Skip to main content
. 2021 Nov 6;20:154. doi: 10.1186/s12944-021-01580-z

Table 5.

Univariate and multivariate logistic regression model for prediction of coronary atherosclerosis

Variable Univariate analysis OR (95% CI) P value Multivariate analysis OR (95% CI) P value
Age 0.940 (0.915-0.967) < 0.001 0.591 (0.303-1.153) 0.123
Smoke 1.874 (1.100-3.195) 0.021 3.120 (1.440-6.757) 0.004
Diabetes mellitus 0.356 (0.177-0.716) 0.004 0.429 (0.181-1.014) 0.054
Hypertension 2.053 (1.257-3.353) 0.004 1.803 (0.916-3.551) 0.088
Overweight 0.732 (0.446-1.202) 0.217 0.926 (0.477-1.796) 0.819
CHD family history 0.708 (0.435-1.155) 0.167 1.767 (0.924-3.377) 0.085
LDL-C 1.559 (0.928-2.620) 0.093 1.198 (0.617-2.328) 0.594
HDL-C 1.472 (0.881-2.459) 0.140 1.109 (0.550-2.237) 0.773
ANGPTL3 0.138 (0.080-0.238) < 0.001 0.189 (0.097-0.368) < 0.001
ANGPTL4 5.181 (3.084-8.702) < 0.001 3.625 (1.873-7.016) < 0.001

Coronary atherosclerosis: with one or more coronary stenosis 10 - 50% in diameter; BMI body mass index, Overweight BMI ≥ 24 kg/m2, CHD coronary heart diseases, LDL-C low-density lipoprotein-cholesterol, HDL-C high-density lipoprotein-cholesterol, ANGPTL angiopoietin-like proteins