms in HSCT recipients are imperative.
Pretransplant depression has been found to be a risk factor
for post-transplant complications and is associated with
early death, lower overall survival, and higher risk of acute
GVHD after transplant [124, 125]. In a study of risk factors
for depression and fatigue among survivors of HSCT, moder-
ate to severe depression was reported by 43% of survivors,
and moderate to severe fatigue was reported by 42% [49].
However, the risk of depression is high following HSCT even
in patients who were not depressed prior to transplant
[126]. Cognitive changes and depression or depressive
symptoms are prevalent in the population of HSCT recipi-
ents [126, 127], even in those with no premorbid depres-
sive history [126]. Depression has been found to have a
significant negative effect on performance on objective cog-
nitive tests across various patient populations [128], but
not reliably so, with one study in patients with breast can-
cer finding no impact of depressed mood on cognitive per-
formance [120]. Depression has also been found to be
predictive of self-reported neurocognitive complaints [129,
130] and thus may affect an individual’s experience of their
cognitive function and warrants following.

Sleep Disruption
Sleep disruption, including difficulty falling and staying
asleep, early awakening, and/or nonrestorative sleep is
both common and distressing in patients who have under-
gone HSCT [131]. A review by Jim et al. (2014) indicated
that more than 50% of patients experience sleep disruption
prior to HSCT, up to 82% during transplant, and up to 43%
after transplant [132]. Sleep disruption prior to HSCT may
be attributed to preparatory chemotherapy regimens, and
there are mixed data regarding whether sleep disruption is
more common among patients undergoing autologous ver-
sus allogenic transplants [132]. Sleep disruption after HSCT
may have overlapping mechanisms with medication effects
and/or complications including GVHD-related symptoms
and other psychoneurological symptoms [132].

Depression, anxiety, sleep disruption, and fatigue can
worsen cognitive dysfunction in patients with cancer
[133–137]. Conversely, cognitive decline can elevate depres-
sion and anxiety and also impede benefit from treatments
for these symptoms [138–140]. Depression and anxiety are
known to increase sleep dysfunction and vice versa
[141–145]. Biologic pathways subserving psycho-
neurological symptom clusters remain unclear but may
involve neurotoxic effects of cancer and its therapies,
including inflammation/cytokine-induced sickness behavior,
hypothalamic-pituitary-adrenal axis dysfunction, DNA
damage, and oxidative stress [101]. The incidence and
phenotypes of psychoneurological symptom clusters in
HSCT are currently unknown.
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Return to Work
Cognitive functioning and the other psychoneurological symp-
toms discussed above are all important factors that affect rates
at which patients with cancer successfully return to work [146].
Although difficulty returning to work has been identified as a
potential long-term complication following HSCT [3, 146], there
is a paucity of data examining this issue. An early study found
that only 60% of patients who had been previously working
and were alive and relapse-free 5 years after transplant had
returned to full-time work, with female patients being less
likely to return to work [3]. A retrospective study in Switzerland
found that of 203 HSCT recipients surviving at least 5 years
after transplant, 76 (37%) were receiving disability pensions
compared with 3.17% of the Swiss working population [147]. In
a U.S. study, only 62.4% of 690 HSCT recipients had returned to
work 1 year after transplant. Those who had not returned to
work reported higher rates of fatigue and lower quality of life
and were most likely to report the perception of having poor
health [148]. Allogeneic transplant recipients and patients with
extensive GVHD have shown a trend of delayed return to work,
although these associations were not significant [15]. Three
years after transplant, 19.5% of autologous, 31.2% of reduced-
intensity allogeneic, and 46.3% of myeloablative allogeneic
HSCT recipients had not returned to work [18]. Allogeneic HSCT
recipients with evidence of global cognitive deficits had approx-
imately 10-fold increased odds of not returning to work [18].
Furthermore, HSCT recipients with higher self-reported cogni-
tive problems had fourfold higher odds of not returning to
work 3 years after transplant [149]. As such, issues of return to
work seem to be prevalent among this population. It is logical
to infer cognitive impairment may influence patients’ return to
work; however, more research is needed to better understand
occupational outcomes in HSCT recipients.

THERAPEUTIC INTERVENTIONS
At this time, there are no established interventions for
post-HSCT cognitive impairment. Data from studies of cog-
nitive impairment in other patients with cancer could be
evaluated in HSCT survivors experiencing cognitive dysfunc-
tion. This may involve some combination of pharmacother-
apy, cognitive training and rehabilitation, exercise, and
cognitive behavioral therapy (Table 1). Further understanding
of the biologic underpinnings of cognitive impairment in HSCT
recipients will inform more targeted interventions. Studies
evaluating therapeutic interventions for cognitive impairment
in this specific population are warranted.

CONCLUSION

In this narrative review, we outline the incidence and
nature of post-HSCT cognitive impairment, associated risk
factors, proposed biologic mechanisms, and therapeutic
considerations. Research in this area is in its early stages,
and our review can facilitate research question develop-
ment and generation of hypotheses to move this body of
research forward. Given the rising number of HSCTs per-
formed per year [150], it is of increasing importance to
understand the impact of this treatment on neurocognitive
outcomes. At this time, clinical studies have highlighted

cognitive impairment and its prevalence in the population
of HSCT recipients. Cognitive phenotypes and associated
biomarkers have also been evaluated; however, much
remains to be elucidated regarding the nature, severity, risk
factors, and biology of cognitive changes in this population.

Studies examining cognitive changes from HSCT remain lim-
ited. Small sample size [5, 9, 11, 14–16, 20, 151], lack of controls
[5, 10–17, 19, 20, 151], paucity of longitudinal follow-up, and
variability in cognitive testing methods limit the quality of avail-
able data. Of note, prospective selection of study populations is
of value, given the interrelationship between cognitive perfor-
mance and patient survival and, thus, the potential for sample
bias to occur and be influenced by early clinical events. Addition-
ally, samples evaluated have been very heterogeneous with
respect to type of HSCT and various cancer types [5, 9–20,
49, 151]. Importantly, future studies should address the contri-
butions of co-occurring symptoms, including fatigue, anxiety,
depression, and sleep disruption, as these tend to form symp-
tom clusters with cognitive impairment in patients with cancer.

More robust, longitudinal assessments are warranted to eval-
uate cognitive function in this population. Many of the studies
cease enrollment in the weeks or months after transplant,
although it is clear the occupational and functional impacts are
years later. Furthermore, rigorous mechanistic studies in this pop-
ulation, including biomarker and neuroimaging evaluation, could
help to better understand the neurobiological processes that
influence these patients and the impact on the nervous system,
aiding in the development of appropriate targeted interventions.
In addition to objective clinical testing for neurocognitive func-
tion, evaluation of patient-reported outcomes, psychiatric well-
being, and understanding of other comorbidities related to cogni-
tive function will also contribute to a broader understanding of
the impact of transplant on brain health.
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