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A B S T R A C T   

Background: Oxidative stress may be a key player in COVID-19 pathogenesis due to its significant role in response 
to infections. A defective redox balance has been related to viral pathogenesis developing a massive induction of 
cell death provoked by oxidative stress. The aim of this study is to perform a complete oxidative stress profile 
evaluation regarding antioxidant enzymes, total antioxidant capacity and oxidative cell damage in order to 
characterize its role in diagnosis and severity of this disease. 
Methods: Blood samples were obtained from 108 COVID-19 patients and 28 controls and metabolites represen
tative of oxidative stress were assessed. The association between lipid peroxidation and 28-day intubation/death 
risk was evaluated by multivariable regression analysis. Probability of intubation/death to day-28 was analyzed 
by using Kaplan-Meier curves and tested with the log-rank test. 
Results: Antioxidant enzymes (Superoxide dismutase (SOD) and Catalase) and oxidative cell damage (Carbonyl 
and Lipid peroxidation (LPO)) levels were significantly higher in COVID-19 patients while total antioxidant 
capacity (ABTS and FRAP) levels were lower in these patients. The comparison of oxidative stress molecules’ 
levels across COVID-19 severity revealed that only LPO was statistically different between mild and intubated/ 
death COVID-19 patients. COX multivariate regression analysis identified LPO levels over the OOP 
(LPO>1948.17 μM) as an independent risk factor for 28-day intubation/death in COVID-19 patients [OR: 2.57; 
95% CI: 1.10–5.99; p = 0.029]. Furthermore, Kaplan-Meier curve analysis revealed that COVID-19 patients 
showing LPO levels above 1948.17 μM were intubated or died 8.4 days earlier on average (mean survival time 
15.4 vs 23.8 days) when assessing 28-day intubation/death risk (p < 0.001). 
Conclusion: These findings deepen our knowledge of oxidative stress status in SARS-CoV-2 infection, supporting 
its important role in COVID-19. In fact, higher lipid peroxidation levels are independently associated to a higher 
risk of intubation or death at 28 days in COVID-19 patients.   
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1. Introduction 

A new strain of coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), was recognized to have emerged in 
Wuhan, China in December 2019. It is the third coronavirus that causes 
severe respiratory disease in humans (COVID-19) [1] along with 
SARS-CoV [2] and Middle East Respiratory Syndrome-coronavirus 
(MERS-CoV). In most cases causes a mild or no symptomatic respira
tory disease but up to 20% of them present serious illness requiring 
hospitalization [3] with high fever and pneumonia [4], leading to acute 
respiratory distress syndrome (ARDS) [5]. Severe COVID-19 infection 
triggers imbalanced and uncontrolled cytokine response, exuberant 
endothelial inflammatory reactions and vascular thrombosis [6]. 

Oxidative stress may be a key player in COVID-19 pathogenesis due 
to its significant role in response to infections [7]. Several studies have 
reported some viruses’ ability to disrupt redox balance of a cell to ensure 
survival [8]. This defective redox balance has been related to viral 
pathogenesis developing a massive induction of cell death provoked by 
oxidative stress [9]. Oxidative stress is a typical phenomenon of in
fections produced by Respiratory Syncytial Virus (RSV) [10], which 
induces reactive oxygen species (ROS) production, activating 
pro-inflammatory cytokines and innate immunity [11]. RSV increases 
lipid peroxidation and decreases Glutathione (GSH) in human alveolar 
type II-like epithelial cells and small airway epithelial cells and inhibits 
Nrf2 pathway activation, decreasing gene expression of protective 
molecules [12]. Furthermore, an excessive amount of ROS is produced 
by Influenza infection in several tissues [13] such as endothelium [14] 
and alveolar epithelium [15]. Influenza virus induces apoptosis and 
cytotoxicity in alveolar epithelial cells increasing caspase 1 and 3 and 
IL-8 expression [16]. However, this virus facilitates the nuclear trans
location of Nrf2 with subsequent expression of a protective enzyme 
against oxidative injury in human alveolar epithelial cells [16]. 
Accordingly, oxidative stress may also profoundly impact COVID-19 
pathogenesis, but only few studies have been developed for this pur
pose [17–19]. 

In this regard, here we aimed to perform a complete oxidative stress 
profile evaluation regarding antioxidant enzymes, total antioxidant ca
pacity and oxidative cell damage in plasma samples from a prospective 
COVID-19 patients’ cohort in order to characterize its role in diagnosis 
and severity of this disease. 

2. Materials and methods 

2.1. Patient selection 

A total of 108 adult patients diagnosed with COVID-19 and admitted 
at the “Hospital Clínico Universitario de Valladolid” (Valladolid, Spain) 
were prospectively recruited between 24th of March and 11th of April 
2020. Positive result in severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection was confirmed in all patients by polymerase 
chain reaction on nasopharyngeal swabs. Patients with other acute 
diseases, infections, or chronic terminal illness were excluded. In addi
tion, 28 age- and gender-matched healthy volunteers were also recruited 
in the same time period. Those 28 control samples were collected during 
the preanesthetic evaluation for scheduled surgery with a negative PCR 
result for SARS-CoV-2 infection. The study was approved by the Hos
pital’s Clinical Ethics Committee (CEIm) and the informed consent was 
obtained from all study participants (cod: PI 20–1717). This study fol
lowed the code of ethics of the World Medical Association (Declaration 
of Helsinki). 

2.2. Severity and mortality 

Our sample was divided into three groups: i. Controls (n = 28), ii. 
Mild and moderate COVID-19 patients (n = 76): admitted in ward, iii. 
Critical (n = 32): mechanical ventilation. Moreover, in terms of 

mortality there were 20 dead patients (12 of them included in critical 
group) and 88 alive ones. In order to focus a better approach to disease 
severity we joined both critical and death COVID-19 patients following 
another important studies [20]. So that we finally arranged two 
COVID-19 groups: Intubated or death patients (n = 40) and 
non-intubated or death (mild) patients (n = 68). 

2.3. Biological samples 

Plasma samples from each patient were prospectively recruited at 9 
a.m. immediately after their first night of hospital admission for pre
venting circadian variations. Blood was collected in 3.2% sodium citrate 
tubes and centrifuged at 2000×g for 20 min at room temperature. The 
resulting plasma was aliquoted and directly frozen at − 80 ◦C until used. 

2.4. Antioxidant enzymes’ levels determination 

Superoxide dismutase activity was assessed by using Superoxide 
Dismutase (SOD) Colorimetric Activity Kit, following the manufac
turer’s recommendations. In the assay, superoxide (O2-) is provided by 
xanthine oxidase (XO) catalyzed reaction. O2- reacts with a WST-1 dye 
to form a colored product. SOD scavenges the O2- thus less O2- is 
available for the chromogenic reaction. The color intensity at 440 nm is 
used to determine the SOD activity. 

Catalase (CAT) activity was determined by using Catalase (CAT) 
Activity Assay Kit, following the manufacturer’s recommendations. The 
reaction that CAT decomposes H2O2 can be quickly stopped by ammo
nium molybdate. The residual H2O2 reacts with ammonium molybdate 
to generate a yellowish complex. CAT activity can be calculated by 
production of the yellowish complex at 405 nm. 

2.5. Total antioxidant capacity levels determination 

The antioxidant capacity of samples was evaluated by two methods: 
FRAP (Ferric Reducing Antioxidant Power): This assay is based on 

the ability of the sample to allow iron reduction, which is carried out as 
described by Benzie and Strain. Results will be quantified by absorbance 
at 595 nm using a standard curve of known Trolox concentrations, 
following our lab protocol. 

ABTS (2,2-azino-bis (3-ethylbenzthioziozline-6-sulfonic acid): This 
technique is based on the estimation of the antioxidant capacity by 
performing a colorimetric test using the cationic radical (ABTS). This 
assay was performed following our lab protocol. 

2.6. Oxidative cell damage levels determination 

The DNA oxidized guanosine specie, 8-hydroxy-2′-deoxyguanosine 
(8-OHdG), was quantitatively measured at 450 nm wavelength by using 
The DetectX® DNA Damage Immunoassay Kit (Arbor Assays, Ann Arbor, 
MI, USA), following the manufacturer’s recommendations. 

Lipid peroxidation (LPO) products were analyzed by using the Bio
quochem commercial kit ref KB03002 (BQCell™ MTT, Bioquochem, 
Oviedo, Spain), following the manufacturer’s recommendations. 
Malondialdehyde (MDA) and 4-Hydroxynonenal (HNE) concentrations 
were measured as an index of lipid peroxidation. Reactions between 
indoles and aldehydes (MDA and HNE) gives a diindolylalkane (chro
mophore) whose maximal absorbance is in the 580–620 nm region. 

Protein carbonyl was analyzed by using Protein Carbonyl Colori
metric Assay Kit (Tissue and Serum Samples) commercial kit ref E-BC- 
K117-S (Elabscience Biotechnology Inc, United States), following the 
manufacturer’s recommendations. Protein carbonyl was indirectly 
calculated by measuring at 370 nm after the precipitate formed between 
carbonyl group and 2, 4-dinitrophenylhydrazine is dissolved. 
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2.7. Statistical analysis 

Differences between groups were assessed as described in Tamayo- 
Velasco A et al. [21]. Differences in oxidative stress molecules’ levels 
between groups were assessed using the Mann Whitney U test. Those 
differences across COVID-19 severity were evaluated by the Krus
kal–Wallis test, with post hoc tests adjusting for multiple comparisons. 
The optimal operating point (OOP) of LPO was calculated, being the 
value for which the point on the curve had the minimum distance to the 
upper left corner (where sensitivity = 1, and specificity = 1). By 
Pythagoras’ theorem this distance is: Optimal Operating Point (OOP) =
√(1− sensitivity)2 + (1− specificity) [22]. COX multivariable logistic 
regression analysis was employed to evaluate the association between 
LPO and 28-day intubation/death risk. Variables with a p-value <0.1 in 
the univariate regression analysis were included in the multivariate 
analysis as adjusting variables. Results derived from the multivariate 
logistic regression analysis were validated by bootstrapping method 
using 1000 random samples. We analyzed probability of intuba
tion/death to day-28 in COVID-19 patients based on LPO OOP by using 
Kaplan-Meier curves and tested with the log-rank test (Man
tel-Haenszel). We considered 2-sided p-values <0.05 to indicate statis
tical significance. All data were analyzed using the IBM SPSS 22.0 
software (SPSS, Chicago, IL). 

2.8. Role of the funding source 

None. 

3. Results 

3.1. Clinical characteristics 

A total of 136 patients were registered in the study. Clinical char
acteristics of patients are shown in Discovery cohort panel of Table 1 in 
Tamayo-Velasco et al. [21]. In terms of age, there were no differences. 
Hypertension was the principal comorbidity followed by presence of 
diabetes, lung disease or coronary disease in both COVID-19 and Non 
COVID-19 patients. Referred to laboratory assessments, COVID-19 pa
tients had significantly lower lymphocyte count as well as higher 
C-reactive protein and D-dimer. Both lower platelet and leukocyte count 
as well as higher neutrophils levels were observed. Non COVID-19 pa
tients associated significant lower in-hospital stay. Finally, 18.5% of 
28-day mortality was found in COVID-19 patients while no deaths were 
recorded across Non COVID-19 patients. 

3.2. Oxidative stress levels in COVID-19 disease 

The comparison of COVID-19 patients with control group displayed 
statistically significant differences across all oxidative stress molecules 

evaluated except for 8-OHdG (Table 1). Antioxidant enzymes (Super
oxide dismutase (SOD) and Catalase) and oxidative cell damage 
(Carbonyl and Lipid peroxidation (LPO)) levels were significantly higher 
in COVID-19 patients while total antioxidant capacity (ABTS and FRAP) 
levels were lower in these patients (Table 1 and Fig. 1). The comparison 
of oxidative stress molecules’ levels across COVID-19 severity revealed 
that only LPO was statistically different between mild and intubated/ 
death COVID-19 patients (Supp File 1 and Fig. 2). A sub-analysis by 
mortality taking into account only intubated patients did not show 
statistically significant differences in terms of LPO values (p = 0.460). 

3.3. Evaluation of 28-day intubation/death risk depending on LPO levels 

COX multivariate regression analysis identified LPO levels over the 
OOP (LPO>1948.17 μM) as an independent risk factor for 28-day 
intubation/death in COVID-19 patients [OR: 2.57; 95% CI: 1.10–5.99; 
p = 0.029] (Table 2). These results were validated in 1000 samples by 
Bootstrapping method (Table 3). Kaplan-Meier curve analysis revealed 
that COVID-19 patients showing LPO levels above 1948.17 μM were 
intubated or died 8.4 days earlier on average (mean survival time 15.4 
vs 23.8 days) when assessing 28-day intubation/death risk (p < 0.001) 
(Fig. 3). 

4. Discussion 

The findings derived from this study revealed for the very first time 
that COVID-19 patients showed significantly lower levels of total anti
oxidant capacity (ABTS and FRAP) and higher levels of antioxidant 
enzymes (SOD, Catalase) and oxidative cell damage (Carbonyl and Lipid 
peroxidation (LPO)). Indeed, LPO levels over 1948.17 μM are indepen
dently associated with higher 28-day intubation/death risk. 

SARS-CoV-2 stimulates reactive oxygen species (ROS) generation 
[23]. In COVID-19 disease, ACE2 acts as SARS-CoV-2 cellular entry re
ceptor in type II pneumocytes of lung alveoli. ACE2 is responsible for 
angiotensin II (Ang II) degradation to angiotensin- (1–7) (Ang 1–7) [24]. 
Ang II produces ROS by stimulating membrane-bound NADPH oxidase 
[25]. In consequence, Ang II degradation into Ang 1–7 by ACE2 miti
gates oxidative stress as it inhibits NADPH oxidase [26]. Indeed, ACE2 
bounding to the virus downregulates ACE2, leading to an increased 
presence of superoxide species and subsequent cell damage, which may 
include lipid peroxidation, protein carbonylation and DNA oxidation 
[27], establishing an oxidative stress cycle, and ultimately, increasing 
the risk of suffering severe COVID-19 illness forms [25]. Our findings 
suggest a reactive increase of antioxidant enzymes which may be 
insufficient, leading to a decreased total antioxidant capacity and bio
molecules’ damage. Those findings differed from previous studies in 
respiratory viral infections such as RSV [12], hMPV [28] and Rhinovirus 
[29] which documented a lower expression of antioxidant enzyme 
levels. However, Kosmider B et al. [16] demonstrated that Influenza 
virus causes an increase of antioxidant genes’ expression, in line with 
our results. 

Lipid peroxidation is a biological free radical chain reaction. The 
oxidation of unsaturated fatty acids or other lipids results in peroxides of 
these compounds. Further reactions lead to aldehydes syntheses such as 
MDA or HNE. Lipid peroxidation affects all cell membranes inducing 
damage and loss of function [30]. MDA is commonly considered a 
marker of ferroptosis [31]. Ferroptosis is a form of regulated cell death 
characterized by iron-dependent lipid peroxidation, which induces cell 
death [32]. During ferroptosis, an accumulation of polyunsaturated fatty 
acids (PUFAs) occurs [33]. This implies a lipid peroxidation driven by 
PUFAs which enhances cell membrane permeability making the cell 
more sensitive to oxidation [34]. This phenomenon is a critical mech
anism in sepsis-induced injuries in mice models. Kang R et al. [35] 
described that lipid peroxidation in ferroptosis induces pyroptosis, 
suggesting a link between ferroptosis and other forms of cell death in 
sepsis. Lipid peroxidation is involved in several disease conditions [36] 

Table 1 
Oxidative stress molecules’ levels in COVID-19 and Non-COVID-19 pa
tients. Data are represented as median and interquartile range (IQR).   

Non COVID-19 COVID-19 p 

SOD (U/mL) 0.15 [0.08] 0.38 [0.42] < 
0.001 

Catalase (U/μL) 0.49 [0.19] 0.67 [0.41] < 
0.001 

ABTS (μM) 2510.47 [437] 2264.99 [525] < 
0.001 

FRAP (μM) 700.67 
[251.45] 

453.84 
[192.30] 

< 
0.001 

8-OHdG (pg/ml) 7925.78 [4894] 8373.06 [7103] 0.246 
Protein Carbonyl (nmol/mg 

prot) 
5.56 [3.68] 10.78 [7.41] < 

0.001 
MDA þ HNE (μM) 284.19 

[339.84] 
2123.62 [2068] < 

0.001  
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Fig. 1. Box plots showing oxidative stress molecules’ levels across groups.  
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like cardiovascular disease [37] cancer [38], Alzheimer [39] and 
chronic diseases such as NAFLD [40], Multiple Sclerosis [41], COPD 
[42] and Diabetes mellitus [43]. 

In fact, it has a role in both homeostasis and response to stress, such 
as viral infection [44]. Obesity is one of the most important medical 
conditions leading to an exponentially increase of SARS-CoV-2 patients’ 
mortality risk [45]. In patients suffering from metabolic disorder and 
COVID-19, lipid peroxidation produces reactive lipid aldehydes which 
will affect its prognosis [46]. In this line, our study revealed that lipid 
peroxidation is related to COVID-19 severity and intubation/death risk. 
Potje SR et al. [47] in a preliminary study in 20 COVID-19 patients 
documented the presence of higher levels of lipid peroxidation in 
COVID-19 patients but they did not find differences across patients’ 
severity, which could be dued to a lower simple size in comparison with 

our study. 
The results derived from this work highlight the importance of 

oxidative stress mediators in COVID-19, particularly the role of lipid 
peroxidation in prognosis of these patients. Taking this into account, 
these observations reinforce the urgent necessity of clinical trials in 
order to test the security and effectiveness regarding the implementation 
of antioxidant treatments in COVID-19 [48–50] for improving prognosis 
in this disease. 

Our study has some limitations to be addressed. First, oxidative stress 
biomarkers were compared only at first hospital admission. Further 
prospective follow-up studies with serial sampling should validate these 
results. Second, it was conducted in a single center and should be 
evaluated in a multicenter fashion design to validate the potential role of 
lipid peroxidation in predicting intubation/death risk in COVID-19. 

5. Conclusions 

In summary, our findings deepen our knowledge of oxidative stress 
status in SARS-CoV-2 infection, supporting its important role in COVID- 
19. In fact, higher lipid peroxidation levels are independently associated 
to a greater risk of intubation or death at 28 days in COVID-19 patients. 
We believe that these findings open a new avenue for designing clinical 
trials to evaluate the beneficial role of antioxidant treatment in patients 
suffering from COVID-19. 
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Fig. 2. Lipid peroxidation (LPO) levels across severity. The line represents significant differences between groups. The triangle represents significant differences 
against the healthy control. 

Table 2 
Multivariate logistic regression analysis to evaluate the independent association 
of LPO levels and risk of intubation or death at 28 days.   

OR 95% CI p 

Intubated/Death 
COVID-19 disease 

LPO >1948.17 μM 2.57 1.10–5.99 0.029 
Obesity 1.19 0.48–2.97 0.702 
Diabetes mellitus 2.81 1.20–6.60 0.017 
Chronic hepatic 
disease 

7.44 1.37–40.23 0.020 

Septic Shock 2.61 1.15–5.92 0.022 
Lymphocytes <875 
cells/mm3 

0.22 0.10–0.51 <0.001 

Neutrophils >5480 
cells/mm3 

2.30 1.04–5.09 0.041  

Table 3 
Validation of the multivariate analysis for evaluating the risk of intubation/ 
mortality at 28 days by Bootstrapping method using 1000 random samples.   

B 95% CI p 

Intubated/Death 
COVID-19 disease 

LPO >1948.17 μM 0.94 0.16–1.96 0.015 
Obesity 0.18 − 0.91 – 1.72 0.729 
Diabetes mellitus 1.04 − 0.20 – 2.13 0.026 
Chronic hepatic 
disease 

2.01 0.97–3.71 0.005 

Septic Shock 0.96 0.14–2.39 0.046 
Lymphocytes <875 
cells/mm3 

− 1.50 (-2.71) – 
(− 0.64) 

0.002 

Neutrophils >5480 
cells/mm3 

0.83 0.13–1.79 0.026  
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M. Heredia-Rodríguez, E. Tamayo, D. Bernardo, E. Gómez-Sánchez, Evaluation of 
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