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Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of kidney 

cancer. Intraoperative frozen section (IFS) analysis is used to confirm the diagnosis during partial 

nephrectomy (PN). However, surgical margin evaluation using IFS analysis is time consuming 

and unreliable, leading to relatively low utilization. In this study, we demonstrated the use 

of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a molecular 

diagnostic and prognostic tool for ccRCC. DESI-MSI was conducted on fresh-frozen 23 normal­

tumor paired nephrectomy specimens of ccRCC. An independent validation cohort of 17 normal­

tumor pairs were analyzed. DESI-MSI provides two-dimensional molecular images of tissues with 

mass spectra representing small metabolites, fatty acids, and lipids. These tissues were subjected 

to histopathologic evaluation. A set of metabolites that distinguish ccRCC from normal kidney 

were identified by performing least absolute shrinkage and selection operator (Lasso) and log-ratio 

Lasso analysis. Lasso analysis with leave-one-patient-out cross validation selected 57 peaks from 

over 27,000 metabolic features across 37,608 pixels obtained using DESI-MSI of ccRCC and 

normal tissues. Baseline Lasso of metabolites predicted the class of each tissue to be normal or 

cancerous tissue with an accuracy of 94% and 76%, respectively. Combining the baseline Lasso 

with the ratio of glucose to arachidonic acid could potentially reduce scan time and improve 
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accuracy to identify normal (82%) and ccRCC (88%) tissue. DESI-MSI allows rapid detection of 

metabolites associated with normal and ccRCC with high accuracy. As this technology advances, 

it could be used for rapid intraoperative assessment of surgical margin status.
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Clear cell renal carcinoma; nephrectomy; surgical margins; histopathology; electrospray 
ionization; metabolome

Introduction

The increased incidence of stage 1 renal cell carcinoma brought about by cross-sectional 

imaging has resulted in increasing use of nephron-sparing approaches for management, 

including partial nephrectomy (PN) and ablation procedures.1 In PN, the incidence of 

positive surgical margins (PSMs) in patients with small renal masses varies from 0.1 to 7% 

and for advanced RCC patients, from 18 to 32%.2, 3 Although the impact of PSM on long­

term survival in RCC is still controversial,4 large observational studies have shown that PSM 

are significantly associated with higher rates of local recurrence and worse overall survival 

independent of other predictors.5–7 Despite the importance of surgical margin assessment, 

only 69% of surgeons performing open and 58% performing laparoscopic PN report using 

intraoperative frozen sections.8 In ablative procedures, frozen sections of core biopsies are 

sometimes used intraoperatively to confirm diagnosis at the outset of the procedure.9 Low 

utilization of intraoperative frozen section (IFS) is caused by both the long processing time 

(often 30 minutes or more) and relatively low accuracy. In cases with true positive margins 

detected on final pathology, frozen sections are positive in only 15–30% of cases.10, 11 The 

intention of this work is to provide a proof of concept that intraoperative frozen section 

analysis using DESI-MSI can increase substantially the usefulness of this approach.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) has emerged 

as a promising approach for spatial characterization of the metabolome that can detect 

the presence of cancer rapidly on frozen sections.12, 13 DESI-MS is easy to use, operates 

under ambient conditions, and can provide high-resolution characterization of metabolites 

(currently ~200 µm) in scan times of 1 minute. Statistical tools, such as Lasso, have 

allowed identification of a parsimonious set of metabolites from the large pool of molecules 

identified by DESI-MS that can distinguish normal from malignant tissues.14–16 Our group 

has tested DESI-MSI in several malignancies including stomach,17 pancreatic,18 skin,19 

and prostatic neoplasms20 and have identified metabolomic signatures that identify cancer 

with high sensitivity and specificity. In pancreatic cancer, a direct comparison of DESI­

MSI detection with frozen sections showed that cases that were positive by DESI-MSI 

but negative by histology showed higher rates of recurrence, suggesting that DESI-MSI 

might provide additional information on surgical margins.18 Recently, hand-held mass 

spectrometry probes that can be used intraoperatively have been developed using DESI 

and desorption ionization (DI) and are being tested in several malignancies.21, 22

Renal cell carcinoma is not only common, but also potentially lends itself to detection by 

metabolomic approaches because many initiating mutations affect metabolism.23 To evaluate 
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the feasibility of using DESI-MSI in assessing clear cell renal cell cancer (ccRCC) in core 

tissues, we analyzed 40 normal-tumor pairs of ccRCC. We built a predictive model using 

23-paired samples and validated its performance on an independent test set of 17 pairs. 

We found DESI-MSI was able to distinguish between ccRCC and normal tissue with an 

accuracy of 85%, demonstrating promise as a method to improve detection of positive 

surgical margins intraoperatively.

Material (Patients) and Methods

Ex-vivo specimens were harvested from both benign and cancerous areas in subjects 

undergoing nephrectomy for kidney cancer under an IRB approved protocol that allowed 

association of clinical data with specimens (IRB-13828). The samples were exposed to room 

temperature prior to snap freezing in liquid nitrogen for 30 minutes. Biosamples were stored 

at −80 °C in sealed freezer boxes until ready to use. Cases were selected based on cancer 

type (i.e., ccRCC) denoted in the surgical pathology report. Cancerous and normal tissues 

were harvested based on gross appearance. All samples selected for DESI-MSI underwent 

frozen sectioning to confirm histology (cancer vs. normal) and exclude necrotic tissues. 

The diameter size of the coring tool is 8 mm (Stainless steel, autoclavable), purchased 

from Alabama Research and Development, (Munford, AL). We have used disposable coring 

tool from Sklar Surgical Instruments (West Chester, PA ) of same diameter. DESI-MSI 

analysis was performed on a training set of 23-paired, fresh-frozen, normal and ccRCC core 

specimens with an equal representation of indolent and aggressive cancer. For a test set, we 

performed DESI-MSI on 17 independent cases (Supporting Information Table S1). A 5-μm 

frozen section of each frozen tissue core sample was stained with hematoxylin and eosin 

(H&E), and then a 10-μm section was obtained immediately adjacent to the H&E section 

using a Leica CM1950 cryostat (Leica Biosystems) for DESI-MSI analysis.

DESI-MSI analysis

DESI-MSI is an ambient ionization imaging technique (i.e., all the measurements were 

carried out at room temperature and atmospheric pressure). Prior to the data acquisition, 

tissues were stored at −80 °C in a freezer and dried for 20 minutes using vacuum desiccator. 

Optimal temperature cutting (OCT) polymeric compound, is used for tissue embedding prior 

to the frozen sectioning on a microtome-cryostat. OCT is readily ionized in the positive ion 

mode, and the mass spectrum consists of interference from polymeric peaks separated by 22 

mass-to-charge (m/z) units (Supporting Information Fig. S1). However, OCT interference is 

absent in negative ion mode, which consists mostly of deprotonated species, and chloride 

adducts unlike positive ion mode DESI-MSI with, protonated sodiated, and potassiated 

adducts.

Experimental details of tissue imaging by desorption electrospray ionization mass 

spectrometry imaging (DESI) have been described elsewhere.24, 25 Briefly, DESI-MSI was 

performed in the negative ion mode (−5 kV) from m/z 50–1000, using LTQ-Orbitrap 

XL mass spectrometer (Thermo Scientific) coupled to a home-built DESI-source and 

a two-dimensional (2D) motorized stage. Both normal and ccRCC tissues were raster 

scanned under impinging charged droplets generated from the electrospray nebulization 
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of a histologically compatible solvent system, 1:1 (vol/vol) dimethylformamide/acetonitrile 

(DMF/ACN, flow rate 1 µL/min). The electrospray nebulization was assisted by using sheath 

gas nitrogen (N2, 170 psi) and a high electric field of −5 kV. The spatial resolution of 

DESI-MSI, defined by the spray spot size, is ~200 µm (Supporting Information Fig. S2). 

DESI-MSI of all tissue samples were carried out under identical experimental conditions, 

such as spray tip-to-surface distance ∼2 mm, spray incident angle of 55°, and spray-to­

inlet distance ∼5 mm. The MSI data was acquired using XCalibur 2.2 software (Thermo 

Fisher Scientific Inc.). The tissue samples after DESI-MSI analysis were subjected to 

histopathologic evaluation using H&E staining (Supporting Information Fig. S4).

DESI-MSI was performed on tissue sections by placing the glass microscope slides onto a 

custom two-dimensional precision moving stage. Images were collected in a series of rows 

by coordinating linear motion of the moving stage (134.22 µm s−1) with the MS duty cycle. 

The MS duty cycle was defined by the scan parameters: m/z 50–1000, injection time of 500 

ms with 1 microscan, scan time 1.49 s, and automatic gain control (AGC) was disabled. A 

lateral spatial resolution (“x”) of 200 µm was defined, upon completion of a row the moving 

stage resets to the original “x” position while stepping 200 µm in “y”. This process was 

repeated in order to acquire data from the entire tissue surface. Given tissue surface area 4 

mm by 4 mm = 16 mm2, the acquisition time per pixel is about 1.49 s, acquisition time per 

row is 0.49 minutes (less than a minute for linear scan), and the total acquisition time per 

tissue is 9.8 minutes. However, it is important to note that we acquired whole slide scans in 

order to acquire a large data set for model building and testing. Once a model is optimized, 

we have shown we can acquire linear scan data that distinguish tissue types (normal and 

cancer) in less than 1 minute20.

Tandem-MS and high mass resolution analyses were performed by using the LTQ-Orbitrap 

XL (Thermo Scientific). Tandem-MS spectra were analyzed (Supporting Information 

Figs. S7–S10), and molecular assignments were compared with databases such as 

LipidMaps (www.lipidmaps.org/), MassBank (www.massbank.jp), and Metlin (https://

metlin.scripps.edu/). The detected species were mostly deprotonated small metabolites 

related to the tricarboxylic acid (TCA) cycle, and deprotonated lipids including free fatty 

acids (FAs), fatty acid dimers, phosphatidic acids, and glycerophospholipids (Supporting 

Information Table S2).20 Supporting Information provides details of experimental conditions 

(Figs. S1–S4) and molecular analysis (Figs. S7–S10). The 2D chemical maps of molecular 

ions such as glucose, arachidonic acid and glycerophospholipids were plotted using Biomap 

(Supporting Information Fig. S3). Using MSiReader software (version v1.00), each tissue 

DESI-MS image was normalized by the total ion current (TIC) and the raw data from each 

pixel was extracted for statistical analysis.

Statistical analysis

We used the baseline Lasso,26 log-ratio Lasso,27 and a combined ridge regression linear 

model to select statistically significant molecular ion peaks in MSI profiles, and built a 

classifier that estimates the probability of an individual pixel in each tissue DESI-MS image 

to be normal or cancerous (ccRCC).16, 28 Our training and validation set consisted of 23 

and 17 pairs of tissue, respectively, where each pair is extracted from a single patient. 
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Within the training set (23 benign and 23 cancer tissues), we applied the Lasso method 

(binary-logistic regression with L1 penalty) using glmnet package in the CRAN R language 

library.15 We initially used an unbiased statistical approach to fit both Lasso models, where 

leave-one-patient-out cross-validation builds an initial pixel-based Lasso binary classifier. 

Lasso selects only a sparse subset of molecular features for classification.

To account for the random effects influencing MS data, intensity of each metabolite 

was normalized by the total ion current (TIC) for the corresponding pixel (Supporting 

information Fig. S11).29, 30 A nearest neighbor clustering method was used to collect 

all pixel intensities corresponding to the nearest molecular ion peak for feature selection. 

Leave-one-patient-out cross-validation was employed to obtain the Lasso tuning parameter26 

and evaluate its predictive accuracy. Due to the known molecular diversity of ccRCC, 

the log-ratio Lasso27 was also used to find a sparse subset of features, each representing 

the ratio of relative intensities of two metabolites (Supporting Information Tables S4–S5). 

Table S4 reports all the metabolites for which pairwise ratios were considered in selecting 

a log-ratio lasso model. The log-ratio Lasso maintains the sparsity from Lasso and is 

unaffected by the multiplicative scaling of each observation in DESI-MSI. The Lasso and 

log-ratio Lasso models have complementary strengths, as discussed below in Lasso analysis. 

To harness the strengths of both models, we then fit a combined linear ridge regression 

model including the selected molecular features from both Lasso, and log-ratio Lasso, and 

compared the performances of all three models in discriminating the cancer versus normal 

tissue on a separate test set. Similar to the baseline Lasso model, this model was built using 

the glmnet package in CRAN R language library. Supporting Information Tables S3, S5, 

and S6 report the model coefficients for the baseline Lasso, log-ratio Lasso, and combined 

model, respectively.

Results

Molecular imaging and metabolite identification characteristics of ccRCC

We performed DESI-MSI of 40-paired normal and ccRCC tissues in the negative ionization 

mode from m/z 50–1,000. In the low mass range (m/z 50–200), we found significant 

differences in the distribution and abundance of small metabolites related to the tricarboxylic 

acid (TCA) cycle, reflecting the known altered metabolism of ccRCC (Figure 1). Compared 

to normal tissue, ccRCC displayed a higher abundance of lactate (m/z 89.0247), glucose 

(m/z 179.0557), glutamate (m/z 146.0457), N-acetyl glutamate (m/z 187.0415), and 2­

hydroxy butyrate (m/z 103.0401) and a lower abundance of creatinine (m/z 112.9856), 

fumarate (m/z 115.0764), and succinate (m/z 117.0193).

Differences in peak abundance were also apparent in the mass range m/z 200–

1000 (Figure 2). Compared to the normal tissue, ccRCC tissue shows higher 

abundance of glycerophosphoglycerol 34:1, PG (18:1/ 16:0) (m/z 747.5160), 

glycerophosphoglycerol 36:3, PG (18:2/ 18:1) (m/z 771.5160), glycerophosphoinositol 38:4, 

PI (18:0/20:4) (m/z 885.5470), glycerophosphoinositol 36:2, PI (18:2/18:0) (m/z 861.5473), 

glycerophosphoinositol 34:1, PI (16:1/18:0) (m/z 835.5316), and glycerophosphoserine 

36:1, PS (18:1/18:0) (m/z 788.5424). ccRCC tissue shows lower abundance of 

aminophospholipids such as phosphatidylethanolamine 36:4, PE (16:0/20:4) (m/z 722.5119), 
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phosphatidylethanolamine 40:6, PE (20:4/20:2) (m/z 790.5458), phosphatidylethanolamine 

40:4, PE (18:0/22:4) (m/z 794.5034), and glycerophosphoserine 38:4, PS (18:0/20:4), (m/z 
810.5387) and glycerophosphoserine 34:1, PS(16:0/18:1).

Compared to normal tissue, ccRCC showed strong ion signals for FA dimers observed at 

m/z 537.4871 (oleic acid + palmitic acid) and at m/z 563.5026 (oleic acid + oleic acid), 

but not at m/z 585.4869 (oleic acid + arachidonic acid) and m/z 607.4013 (arachidonic acid 

+ arachidonic acid). A higher abundance of fatty acids such as oleic acid FA (18:1) (m/z 
281.2478), linoleic acid FA (18:2) (m/z 279.2321), and lower abundance of arachidonic acid 

FA (20:4) (m/z 303.2320) was observed in ccRCC tissue. Other molecular ions that were 

distinctly different between normal and ccRCC tissues included palmitic acid (FA 16:0) 

(m/z 255.2322), m/z 311.1677, m/z 325.1833, m/z 339.1989, m/z 356.2795, m/z 371.2791, 

m/z 391.2608, m/z 393.2632, m/z 419.31001, and m/z 445.3157. The relative intensity 

distribution of each individual metabolite in ccRCC versus normal tissue is shown in 2D 

chemical heatmaps maps created using Biomap software (Supporting Information Fig. S2).

Lasso analysis

Three models were trained using the glmnet package in the CRAN R language library15, 

including the lasso, log-ratio lasso, and a combined ridge regression model. The lasso 

(binary logistic regression with L1 penalty) selects for a sparse set of 57 metabolites 

from 27,523 total detected molecular species across all 37,608 pixels in the training set. 

The selected features from lasso are noted in supporting information table S3. Previously, 

we have also found that a ratio of metabolites could be used to distinguish normal 

from malignant prostate tissues.20 We therefore tested whether a ratio of metabolites 

could contribute to identification of ccRCC. To train the log-ratio Lasso model, it is 

computationally intractable to enumerate all possible ratios of relative intensities of 

molecular ions from 27,523 features over 378 million ratios. We considered all pairwise 

ratios of 58 metabolites (total 1653 features) that are known to be differentially expressed 

in cancer tissues from previous DESI-MSI studies (Supporting Information Table S4). 

Considering all pair-wise ratios of 58 metabolites, the log-ratio Lasso model used leave-one­

patient-out cross-validation to select one ratio (Supporting Information Tables S4–5). We 

found the best ratio was glucose to arachidonic acid (Supporting Information Table S5). 

From the pixel-level to tissue-level classification, we employed a simple majority rule; if 

over 50% of pixels in a tissue were predicted to be cancerous, then the entire tissue was 

scored as cancerous.

From the cross-validation performance of both baseline Lasso and log-ratio Lasso on the 

training set, we found the accuracy to be 86.9% and 63.0%, respectively (Table 1). Lasso 

yielded a specificity (true negative rate) of 91.3% compared to the log-ratio model of 

47.8%, while the sensitivity (true positive rate) of both models were comparable (82.6% 

and 78.3%). Although Lasso selected 57 peaks, spanning small metabolites, fatty acids, 

and lipids, it did not include either glucose or arachidonic acid. Therefore, it appeared that 

log-ratio Lasso model imparted unique information useful in distinguishing normal kidney 

tissue from ccRCC. The glucose/arachidonic acid ratio was a sensitive biomarker, where the 
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ratio is elevated in cancer tissue (Figure 3). However, the low log-ratio observed in some 

cancers contributed to the low specificity shown in Table 1.

Finally, we observed that the lasso and log-ratio lasso had different strengths, with the 

former having higher specificity while the latter has higher sensitivity. Therefore, we 

included the selected features from both models (57 features from baseline-lasso and 

glucose/arachidonic acid ratio) in a ridge regression (‘combined’) model, which is optimized 

on the training set. This combined linear model was fit on all training set pixel data using 

ridge regression in the glmnet package.15 We evaluated each model’s performance at the 

pixel level on an independent test set of 17 pairs of tissues, using a majority rule from pixel 

to tissue-level classification. We also evaluated the sensitivity of all model performances 

to this pixel to tissue threshold, specifically what percent of pixels need to be cancerous 

for the overall tissue to be scored cancerous. Our sensitivity analysis (Figure 4) finds that 

the combined model performance is most robust, since it maintains over 80% accuracy at 

the tissue level to changes in this threshold varying from 20 to 90%. This suggests our 

combined model may be clinically useful in predicting the tumor margins for tissues where 

the majority of pixels are cancer-free. With a 50% pixel to tissue threshold, we obtained an 

accuracy of 85.3%, 73.5%, and 85.3% at the tissue level for baseline Lasso, log-ratio model, 

and the combined model, respectively (Table 1).

We further evaluated the performance of these models using the area under the curve (AUC) 

and receiving operator characteristic (ROC) curve (Figure 5). The AUC metric for the 

baseline Lasso, log-ratio Lasso, and combined models at the pixel level were 81.4%, 71.4%, 

and 84.2%, respectively. The AUC analysis demonstrated that the combined model had the 

best discriminative ability. The pixel level performance of all 3 models was compared on 

the test set, where the combined model performs the best with 84.2% accuracy (compared 

to 81.6% and 70.9% accuracy of the baseline lasso and log-ratio models respectively). Our 

analysis shows that the combined approach harnessed both the sensitivity of the log-ratio 

Lasso and the specificity of the baseline Lasso to achieve classification accuracy and the 

highest AUC value.

Discussion

DESI-MSI is a label-free molecular imaging technique that probes the altered metabolism 

in cancer tissues. DESI-MS is currently being evaluated for near real-time identification 

of positive surgical margins in glioblastoma,31 and a hand-held mass spectrometry wand 

is being developed for intraoperative use.21, 22 We tested the feasibility and accuracy of 

DESI-MS for distinguishing normal from malignant kidney tissues and found excellent 

performance characteristics, matching or exceeding those reported for frozen sections. Not 

only did we observe the expected differences in small metabolites related to the TCA cycle, 

we identified a number of lipid species that were altered in ccRCC. Our work provides a 

proof of concept for use of DESI-MSI to determine surgical margin status in ccRCC and 

reveals key metabolic differences between cancer and normal tissue consistent with the 

metabolic rewiring in ccRCC.
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Achievement of negative surgical margins and preservation of renal function are key goals in 

PN. PSM rates are one of the key metrics used for evaluating quality in partial nephrectomy 

surgeries for RCC in both the US and Europe.32 Given that frozen sections are poorly 

sensitive, finding only 15–30% of PSMs disclosed on final pathology 10, 11 and potentially 

increase ischemia time, many surgeons advocate against obtaining frozen sections.4, 10 

However, performance of frozen sections is associated with lower rates of PSM on final 

pathology, and contemporary large studies have suggested that PSM influence cancer 

outcomes.5–7 Furthermore, advances in surgical techniques have increased the number and 

complexity of cases amenable to PN.33 The high accuracy of predicting cancer based 

on metabolites, suggests that DESI-MS and mass-spectrometry based tools like a mass 

spectrometry pen that has been deployed intraoperatively in ovarian cancer with high 

accuracy for diagnosis.34 DESI-MS can provide a rapid read-out of diagnostic mass spectra 

that make it compatible with the goal of minimizing ischemia time and identifying PSM in 

the surgical bed. Such an enabling technology could facilitate safe expansion of indications 

for PN to more complex cases based on tumor size and location.

The metabolites detected by DESI-MS coincide with known metabolic alterations in ccRCC 

that arise from alterations in hypoxia-sensing pathways induced by functional inactivation 

of the von Hippel–Lindau (VHL).35, 36 For example, we observed higher abundance of 

glucose and lactate, attributable to the upregulation of GLUT-1 37 and lactate dehydrogenase 

(LDH-A) associated with a shift toward aerobic glycolysis.38, 39 Succinate and fumarate, 

members of the tricarboxylic acid (TCA) cycle decrease with this metabolism shift, while 

glutamate increase, coinciding with induction of glutaminolysis.36 Alterations in glutamine 

and more generally amino acid metabolism are indeed reflected by the statistical models, 

which select for N-acetyl aspartic acid, and N-acetyl glutamate peaks in the classification.

In addition, we find expected increases in fatty acids, fatty acid dimers, and phospholipids, 

and are able to identify quantitative increases in particular FAs and their dimers, such as 

palmitic acid (FA 16:0), linoleic acid (FA 18:2), and oleic acid (FA 18:1) and decreases 

in arachidonic acid (FA 20:4) and its dimers. Morphologically, ccRCC cells are lipid and 

glycogen-laden,40 likely reflecting the reprogramming of fatty acid and glucose metabolism 

known to occur in the development of ccRCC. Upregulation of fatty acid synthesis in 

ccRCC results in high concentrations of fatty acids, which can lead to the dimer formation 

in solvent droplets. Desorption electrospray ionization mass spectra (DESI-MS) of fatty 

acids profiles in the negative ion mode consists of abundant ions of deprotonated molecules, 

such as monomers [M-H]− and dimers [2M-H]−. Dimers can be regarded as proton bound 

molecules R-COO−... H+...−OOC-R. The interaction can be due to electrostatic interactions 

(hydrogen bonds) between carboxylate anions and protons, or the hydrophobic interaction of 

fatty acids with longer aliphatic chains.41

Enzymes cyclooxygenase (COX) and lipoxygenase (LOX) act on arachidonic acid to 

yield lipid mediators such as prostaglandins, thromboxane, and leukotrienes. We observed 

20-COOH-leukotriene B4 in ccRCC tissue (m/z 365.2454), a signal relay molecule in 

neutrophil chemotaxis to the inflammation sites (supporting information Fig. S8H).42 In 

addition, other studies report that free polyunsaturated fatty acids (PUFA) such as FA (20:4) 

levels in ccRCC are strongly dependent on HIF-2α activity.43 HIF-2α controls the fate 
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of fatty acids either in phospholipid synthesis or in storage to form lipid droplets.44 We 

observed elevated levels of PGs, and PIs, and suppressed aminophospholipids such as PSs 

and PEs. PEs are synthesized in mitochondria and is produced from the decarboxylation 

of PS synthesized in endoplasmic reticulum (ER).45 The reduced levels of PS and PE 

can have profound effect on membrane trafficking of lipids and the asymmetric membrane 

structure, which in turn affects the programmed cell death apoptosis and phagocytosis.46, 47 

Our DESI-MSI results suggest that ccRCC changes the lipidome, but still more needs to 

be learned about how different metabolic pathways are triggering tumorigenesis. In order to 

understand the roles of specific metabolites including specific fatty acids, and phospholipids, 

we and others are obtaining detailed information on the ccRCC metabolism.

Our study provides a proof of concept demonstrating the potential for using features 

of the metabolome for accurately distinguishing normal from malignant kidney ccRCC 

tissues. However, the performance characteristics could differ for other histologic subtypes 

of RCC including papillary, chromophobe, and rare subtypes, as well as benign entities 

such as oncocytoma and angiomyolipoma.48 Metabolic profiling and lipid profiling of RCC 

subtypes and ccRCC-derived metastases have a potential for the classification of subtypes 

and the identification of therapeutic targets.49, 50 We had a modest number of samples, 

although the large number of pixels per case provided sufficient power for robust model 

building. Additional work will also be necessary for optimization of the diagnostic calls 

for ccRCC to fit the clinical workflow. For example, as intraoperative mass spectrometry is 

incorporated into the workflow, it is likely that thresholds will need to be adjusted regarding 

the number of pixels used to make a call of malignancy as well as cut-offs for identifying 

cancer in our metabolite panel. Regardless, excellent performance of our combined model 

on data show promise for considerable improvement in sensitivity for detecting cancer 

compared to present analysis of standard frozen sections. Finally, practical application of 

metabolic signatures will depend upon further development of technologies for portable and 

rapid mass spectrometry.

Conclusions

DESI-MSI is a promising technology for rapid analysis of tissue samples that can 

distinguish cancerous from normal kidney tissues. We have identified a wealth of new 

metabolites, including the lipidome, which can be used as diagnostic markers. This 

information can also be used to gain biological insights into ccRCC tumorigenesis. Our 

combined predictive model consisting of differentially expressed metabolites and the ratio of 

glucose to arachidonic acid can discriminate cancer versus normal tissue with an accuracy 

of 85.3%. As rapid mass spectrometry methods become incorporated into the clinical 

workflow, our data strongly suggest that determination of surgical margins in many diseases, 

including RCC, will be a fruitful application with potential to improve clinical outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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intraoperative frozen section

H&E
hematoxylin and eosin

DESI-MSI
desorption electrospray ionization mass spectrometry imaging

DI
desorption ionization

Lasso
least absolute shrinkage and selection operator

AUC
area under the curve

ROC
receiving operator characteristic

TCA
tricarboxylic acid

FA
fatty acid

PG
glycerophosphoglycerol

PS
glycerophosphoserine

PI
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PE
glycerophosphoethanolamine

GLUT-1
glucose transporter 1

VHL 
von Hippel-Lindau

HIFα
hypoxia-inducible factor α

LDH-A
lactate dehydrogenase A

COX
cyclooxygenase

LOX
lipoxygenase

DMF
dimethylformamide

ACN
acetonitrile

LTQ
linear trap quadrupole
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Novelty and Impact:

Clear cell renal cell carcinoma (ccRCC), lethal kidney cancer subtype, represents 

metabolic heterogeneity. The authors use desorption electrospray ionization mass 

spectrometry imaging (DESI-MSI) to map the lipids and metabolites in core biopsies 

of fresh-frozen sections from partial nephrectomy. The molecular analysis of each pixel 

(200 µm) reveal the ratio of glucose to arachidonic acid as diagnostic marker, allows 

surgical margins to be identified with higher accuracy over H&E staining, which has a 

15–30% misclassification rate.

Vijayalakshmi et al. Page 15

Int J Cancer. Author manuscript; available in PMC 2021 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
The comparison between MS profiles of normal versus ccRCC tissue imaged at m/z 50–200. 

Inset shows the hematoxylin and eosin (H&E) images of ccRCC and normal tissue and the 

respective heatmaps of the tissue plotted with respect to glucose. Peaks marked with an 

asterisk arise from background.
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Figure 2: 
Comparison between MS profiles of normal versus ccRCC tissue imaged at m/z 200–1000. 

Inset shows the H&E images of ccRCC and normal tissue and the respective heatmaps of the 

tissue plotted with respect to arachidonic acid.
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Figure 3. 
Comparison of relative intensity of ratio of glucose to arachidonic acid in normal tissue (0) 

and cancerous tissue (1). Each data point represents the average relative intensity of the ratio 

from all pixels in a tissue.
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Figure 4: 
Sensitivity analysis to evaluate model accuracy, true positive, and true negative rates for 

various pixel to the tissue thresholds. This threshold (cutpoint) refers to the percentage of 

pixels required to be cancer positive for the overall tissue to be labeled as cancerous.
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Figure 5. 
Comparison of three models using area under the curve (AUC) and receiving operator 

characteristic (ROC) curve at the pixel level. AUC metrics are 0.814, 0.714, and 0.842 for 

baseline, log-ratio, and combined models, respectively.
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Table 1.

Leave-one-patient-out cross-validation performance of baseline Lasso, log-ratio Lasso on training sets, and 

performance of all models on test set at tissue level.

Set Predicted

Baseline Lasso Normal Cancer % agreement

Training
(tissue) Truth

Normal 21 2 91.3%

Cancer 4 19 82.6%

Overall agreement 86.9%

Log-ratio Lasso Normal Cancer % agreement

Training
(tissue) Truth

Normal 11 12 47.8%

Cancer 5 18 78.3%

Overall agreement 63.04%

Baseline Lasso Normal Cancer % agreement

Test
(tissue) Truth

Normal 16 1 94.1%

Cancer 4 13 76.5%

Overall agreement 85.3%

Log-ratio Lasso Normal Cancer % agreement

Test
(tissue) Truth

Normal 9 8 52.9%

Cancer 1 16 94.1%

Overall agreement 73.5%

Combined model Normal Cancer % agreement

Test
(tissue) Truth

Normal 14 3 82.4%

Cancer 2 15 88.2%

Overall agreement 85.3%

True negative rate (Specificity) = (TN/ (TN + FP))

True positive rate (Sensitivity) = (TP/ (TP + FN))
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