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A B S T R A C T   

During the coronavirus disease 2019 (COVID-19) pandemic, the daily pattern of activities changed dramatically 
for people across the globe, as they socially distanced and worked remotely. Changes in daily routines created 
changes in water consumption patterns. Significant changes in water demands can affect the operation of water 
distribution systems, resulting in new patterns of flow, with implications for water age, pressure, and energy 
consumption. This research develops a digital twin to couple Advanced Metering Infrastructure (AMI) data with a 
hydraulic model to assess impacts on infrastructure due to changes in water demands associated with the COVID- 
19 pandemic for a case study. Using 2019 and COVID-19 modeling scenarios, the hydraulic model was executed 
to evaluate changes to water quality based on water age, pressure across nodes in the network, and the energy 
required by the system to distribute potable water. A water supply interruption event was modeled as a water 
main break to assess network resiliency for 2019 and COVID-19 demands. A digital twin provides the capabilities 
to explore and visualize emerging consumption patterns and their effects on the functioning of water systems, 
providing valuable analyses for water utility managers and insight for optimizing infrastructure operations and 
planning for long-term impacts.   

1. introduction 

Smart sustainable cities are those that use connected technologies to 
improve the management of natural resources and infrastructure to 
better serve communities (Bibri and Krogstie, 2017). Smart cities ap-
plications are powered by Information and Communication Technology 
(ICT) and collect, wrangle, and analyze real-time data to guide urban 
management and decision-making. In the context of the built environ-
ment, smart cities technologies can be applied to improve the operation 
of infrastructure providing, for example, water, energy, transportation, 
and construction services (Berglund et al., 2020). Digital water ap-
proaches that use Big Data, the Internet of Things (IoT), ICT, and data 
analytics within the sociotechnical infrastructure of water systems can 
enable utilities to become more resilient, innovative, and efficient 
(Krause et al., 2018; Sarni et al., 2019). Digital water meters and 
Advanced Metering Infrastructure (AMI) have grown in adoption across 
the water industry (West Monroe, 2017) and provide capabilities to 

record water consumption data at the account level at medium (hourly) 
and high (sub-hourly) temporal resolution (Nguyen et al., 2018; 
Pesantez et al., 2020a). Analysis of smart water meter data has 
contributed primarily to demand management, however, as part of 
conservation programs (Visser et al., 2021), end use modeling (Bethke 
et al., 2021), and leakage identification approaches (Booysen et al., 
2019). Further research is needed to fulfill the promise of digital water 
in improving the resilience and efficiency of managing infrastructure. 
New frameworks can apply smart city technologies in a way that pro-
vides real-time operational decision-making for water supply and 
distribution. 

The digital twin, as a smart city technology, provides an approach to 
use real-time data to improve management of water infrastructure. The 
digital twin is a dynamic digital replica of a system and mimics its real- 
world behavior (Bolton et al., 2018). A digital twin integrates streaming 
big data reported at high temporal and spatial resolutions with 
model-based simulations to represent and predict current and future 
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conditions of a physical counterpart (Lu et al., 2020a). Digital twins can 
store infrastructure data and provide capabilities to share and visualize 
information safely and securely among stakeholders (Lu et al., 2020a). 
The digital twin approach automatically integrates data from diverse 
sensors with the simulation of physical processes, and users can analyze 
and manage information for making operational decisions in real-time 
(Berglund et al., 2020). The digitalization of infrastructure and com-
munity behaviors provides new capabilities for sustainable urban 
management. An important component of sustainable urban manage-
ment is disaster response, and digital twins have an important applica-
tion in the context of disasters due to their capabilities to support 
real-time decision-making across an urban area. Disasters in cities 
tend to evolve rapidly with emerging complexities, as hazards shock 
entwined social and technical systems, and consequences cascade across 
interconnected infrastructure systems. Community disaster manage-
ment must synthesize the unique characteristics of a community and 
disaster to anticipate consequences and select mitigating responses 
(Lindell et al., 2007). The digital twin approach can couple multi-data 
sensing, data analytics, decision-making, and network analysis to 
improve emergency management (Fan et al., 2021; Ford and Wolf, 
2020). New sociotechnical frameworks that integrate real-time data on 
the location, decisions, and behaviors of community members with 
infrastructure simulation modeling can be used to visualize, predict, and 
guide mitigation of consequences as a disaster unfolds. 

The coronavirus disease 2019 (COVID-19) pandemic caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) created 
an unprecedented disaster for urban managers across the globe. The 
pandemic disrupted daily habits and behaviors: the disease led to a 
significant loss of life; people who were exposed or infected were 
quarantined and unable to carry out typical tasks and routines; and 
communities adopted social distancing practices to reduce transmission. 
Changes in daily patterns associated with social distancing and working 
from home led to changes in the use of infrastructure, as people avoided 
places of business, industries, and institutions (Xie et al., 2021). Impacts 
of the pandemic on infrastructure and the environment have been re-
ported for transportation systems (Goenaga et al., 2021), the construc-
tion industry (Alsharef et al., 2021), air quality (Berman and Ebisu, 
2020), natural water systems (Braga et al., 2020), and water utilities 
(Berglund et al., 2021b; Spearing et al., 2021). This research focuses on 
the consequences for drinking water distribution infrastructure due to 
changes in the timing, types, and magnitude of water demands. New 
patterns in residential and non-residential demands can create unex-
pected hydraulic dynamics, which affect the performance and resilience 
of water systems. While utilities across the globe reported changes in 
water consumption (Spearing et al., 2021), few were able to report on 
the real-time effects on water infrastructure hydraulics and operations. 
As described above, a digital twin can provide the functionality to 
collect and analyze important real-time information for decision-making 
during disasters. Digital twins were developed to understand unfolding 
events and mitigate consequences during the COVID-19 pandemic in the 
context of supply chain management and suppression of disease trans-
mission (Ivanov, 2020; Pang et al., 2021). Specifically, digital twins 
were applied to analyze disruptions in supply chains caused by the 
closing and re-opening of facilities (Ivanov, 2020) and to predict 
infection rates in cities based on climate conditions, response policies, 
and mobility (Pang et al., 2021). Digital twins are needed in the water 
industry to visualize and analyze the short-term effects of disruptions on 
water systems and to provide insight and decision-making support for 
making necessary adjustments to operations, with application for 
COVID-19 scenarios and other disasters. 

One component of a water distribution system digital twin is a hy-
draulic model. Many water utilities develop and use hydraulic models to 
analyze hydraulic and quality conditions. Hydraulic models are typi-
cally designed using census data and guidelines that are based on daily 
demand profiles and peaking factors (Gurung et al., 2014). Hydraulic 
models have been conventionally used for planning purposes to analyze 

alternative scenarios, rather than for assessing and planning real-time 
operations (AWWA, 2014). Prior to the availability of smart meters 
data collected at the account-level, model input about water demands 
were approximate, highly uncertain, and did not capture variability in 
realistic demands (Kang and Lansey, 2009; Kun et al., 2015). AMI, on the 
other hand, provides accurate and precise data about water demands 
and facilitates the development of a model that can accurately simulate 
and predict hydraulic conditions at a smaller time step and spatial scale 
(Shafiee et al., 2020). A digital twin can be developed by coupling water 
system models with big data collected through AMI and Supervisory 
Control and Data Acquisition (SCADA) for both operational and plan-
ning purposes (Conejos Fuertes et al., 2020; Gurung et al., 2016). Digital 
twins that are applied for water systems can reduce uncertainty in model 
parameters, integrate social data, reduce risk and uncertainty during 
emergency management, and enable advanced modeling of coupled 
sociotechnical systems (Shafiee et al., 2018). 

This research describes the development and application of a digital 
twin to explore how changes in water demands during the COVID-19 
pandemic affected hydraulics and energy consumption. The frame-
work described here links AMI data with a hydraulic model through a 
wrapper that aggregates individual demands at nodes and writes input 
for the hydraulic model, based on the framework developed by Shafiee 
et al. (2020). The approach demonstrated here advances conventional 
hydraulic modeling by applying AMI data directly for demand assign-
ment in hydraulic models rather than processing SCADA data to cali-
brate demands. The digital twin is applied for a medium-sized utility 
that serves a population of approximately 60,000 people, and AMI water 
consumption data are reported at hourly intervals for approximately 20, 
000 accounts. Scenarios are created to compare hydraulic performance 
for pre-pandemic (2019) demands with hydraulic performance during 
the COVID-19 pandemic. The effect of changing water demand on hy-
draulic performance is evaluated using metrics that have been devel-
oped to assess the impacts of demand management programs 
(Mazumder et al., 2018; Zhuang and Sela, 2020) and include pressure, 
energy consumption, and water quality. The digital twin is applied for a 
multi-modal failure when a water outage concurs with altered demands 
that are associated with social distancing during the COVID-19 
pandemic. This research explores how a digital twin can be used to 
gain insight into changes in the level of service associated with shifting 
demands, which can be used within a real-time disaster response 
decision-making framework for water infrastructure management. 

This paper is organized as follows. Section 2 provides background on 
water demand and infrastructure impacts during the COVID-19 
pandemic and the use of digital twins in the drinking water sector. 
Section 3 describes the methodology and the computational components 
that constitute the digital twin in this framework, including the water 
demand data set and the water network model. In Section 3, we also 
present a description of metrics that are used to compare water demand 
scenarios representing pre-pandemic periods (denoted as 2019) and a 
period during the COVID-19 pandemic, which affected water use in the 
U.S. beginning in the year 2020. Section 4 describes the illustrative case 
study of this research. Section 5 presents the results and analysis of 
demand scenarios and explores how the digital twin could be used to 
visualize emerging data during a multi-modal failure, such as a water 
outage during times of social distancing caused by a pandemic. Finally, 
Section 6 provides a discussion of the implications of this research, and 
Section 7 summarizes the conclusions of the study. 

2. background 

This section reviews research in four areas: the development of 
digital twins within the smart city paradigm, applications of digital 
twins for disaster management, the development of digital twins for the 
drinking water sector, and reports of changes in water demand due to 
social distancing practices and policies that were implemented during 
the COVID-19 pandemic. A mind map (Fig. 1) demonstrates the 
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connections among the works described below and identifies a gap in the 
development and use of digital twins for water distribution systems. 

2.1. digital twins and smart cities 

A major driver in the development of digital twins is for application 
within the field of manufacturing (Davila Delgado and Oyedele, 2021). 
For example, Lu et al. (2020b) applied a digital twin to detect anomalies 
in heating, ventilation, and air conditioning (HVAC) data and identify 
malfunctioning pumps. Other applications of digital twins assess struc-
tural conditions in complex buildings to deploy preventive maintenance. 
For example, Angjeliu et al. (2020) modeled the structural conditions of 
a Milan cathedral to predict damage and prescribe preventive mainte-
nance activities. The authors highlight the importance of developing 
digital twins to facilitate an approach that merges observed data with 
models of complex systems. Recently, the need to develop models of 
human-building interactions has grown more salient to capture the ef-
fects of growing variability in the patterns of building use during the 
COVID-19 pandemic, due to social distancing and working remotely. For 
example, Xie et al. (2021) incorporate occupancy and behavioral pa-
rameters in prescribing facility and energy management strategies. 
Their digital twin captures the effects of changes in behavioral patterns 
on the decision-making processes of building management. 

Cities around the world are retrofitting infrastructure components 
with ICT equipment to improve infrastructure services and the livability 
of their population. Sensors deployment and smart technologies, such as 
IoT, that measure, broadcast, predict, and optimize data at near or real- 
time have contributed to the development of digital twins for machines 
and systems (Tao and Qi, 2019). Mohammadi and Taylor (2017) 
developed a smart city digital twin paradigm, where an analytic plat-
form simulates spatiotemporal fluctuations in the city of Atlanta, GA. 
The study highlights that transforming cities into smart cities tightens 
the interactions of humans, infrastructure, and technology. Access to 
real-world data that describes human-infrastructure interdependencies 
is still lacking, but is needed to accurately model cities as complex 
adaptive systems. One example of the digitalization of cities is described 
by Schrotter and Hürzeler (2020) for the city of Zurich. The 3-D repre-
sentation of the city’s built environment is accurate at a high resolution 
and is used for urban planning. Operational conditions of utility com-
ponents (i.e., pipelines) are not merged into the city’s visual represen-
tation, and real-time analyses of municipal services are not readily 

available at the system level. O’Dwyer et al. (2020) developed a digital 
twin as a management tool for the energy sector that can be used in an 
operational context to optimize energy assets across a city. The frame-
work integrates the IoT and machine learning to develop forecasting 
approaches for energy networks. 

2.2. digital twins and disaster management 

The digital twin and smart cities paradigm have been applied to 
explore improvements in disaster management. As extreme events 
evolve, a dynamically interconnected city or community may respond 
better and faster than a traditionally static community. For example, 
Ford and Wolf (2020) presented a Smart City Digital Twin (SCDT) that 
can be applied for disaster management, where measured, broadcasted, 
and simulated data are coupled with a community simulation model and 
digital imaging tools. The procedure’s output can be used for planning, 
management, and decision-making at the community level. Researchers 
have addressed the complexity of human-building interactions during 
extreme events through analyzing data from social networks (e.g., 
Twitter) and using new insight to respond to and mitigate the effects of 
disasters on a community (DiCarlo and Berglund, 2021; Fan et al., 
2020). Extreme events or disasters management responses have the 
potential to be improved with the development of digital twin models 
(Shahat et al., 2021). 

2.3. water demand changes and infrastructure impacts during the COVID- 
19 pandemic 

Social distancing and new practices around working from home 
during the COVID-19 pandemic changed the timing and spatial distri-
bution of water demands. The City of Melbourne, Australia, for example, 
reported that weekend diurnal patterns emerged on weekdays as people 
shifted demands (Melbourne Water, 2020). Research studies that have 
been conducted to explore and report changes in water consumption 
during the COVID-19 pandemic. In general, changes in demands vary 
based on the make-up of a utility’s customer base (Cooley et al., 2020). 
Residential users tended to increase demands, while non-residential 
users decreased demands (Kalbusch et al., 2020; Spearing et al., 
2021). For example, through a survey of 28 water utilities in the U.S., 
Spearing et al. (2021) found that 43% of utilities surveyed reported an 
increase in residential water demand, 46% reported a decrease in 

Fig. 1. Graphical representation of the literature review related to Digital Twins as part of the smart city paradigm, applications for disaster management, and digital 
twin models for water distribution systems based on real-time demand data reported by smart meters. 
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commercial water demand, and 21% reported a reduction in industrial 
water demand. For another eight U.S. utilities that were surveyed in a 
separate research study, residential consumption increased compared to 
previous years (Eastman et al., 2020). University towns reported drastic 
reductions in demands due to emigrating populations (American Water 
Works Association, 2020; Balacco et al., 2020; Spearing et al., 2021), 
and commercialized communities reported significant reductions in 
water use during lockdown periods (Cooley et al., 2020). Balacco et al. 
(2020) reported that the total daily volume of demands was not affected 
by a lockdown for small towns in Italy. For large cities, demands which 
are typically exerted at businesses shifted to residential supply zones, 
and in some cases, overall demands decreased due to a lack of incoming 
commuters (Balacco et al., 2020; Kalbusch et al., 2020). Larger metro-
politan areas reported small changes in consumption overall, due to a 
diversity of residential, commercial, and industrial demands that were 
impacted in diverse ways (Cooley et al., 2020). 

Other studies demonstrated that the diurnal pattern of demands 
shifted. Balacco et al. (2020) reported a notable delay in the morning 
peak demand for five Italian cities, by up to 2.5 hours for some cities. 
The peak associated with lunchtime disappeared for one city; the vol-
ume of water consumed during weekends significantly increased for a 
small town; and the peak around dinnertime was less pronounced for all 
cities, compared to patterns in March and April of 2019. A similar trend 
was observed for a utility in Germany, where morning and evening peak 
demands were higher, and morning peaks were shifted later (Ludtke 
et al., 2021). 

Demands that changed in response to new social distancing behav-
iors during the COVID-19 pandemic can have multiple effects on pipe 
infrastructure systems. Changes in water demands can affect the quality 
of drinking water. Just as a lack of flow in indoor pipes increases the 
water age in premise plumbing systems - leading to low disinfectant 
residuals, formation of disinfection byproducts, intensification of 
corrosion, nitrification, re-growth of microorganisms, and biofilm for-
mation (Asadi-Ghalhari and Aali, 2020) - low water quality may emerge 
in pipe networks as demands in some areas decrease. The closing of 
multiple industries or businesses in a neighborhood can affect circula-
tion in a network and lead to high water age and degraded water quality. 
Guidelines and recommendations have been developed for reopening 
buildings after shut-downs related to COVID-19 to avoid or mitigate 
stagnation issues (Proctor et al., 2020). In their survey of 28 utilities, 
Spearing et al. (2021) found that only six utilities reported problems 
with water quality during the COVID-19 pandemic. Changing demands 
may also affect energy consumption and pressures, with higher 
non-revenue losses at leaks associated with higher pressures, but these 
secondary effects of changing demands have not been reported for 
utilities during the COVID-19 pandemic. This research explores how the 
changes in demands associated with policies related to coping with the 
COVID-19 pandemic affected water distribution hydraulics on a short 
timescale, using metrics measured over hourly, daily, and weekly time 
steps. 

2.4. digital twins and water distribution networks 

The digital twin has been explored through a limited number of 
studies for water infrastructure applications. Shafiee et al. (2018) pro-
posed a framework to integrate big data and water systems models in a 
data cycle that connects environmental sensors with a data lake and 
water system model. Their proposed framework collects big data from 
environmental sensors (e.g., AMI and SCADA data); stores the data in a 
data lake; automatically runs analytics to clean and process the data; 
uses middleware and a wrapper to prepare the data for input to a water 
system model; and saves model results to the data lake. Components of 
the concept were implemented as a digital twin for a water distribution 
system through the use of a dynamic demand assignment module that 
automatically assigns streaming AMI data to nodes for input to a hy-
draulic model (Shafiee et al., 2020). Conejos Fuertes et al. (2020) further 

extended the concept of a digital twin for the city of Valencia, Spain. The 
digital twin automatically updates the status of infrastructure elements 
using SCADA data and consumption at nodes using AMI data. Additional 
algorithms are integrated to use GIS data to update the topology of 
infrastructure networks; filter and correct raw SCADA data; and calcu-
late user demands at accounts without smart meters. The digital twin 
can be run in real-time and is updated every minute with SCADA data 
that details demands, pressures, water levels, and the status of elements. 

The framework reported by Shafiee et al. (2020) implements a digital 
twin through components that translate streaming AMI data for input to 
a hydraulic model in real-time. Model results as reported through the 
digital twin are compared for normal operating conditions with system 
measurements. The framework reported in this manuscript uses manu-
ally operated middleware to acquire raw data from the data lake and a 
manual approach to clean data. An automated wrapper aggregates AMI 
data and passes new input files to the hydraulic model. The contribu-
tions of the digital twin reported here are in the application to explore 
infrastructure changes on an hourly basis during extreme events such as 
the COVID-19 pandemic. This research demonstrates the use of a digital 
twin for infrastructure operational decision-making in the context of 
emergency management. This research conducts further simulations to 
explore how the digital twin can provide new insight during a 
multi-modal failure at the intersection of a water outage and changes in 
water demands related to lockdowns, remote work, and social 
distancing in response to extreme events such as the COVID-19 
pandemic. 

3. methods and materials 

3.1. digital twin 

The digital twin framework that is used in this research is shown in 
Fig. 2. This framework uses components of the data cycle described by 
Shafiee et al. (2018). The framework was developed using three 

Fig. 2. Digital twin couples computational modules within a water data cycle 
(Shafiee et al., 2018). 
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programming languages. R and the stringr package were used to access 
AMI raw data (R Core Team, 2017; Wickham, 2019). Python program-
ming language and the scikit-learn package (Pedregosa et al., 2011; Van 
Rossum and Drake, 2009) were used for data cleaning, building the 
wrapper, and analyzing changes in water demand. The 
EPANET-MATLAB toolkit (Eliades et al., 2016; MATLAB, 2020; Rossman 
et al., 2020) was used for hydraulic simulation and analysis of infra-
structure impacts. Each component of the framework is described as 
follows. 

3.1.1. advanced metering infrastructure data set 
Water demand data from a participating water utility was used as a 

component of the digital twin. AMI measures consumption at the user- 
level and reports consumed volumes in cubic feet at an hourly time step. 

3.1.2. middleware 
AMI data were uploaded originally to an Application Programming 

Interface (API) by the utility’s partner. A script in R (v1.4.1717) was 
developed to request the data. The request includes the start and end 
times and the temporal resolution of data, ranging from hourly to 
monthly intervals. While data acquisition equipment such as SCADA 
reports data at sub-hourly time steps, demand data from AMI projects 
typically broadcast information at hourly time steps to preserve battery 
life of equipment (Nguyen et al., 2018; Pesantez et al., 2020a). For 
projects that integrate sub-hourly SCADA data and AMI hourly data, 
modeling procedures need to temporally aggregate data prior to 
model-based analysis. In this research, SCADA data are not included, 
and the model time step is set equivalent to the frequency of AMI data 
reports (one hour). A temporary token is requested to access the API 
prior to downloading, and the data are downloaded in Extensible 
Markup Language (XML) format. Finally, the data format is transformed 
from XML to comma-separated values (CSV). 

3.1.3. data cleaning and analytics 
The parsed data is cleaned to exclude all incomplete data logs of 

smart meters or logs that show only zero consumption. Missing, 
incomplete, zero, or negative records are considered as a malfunction or 
disconnection of the smart meter, using assumptions applied in similar 
research (Pesantez et al., 2020a). Preliminary analysis was performed to 
preserve data continuity. A meter was excluded from the analysis if it 
reported zero consumption for more than 720 consecutive hours 
(approximately a month), based on the assumption that those meters 
correspond to an empty building or a malfunctioning smart meter. 

3.1.4. wrapper 
The AMI dataset is transformed from a dataframe reporting smart 

meter consumption data at each time step (one hour) to edit the original 
demand pattern multipliers of the hydraulic model input file. A hy-
draulic model is the graphical and operational representation of a water 
distribution system where production, storage, and consumption points 
such as reservoirs, tanks, and users are represented by nodes; and pipes, 
valves, and pumps are represented by links (Rossman et al., 2020). In the 
vast majority of hydraulic models, nonzero demand nodes represent the 
consumption of several spatially aggregated users in a model, known as 
a skeletonized version of the system (Walski et al., 2003). For this 
application, AMI data is available at smart meters to report specific 
demand for each consumer (e.g., household, industrial user, commercial 
unit). A wrapper, or script, is used to aggregate smart meter data into 
nodal patterns that can be used within a skeletonized model. Aggregated 
demand patterns serve as input to the hydraulic model. The wrapper 
inputs are the AMI data, the original hydraulic model, and the co-
ordinates of the smart meters. The geographical coordinates of each 
smart meter are converted into x and y coordinates, which are consistent 
with the scale used by the hydraulic model. 

The wrapper is implemented in Python 3.7 with the scikit-learn 
package (Pedregosa et al., 2011). The wrapper uses the k-nearest 

neighbors algorithm (k-NN) to search for smart meters that are neigh-
bors of each nonzero demand node of the water distribution system 
(Triguero et al., 2019). Smart meters are represented by data points 
using the same geographic projection as the network nodes. The 
Euclidean distance is calculated from meters to network nodes, and the 
k-NN assigns groups of smart meters to the nearest nonzero demand 
nodes. The number of meters in each cluster depends on the granularity 
level (e.g., level of skeletonization) of the water network model and the 
network topology. In this study, the average number of meters per 
cluster is assigned as the ratio of the number of smart meters to the 
number of nonzero demand nodes (15). Hourly demands are summed 
for each group of smart meters that are associated with a node to update 
the demand pattern for that node in the input file for the hydraulic 
model. This process generates a new hydraulic model that includes the 
original entries (e.g., pipe connections, tanks, pumps, and controls) in 
addition to updated demand patterns, with a unique demand pattern for 
each node in the network. The period of the demand patterns (number of 
hours included) is specified based on the simulation scenario. 

3.1.5. hydraulic model 
The EPANET v2.2.0 toolkit is used as the hydraulic simulator to 

analyze the water network (Eliades et al., 2016; Rossman et al., 2020). 
The model is initiated from an input text file, which lists and specifies 
pipe layout based on nodes and connections between nodes; pump and 
valve placement; pipe characteristics, including, length, diameter, and 
roughness; elevation and demands exerted at nodes; pump curve char-
acteristics; and operational rules for controlling pumps and valves. 
Through the use of the wrapper (subSection 3.1.4), the patterns of de-
mands are re-written at each nonzero demand node within the input file. 
The hydraulic solver computes head and flows at nodes and pipes for 
each time step of an extended period simulation (EPS). This process is 
executed for a pre-defined duration. Pattern multipliers at each node in 
the hydraulic model represent the water demand reported by smart 
meters and depend on the temporal resolution used to report smart 
meter data (e.g., hourly smart metered data are used to create hourly 
pattern multipliers). As most water utilities have skeletonized models 
representing their water systems, aggregating demands from several 
smart meters into a network node makes it feasible to perform hydraulic 
and quality analyses (Perelman et al., 2008). For applications that use an 
all-pipes model, this method would not require the wrapper to aggregate 
demands. However, the computing resources associated with an 
all-pipes model may limit the scalability of the approach. 

3.2. performance metrics 

Zhuang and Sela (2020) modeled alternative demand management 
strategies to evaluate performance across seven benchmark water net-
works. They used the following metrics to assess hydraulic performance 
of networks under changing demand profiles. 

3.2.1. total water consumption 
The volume of water produced by drinking water treatment plants 

and delivered to the network is reported for management purposes. The 
volume of demands, or consumed water, provides a general under-
standing about how much water the system distributes. Consumption 
curves are also reported for inspection. The total water consumption is 
calculated as shown in Eq. (1): 

Qsystem =
∑N

i=1

∑T

k=1
bi × pk (1)  

where Qsystem is the total volume of water consumed by the system (m3); 
bi represents the base demand (m3/h) of each water network node (i) and 
defined based on the demographic and level of service characteristics of 
the system for N nodes with nonzero demand values (Kang and Lansey, 
2009); pk is a multiplier that accounts for the water variability over time 
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at each simulation time step k and summed across the total time steps 
(T). A change in the demand nodes will follow a change in the total 
volume of water consumed by the system. 

3.2.2. average system pressure 
Pressure is directly associated with demand in water distribution 

systems, and decreases in demands lead to high pressures in the system, 
if operations are not adjusted. The average pressure of the system (Psys) 
is calculated as the average of the pressure values for all the nodes of the 
system at a time step, as shown in Eq. (2). 

Psys =

∑i=N
i=1 Pi,t

N
(2)  

where P is the pressure in m of node i at time step t; and N is the number 
of nodes of the network. 

3.2.3. energy consumption 
Distributing water to customers involves the production and con-

sumption of energy, and shifting demands can also lead to changes in 
energy consumption across water systems (Beal et al., 2016; Friedman 
et al., 2014). Energy is calculated as the sum of the energy produced by 
pumps in the system. The energy (E) is calculated in kWh for each pump 
(pmp) connecting nodes i and j of the network as shown in Eq. (3): 

Ek
pmp = γ × Qk

pmp × Δhk
ij × k (3)  

where γ is the specific weight of water expressed in kN /m3; Qk
pmp is the 

flow rate of pump pmp at time k in m3/h; and Δhk
ij is the absolute dif-

ference of heads between the nodes i and j; k is the time step of the 
hydraulic simulation. As shown in Eq. (3), it follows that a reduction in 
water demand may produce a reduction in energy consumed by the 
pumps of the system. 

3.2.4. water age 
Water age represents the time potable water resides in the network. 

Water age is calculated based on the time it takes water to move through 
the pipes of the system and the time water may spend in the storage 
tanks (Eq. 4) (Cheng et al., 2015). Water age is a proxy for water quality 
and can reveal stagnation problems and bacterial regrowth due to the 
decay of residual chlorine. When working with hydraulic analysis of 
water networks, water age should not be higher than 48 hours at the end 
of a week of simulation (Marchi et al., 2014). The water age metric in-
dicator that is implemented here reports the median water age in the 
network at the end of the hydraulic simulation (Zhuang and Sela, 2020). 
The water age is calculated at each node i in the network, based on the m 
number of pipes through which water travels from the source to node i: 

Ti =
∑m

l=1
tl (4)  

where Ti represents the water age of node i in hours and tl is the time 
water spends on each pipe l to move from the source to the point of 
consumption at node i. EPANET calculates water age as a zero-order 
reactive constituent with a rate constant of 1.0. Therefore, at each 
simulated second, water becomes a second older (Rossman et al., 2020). 
As velocity is one of the main factors that affect the residence time of 
water, low nodal demands produce high water age values. 

4. illustrative water system: Lakewood, california 

The City of Lakewood, California, is in Los Angeles County, with a 
population of 80,048 at the 2010 census. The Lakewood water utility 
serves approximately 60,000 customers, pumping water from ground-
water wells. The infrastructure system includes five storage tanks, 15 
operational pump stations, and 180 miles of 4 inch and larger water 

pipes (Fig. 3). Lakewood installed smart meters at each of its approxi-
mately 20,286 accounts in 2018 (WaterWorld, 2017), which report 
hourly demand. AMI data reports demands for customer types, as fol-
lows: 95% of accounts are residential, and 5% correspond to commercial 
and institutional users. Residential users exert 88% of the total demand. 
The AMI system includes a customer portal with an online utility billing 
platform and advanced analytics. The highest resolution of water data 
that is available for this study was collected at hourly intervals. Results 
are presented for different temporal resolutions (e.g., hourly, weekly, 
and monthly) to assist water managers with a comprehensive analysis of 
the system’s performance. The details of each modeling scenario are 
described below. 

Two years of data were downloaded, covering the period of July 1, 
2018 - June 30, 2020. Data are downloaded by month in files of two 
gigabytes. Files were converted from XML to CSV, which reduced the 
size of the entire dataset from 48 to 2.48 gigabytes. The dataset was 
cleaned using the approach described in subSection 3.1.3, which 
reduced the dataset size from 20,286 to 19,985 smart meters. 

Data were analyzed to determine demand patterns under normal 
operating conditions. The average network consumption was 835 m3/h 
(29,476 ft3/h) for the 2019 fiscal year (July 2018 - June 2019), with a 
standard deviation of 337 m3/h (11,887 ft3/h). The diurnal demand 
curve has two peaks, at 6:00 am and 8:00 pm with total consumption of 
420,943 m3 (14,865,452 ft3) and 379,084 m3 (13,387,209 ft3), 
respectively. The consumption drops below the average during night 
time from 11:00 pm to 3:00 am and from 12:00 pm to 4:00 pm. 

4.1. modeling scenarios 

Water demand scenarios are created using consumption data from 
two equivalent periods starting in March 2019 and 2020. Eight weeks in 
2020 were selected, beginning from the date that a state-wide stay-at- 
home order was issued for the state of California. The period of analysis 
for the COVID-19 scenario is Monday, March 23, - Sunday, May 17, 
2020. An equivalent period from 2019 was selected to compare water 
consumption and is based on similar dates and days of the week, cor-
responding to the period of Monday, March 25, to Sunday, May 19, 
2019. The 2019 scenario refers to the weeks in 2019, and COVID-19 
scenario refer to the weeks in 2020. 

The water network is simulated using an extended period of simu-
lation of 1344 hours (eight weeks), using a 1-hr hydraulic time step. The 
network controls and pump curves remain unchanged for both scenarios 
to evaluate the effects of water demand variation. The utility did not 
adjust infrastructure controls during the COVID-19 pandemic. The hy-
draulic model of the Lakewood water system is a skeletonized version, 
where a nonzero network node represents an average of 15 accounts (see 
subSection 3.1.4). The skeletonized version of the network may create 
some barriers to in digital twin approach, as the pipe flows and hy-
draulic performance cannot be simulated at finer resolution with the 
existing model. Further research can develop an all-pipes model for this 
application and explore the necessary level of simulation required to 
best support a digital twin approach. 

5. results 

5.1. water demand 

One week of water demand data for the 2019 and COVID-19 sce-
narios are shown in Fig. 4. For the 2019 scenario, water demand dem-
onstrates a typical diurnal curve with two peaks, one in the morning and 
one in the evening. The two-peak curve is characteristic of residential 
water consumption (Blokker et al., 2010; Omaghomi et al., 2020). 
During the stay-at-home order corresponding to COVID-19 conditions 
beginning in March 2020, the morning peak nearly vanished and fell to 
67% of the peak in 2019. The daily evening peak varies in magnitude 
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and remains lower than the evening peak under 2019 conditions. For the 
COVID-19 scenario, the evening peak is not impacted as dramatically as 
the morning peak, especially during the weekends where water demand 
under COVID-19 represents 90% of the demand under 2019 conditions 
on Saturday and 78% on Sunday. 

The average hourly water demands for the eight weeks of the COVID- 
19 scenario are shown separately for each week in Fig. 5a. Total de-
mands during the first week of the shut-down remain low throughout 
the day, when compared with average 2019 hourly demands (shown as 
the bold line in Fig. 5a). This trend is driven by the change in residential 

Fig. 3. Lakewood water system. (a) Smart meters (b) Infrastructure components, including reservoirs, pipes, pumps, and valves.  
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demand (Fig. 5b), which makes up a significant portion of the total 
demand. The first four weeks show that the morning peak was shifted 
from 6:00 to 11:00 am and was reduced in magnitude to approximately 
50% of the morning peak demand reported for the 2019 scenario. The 
evening peak remains at 7:00 pm and was reduced to approximately 
75% of the 2019 value. Over the eight-week period, the morning peak of 
the residential demand recovered to the average peak value for the 2019 
scenario and occurred at the same hour of the day as reported in the 
2019 scenario. The evening peak recovered to a value that exceeds the 
evening peak of the 2019 scenario by 25%. The total volume of demand 
during week 8 of the COVID-19 scenario is 6.82E5 m3, compared with 
7.90E5 m3, which is the average weekly volume of demand for the 2019 
scenario. In general, the following trends are observed: demands remain 
low for weeks 1–4, with incremental adjustments. In weeks 5–8, evening 
peaks exceed the evening peak of the 2019 scenario, and morning peaks 
reach pre-COVID-19 values by week 7. California’s stay-at-home order 
was lifted on May 8, 2020, when the state entered Stage 2 for reopening 
(State of California Office of the Governor, 2020). May 8, corresponds to 
week 7 in the data, and behaviors around water began to normalize at 
pre-COVID-19 levels in weeks 5 and 6. 

The non-residential demand dropped to very low consumption 
values during the first week of the shut-down (Fig. 5c). Account data 
shows that 30 fast-food restaurants had a slight increase in total demand 
(0.44%), compared with 2019 week 1 demands. Most non-residential 
accounts reduced demands drastically. User types including auto ser-
vices, beauty salons, car washes, supermarkets, theaters, and schools 
reduced demands substantially, by more than 40%. Other non- 
residential accounts, including 12 nurseries and 30 churches, gener-
ated a reduction of 30% in the volume of demands at those 42 accounts 
during week 1 of the COVID-19 scenario, compared with week 1 of the 
2019 scenario. Irrigation accounts reduced demands by varying 
amounts. During week 1, two large irrigation meters reduced total de-
mand by 8%; 50 medium irrigation meters reduced demands by 25%; 
and 131 small irrigation meters reduced demand by 40%. Irrigation 
meters exert a large volume of non-residential demands overnight, or 
from the hours 9:00 pm to 3:00 am, which leads to the demand pattern 
shown in Fig. 5c. Non-residential demands during the working hours 
and evening recovered by week 5 to pre-COVID-19 levels, and early 
morning demands reached pre-COVID-19 levels by week 6. 

Finally, the daily total demand over the two month period is shown 
in Fig. 6. This figure shows that the peak daily demand varies between 
500 and 1500 m3/h at the system level until day 32 during the COVID- 
19 scenario. After day 32, peak daily demand varies between 1100 and 
2400 m3/h, similar to the daily peak demand for the 2019 scenario. 

Total water demand is reported for the month prior to the onset of 
the pandemic to provide a baseline for assessing the results shown in 
Fig. 6. Demand during the months of February 2019 and February 2020 
are compared in Fig. 7. These results demonstrate that the daily demand 
recorded during February 2019 is approximately equivalent to the de-
mand for February 2020 and highlight the severity of the difference 

Fig. 4. Total hourly water demand for one week over the two-month period 
starting at Monday March 25, 2019 for the 2019 scenario and Monday March 
23, 2020 for the COVID-19 scenario. 

Fig. 5. Average hourly water demand for the eight-week period for (a) all 
customers, (b) residential, and (c) non-residential customers. Bold black line 
shows average demand over all days in eight weeks of 2019. Light lines show 
average demand over one week in 2020, and labels indicate corresponding 
weeks (1 = March 23–29; 2 = March 30-April 5; 3 = April 6–12; 4 = April 
13–19; 5 = April 20–26; 6 = April 27-May3; 7 = May 4–10; 8 = May 
11–17, 2020). Fig. 6. Total nodal demand for the 2019 and COVID-19 eight week periods.  
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between the 2019 and COVID-19 scenarios shown in Fig. 6. 

5.2. network hydraulic analysis 

Network performance is compared for the two scenarios based on 
system average pressure, energy consumption, and water age. 

5.2.1. system average pressure 
The average system pressure increases due to the decrease in water 

demand in the Lakewood network (Fig. 8) during the first 32 days of the 
COVID-19 scenario. Mirroring the return of demands, the pressure 
returns to normal operating conditions after 32 days, when pressure 
variations match those of the 2019 scenario. During the first week of the 
shelter-in-place order, the average pressure across the system reached 
up to 65 m, and after demands increased closer to 2019 conditions, the 
pressure values decreased to a range of 45 to 50 m. Increased pressures 
during the first 32 days should be monitored, as they can lead to in-
creases in the volume of water lost from leaks or cracks in the system 
(Schwaller and van Zyl, 2015). The water network hydraulic model uses 
demand-driven analysis. The model adjusts the nodal pressure to satisfy 
the demand of each nonzero demand node throughout the simulation 
(Laucelli et al., 2012). This simulation does not capture any changes to 
valves during the 2019 and COVID-19 scenarios. SCADA data can be 
acquired and explored to determine if modifications were made by 
system operators. In this approach, we do not incorporate SCADA, but 
focus on editing demand on a real-time basis to update the results of the 
hydraulic model without editing the infrastructure controls. 

Pressures are also compared during February of 2019 and 2020 to 
establish a baseline for assessing changes during the pandemic. The 
daily system average pressure is similar when February 2019 and 
February 2020 are compared, and both months report a range of pres-
sures between 40 and 75 m of head (Fig. 9). These results highlight the 
significance of the difference between the 2019 and COVID-19 scenarios 

(Fig. 8). 
Spatial analysis was performed for the Lakewood system for week 1 

of the 2019 and COVID-19 scenarios (Monday March 25, - Sunday 
March 31, 2019 and Monday March 23, - Sunday March 29, 2020) to 
identify areas of the network that were most affected due to changes in 
water demand. At the end of the week of simulation for both scenarios, 
the pressure at each node and link of the network are evaluated to 
explore emergent spatial variation. The location of the changes in 
pressure are shown in Fig. 10. High pressures occur during night hours, 
and pressures at 1:00 am on the second day of the simulation (Tuesday 
March 26, 2019 and Tuesday, March 24, 2020) are reported in Fig. 10. 
Under 2019 conditions, 741 nodes report pressure higher than 80 psi 
(56 m), whereas, for the COVID-19 scenario, 1345 nodes report high 
pressure. Spatial analysis shows that different areas of the network have 
been affected at different scales. The bottom left area highlighted in 
Fig. 10 demonstrates an area of the network where pressures have 
increased, and operators can use this analysis to manipulate valves and 
control pressures in this area. 

5.2.2. water age 
The evaluation of water age at the end of the hydraulic simulation 

provides insight about the time water takes from the point of production 
to consumption points. As a result of demand reductions (Fig. 5), 
detention times in the networks increased. The recommended threshold 
for water age is 48 hours after one week of simulation (Marchi et al., 
2014). The water age is displayed as the average over all nodes in the 
network over the eight week period (Fig. 11), and the average water age 
exceeds 48 hours after 20 days. Specifically, 58 nodes located in the 
southwest part of the system (Fig. 10a) and far from the pump stations 
and storage tanks are the ones with possible stagnation problems in 
2019. The standard deviation shows that some nodes exceed the stan-
dard by a significant amount, and these modeling results can be used to 
identify areas where potential stagnation problems have occurred 
(Proctor et al., 2020). During COVID-19 conditions, 85 nodes reported 
water age values higher than 48 hours, and these nodes are located at 
the southwest part of the system, shown as the box in Fig. 10b. Utility 
operators can sample water quality at nodes with high water age and 
flush hydrants in the immediate area to improve water quality. 

5.2.3. energy consumption 
A reduction in energy production that was calculated from the 

pumps and reservoirs is associated with the reduction in water demand. 
As shown in Fig. 12, peak energy demands occur steadily during 2019, 
with a maximum daily value of 711 kWh after 50 days of simulation. In 
contrast, during the COVID-19 conditions, energy decreased to values 
around 500 kWh in week 1 and steadily increased, reaching a maximum 
value of 715 kWh at day 56. The total energy produced at pumps during 
week 1 decreases by 9% for the COVID-19 scenario, compared with 
week 1 of the 2019 scenario. 

Fig. 7. Total nodal demand from February 2019 and February 2020 before the 
response actions to the COVID-19 pandemic. 

Fig. 8. Average nodal pressure for the 2019 and COVID-19 eight week periods.  

Fig. 9. Average nodal pressure from February 2019 and February 2020 before 
the response actions to the COVID-19 pandemic. 
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The total energy consumption of the pump stations for February 
2019 and 2020 was also evaluated. Similar to the outcomes shown for 
total water demand and average system pressure, the total energy 
consumed by the pumps was similar for the months of February in 2019 
and 2020 (Fig. 13) and highlight the difference between the 2019 and 
COVID-19 scenarios. 

Spatial analysis is used to analyze energy consumption of week 1 of 
the 2019 and COVID-19 scenarios. Fig. 14 demonstrates that the vari-
ation in water demand between the 2019 and COVID-19 conditions has a 
substantial effect on the energy of the large pump station of the system 
and smaller effects on energy consumed at the remaining pump stations. 
The main water plant and pump station provide water to nearly the 

entire system and the energy consumption of this plant is reduced from 
18.4 MWh under 2019 conditions to 15 MWh under COVID-19 condi-
tions (Fig. 14). Two other pump stations reported small changes in en-
ergy consumption. One pump station is located on the east side of the 
network and reports a reduction in energy consumption of approxi-
mately 100 kWh, and a second pump station on the west showed an 
increase in energy consumption by 20 kWh. 

To further investigate the energy reduction of the main pump (Pump 
4 in Fig. 14), the operation point was found for each scenario. The 
system and pump curves for 2019 show that the main pump operated at 
a flow rate (Q) of 160 m3/h providing the system a total head of 50 m 
(Fig. 15). Conversely, during the first week of the COVID-19 scenario, 
the flow rate of the operating pump decreased by 30% to 112 m3/h. The 
total head increased slightly to 53 m. The pump efficiency of both sce-
narios is fixed at 70% from the hydraulic model, and pump settings, such 
as changing pump speed and pump controls, were not edited in the 
simulations. 

5.3. water outage event 

A multi-modal failure event is simulated to evaluate how a change in 
demand and hydraulics during the COVID-19 pandemic may have 
mitigating or cascading effects during the onset of a water outage. This 
scenario simulates that a disruption occurs at the main system source 
(Pump 4 in Fig. 14). To simulate the disruption, the status of the pipe 
connecting the main storage tank with the network was changed from 
open to closed starting at the beginning of the simulation. Both the 2019 
and COVID-19 demand scenarios were analyzed to assess the time until 
the system is unable to meet demands (Fig. 16). The disruption at the 

Fig. 10. Pressure is reported at 1:00 am during the second day of week 1 for (a) 2019 and (b) COVID-19 conditions. Red dots indicate nodes where pressure exceeds 
80 psi (56 m). 

Fig. 11. Water quality reported as the average hourly water age of the system 
demand nodes over the two-month period of simulation. The bands around the 
mean represent one standard deviation above and below the average water 
age values. 

Fig. 12. Total energy consumed at pumps, reported as the hourly sum for eight 
weeks of simulation for COVID-19 and 2019 scenarios. 

Fig. 13. Total energy consumed at pumps before the response actions to the 
COVID-19 pandemic reported as the hourly sum for February 2019 and 
February 2020 scenarios. 
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Fig. 14. Energy consumption at pump stations for week 1 of 2019 and COVID-19 scenarios.  

Fig. 15. System and pump curves with their main pump operating point for the (a) 2019 and (b) COVID-19 scenarios.  

Fig. 16. Negative pressure reported at 8:00 pm on day 4 due to a disruption occurring at the main drinking plant, simulated for the (a) 2019 scenario and (b) COVID- 
19 scenario. Star indicates a node where pressure is reported in Fig. 17. 
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main source produces a negative pressure event measured at a highly 
affected node, which is shown in Fig. 16, after four days under 2019 
conditions (Fig. 17). At the same node under COVID-19 conditions, no 
negative pressure is reported, though the pressure drops nearly to 10 m. 
Reduced demands during the COVID-19 scenario leads to a system that 
is less vulnerable to water outages. 

6. discussion 

6.1. water demand during the COVID-19 pandemic 

This research demonstrates a new application of a digital twin for 
exploring the hydraulic performance of a water distribution network 
under new demands induced by social distancing practices during the 
COVID-19 pandemic and compared results with performance during 
2019. First, shifts in demands are analyzed to develop a new under-
standing of how demands changed during the pandemic. Analysis of 
AMI data confirms reports of changing water demands for other data 
sets. Analysis finds that residential demands decreased in the first week 
of the shut-down and recovered to volumes similar to the 2019 scenario 
after four to five weeks. Morning peaks were delayed by a few hours in 
the first three weeks and returned the same peak time by the seventh 
week of the shutdown. Non-residential demands decreased substantially 
and recovered after five to six weeks. While other research studies report 
on the change in volume of demands (Kalbusch, Henning, Brikalski, de 
Luca, & Konrath, 2020; Spearing et al., 2021; American Water Works 
Association; Cooley, Gleick, Abraham, & Cai) and the change in diurnal 
patterns (Balacco et al., 2020; Ludtke et al., 2021), this research reports 
on how diurnal patterns changed in response to a shelter-in-place and 
the dynamics of the recovery of demands to pre-COVID-19 patterns. 
These dynamics provide another context to understand how commu-
nities returned to typical routines after initial response to the pandemic 
and shelter-in-place orders. 

6.2. water infrastructure performance during the COVID-19 pandemic 

While a number of research studies have explored demand changes, 
this research applies data about demand changes to assess infrastructure 
performance. Several metrics of performance are evaluated for 2019 and 
COVID-19 scenarios, including average system pressure, energy con-
sumption, and water age. The Lakewood water network showed higher 
average system pressure values during COVID-19 conditions, as ex-
pected due to water demand decreases across the network. New pressure 
values are not critical, as most of them vary between 50 and 60 m and 
may not represent a threat to the normal operations of the network. 
Utility managers can use this information to assess non-revenue water 
lost during times of high pressures. 

Low flows and high demands also lead to potential water quality 
problems, and water age is reported at high values at nodes in Lakewood 
during the first few weeks of the shelter-in-place. In a survey of 28 

utilities, Spearing et al. (2021) found that 24 utilities reported a change 
or challenge associated with water use, but only three utilities observed 
negative water quality consequences. Water quality effects associated 
with rapidly change water demands may be ephemeral, and sampling 
programs may have missed these changes as they occurred. In addition, 
some utilities reported challenges with continuing to monitor water 
quality during the pandemic (Spearing et al., 2021), creating further 
difficulties in managing water quality. A digital twin can simulate water 
quality changes and serve as an early warning system to alert a water 
utility about potential issues and inform the location of sampling efforts. 

This analysis finds that energy consumption was reduced in the 
Lakewood network during the COVID-19 pandemic at the main pump 
station, due to the decrease in water demand. Peak energy demands also 
drop during the first few weeks of the shelter-in-place. The energy costs 
paid by the Lakewood water utility are highly dependent on peak energy 
use. Demand charges, or transmission charges, are fees applied to the 
electric bills of water utilities based upon the highest amount of power 
drawn during any (typically 15-minute) interval during the billing 
period. The demand patterns shown in Figs. 4 and 5 indicate that de-
mands are returning to pre-COVID-19 levels and savings in energy have 
not continued; however, utility managers can use this new information 
about changing water use habits to assess demand management pro-
grams that aim to reduce peak water demands and energy costs. 

Spatial analysis is used to evaluate how the changes in water demand 
affected different zones of the water network and identify which part of 
the network was affected the most. Spatial analysis depends on the to-
pology and topographical characteristics of each network being 
analyzed and has been previously applied for water systems applications 
to partition the network into District and Pressure Metering Areas 
(DMAs) (Chatzivasili et al., 2019; Pesantez et al., 2020b; Salomons et al., 
2017). COVID-19 lockdown measures may differ across the network and 
the spatial evaluation of which district or zone of the network was 
affected the most can assist water utilities in the planning and operation 
of the system. 

Modeling the network performance under a physical disruption was 
presented as an application for a digital twin to represent a potential 
multi-modal disaster and assess resilience and vulnerability (Klise et al., 
2017; Luna et al., 2011; Nazif and Karamouz, 2009). Identifying changes 
in pressure and energy due to variations in demand under extreme 
events such as the pandemic may provide insights to operators and 
managers about updating controls to continue to satisfy hydraulic and 
quality requirements of the system. For the water outage that was 
modeled in this research, reductions in demand during COVID-19 lead to 
improved water infrastructure resilience. A digital twin can have 
important application in multi-modal events, in which the complexity of 
interactions among modes may drive unexpected emergent infrastruc-
ture performance. For example, Winter Storm Uri in 2021 led to water 
infrastructure failures due to complex interactions among the dynamics 
of frozen water pipes, COVID-19 social distancing behaviors, and 
widespread power outages. Water utilities in Memphis, Tennessee, and 
Arlington, Texas were able to take advantage of AMI and use remotely 
read smart meter data to identify pipe bursts in real-time (Peterson, 
2021; Watts, 2021). Digital twins can be used to further improve utility 
knowledge about water flows, areas of pressure loss, and declining levels 
of service as an event unfolds to select appropriate infrastructure con-
trols and allocate resources to targeted areas of a network. 

The pandemic has had a range of effects on how water utilities 
operate due to lockdowns and social distancing practices. Recent 
research has reported that some water utilities found that social 
distancing practices pose serious problems to managers in maintaining 
expected levels of service (Sowby, 2020; Spearing et al., 2021). Prob-
lems related to maintaining staff at the workplace, revenue, supply 
chain, and deferring investment on large projects were outlined as the 
most common issues. In addition, spatial and temporal variations in 
water demand may cause unexpected hydraulic responses from the 
systems and water quality degradation in empty buildings (Proctor 

Fig. 17. Pressure over a five day period at an affected node located in the 
southwest region of Lakewood, shown as a star in Fig. 16. A water outage is 
simulated at the main drinking plant for 2019 and COVID-19 conditions. 
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et al., 2020). These studies have emphasized that disasters like the 
COVID-19 pandemic revealed a lack of planning by water utilities 
related to what to expect under sudden demand variation from resi-
dential and non-residential type of customers. Digital twins can help 
utilities to visualize the effect of water demand variation to develop 
insight about emerging issues for water infrastructure. 

The demands associated with COVID-19 may represent new and 
unforeseen conditions for some water networks, creating an opportunity 
to update or verify calibrated hydraulic models for new scenarios 
(Walski, 2017). Based on new water demand data, measured pressure, 
and water levels of the tanks associated with the COVID-19 pandemic, 
scenarios analysis can be used to evaluate model performance and error 
under new demand conditions (Zhuang and Sela, 2020). New demand 
patterns can also be used to evaluate the vulnerabilities of water infra-
structure systems and develop management strategies to improve 
resilience. It is expected that demands for freshwater changed signifi-
cantly during the COVID-19 pandemic in water supply systems where 
highly treated water is applied for all domestic purposes (e.g., drinking, 
hygiene, toilet flushing, and irrigation). Utilities that can encourage 
diversification of water sources for alternative end uses may help to 
create more resilient systems that can respond during emergencies 
causing major changes in demand profiles. For example, novel water 
management paradigms that allow trading rainwater harvesting for 
irrigation (Ramsey et al., 2020) and hybrid systems that integrate 
centralized and decentralized water sources (Fornarelli et al., 2019) can 
reduce community dependence on a centralized water utility and facil-
itate efficient management of disruptions. Further, water is a key 
component in fighting COVID-19, as it is critical for disinfection and 
washing hands frequently. Communities living under threat of the 
COVID-19 and other pandemics may see significant increases in water 
demands and water prices in the future (Sivakumar, 2020). The 
increased use of water for hygiene and disinfection may increase water 
consumption and exacerbate water shortages, especially in water-scarce 
areas where there is a heightened tension between water supply and 
water needed for hygiene and disinfecting surfaces. Providing analysis 
about the expected changes in infrastructure performance based on in-
creases and changes in demand is critical to enable utilities to consider 
and plan for future supply interruptions. 

6.3. advancing digital twins for water infrastructure systems 

The advent of smart meters as part of AMI reporting consumption, 
pressure, and quality measurements with a high temporal and spatial 
resolution is a key component for management purposes of water util-
ities (Cominola et al., 2015; Nguyen et al., 2018). Demand data at the 
user level can be used to analyze user patterns, and this data can be 
aggregated to report spatial changes in demands. Consumption patterns 
that result due to responses related to extreme events such as the 
COVID-19 pandemic can be evaluated using information from AMI, and 
this information will provide utility insights about how and where de-
mands have changed and to what degree these changes affect the 
operation of their systems. The digital twin presented here can be 
applied by water operators to identify areas where the network changes 
due to new demand patterns. Specifically, the system’s southwest area 
presents a potentially high-pressure issue where under pre-COVID-19 
conditions the pressure did not exceed 56 m of head of water. Man-
agers may use these results to guide selection of valves in that area that 
should be checked. There are also potential water age issues due to the 
drastic demand reduction observed at the beginning of the lockdown. 
Managers and operators can review their sampling plans and schedule 
actions, such as unidirectional flushing strategies, to ensure that water 
quality parameters remain within the standard values. Pump settings 
can be revised to ensure that these demand changes do not lead to longer 
residence times in storage tanks. However, the performance of these 
analyses depends on how well the hydraulic model represents real 
conditions. Historically, nodal demands have been the most uncertain 

and dynamic variables in water distribution system modeling and 
management (Kang and Lansey, 2009; Kun et al., 2015). However, AMI 
data can quantify the precise volume of water demands, and model error 
is attributed to unknown parameters and dynamic changes in the 
infrastructure, rather than in human behaviors. In this research, de-
mands are reported in increments of one gallon each hour, leading to a 
precise value for demands exerted. The uncertainties in model param-
eters, status of infrastructure components, and network topology limit 
the accuracy of model output. The Lakewood hydraulic water network 
represents a skeletonized version of the system, and components where 
demands at the user-level were aggregated to replicate the system 
conditions. In developing a reliable and accurate digital twin, the model 
must be calibrated and represent infrastructure elements with accuracy 
and fidelity to reproduce the behaviour of network elements in normal 
and extreme operating conditions (Conejos Fuertes et al., 2020). Further 
research is needed to refine the model of the Lakewood infrastructure 
and reduce uncertainty and error in the digital twin. SCADA data can be 
used to improve model error, and new methods to rapidly integrate 
SCADA data in calibration are needed to automate complex calibration 
procedures. 

In smart city literature, the use of the term real-time can be over- 
used, as truly real-time models should automate the entire process of 
system simulation and prediction from remote sensing to model output 
(Shafiee et al., 2018). The framework demonstrated here develops 
middleware for downloading data and a wrapper for translating cleaned 
AMI data to input for the hydraulic model, providing important com-
ponents in a real-time modeling process, similar to the framework 
described by Shafiee et al. (2020). Further research is needed to extend 
this framework to achieve a fully automated digital twin, as conceptu-
alized by Shafiee et al. (2018) and implemented by Conejos Fuertes 
et al. (2020) for Valencia, Spain. To extend the framework that is re-
ported here, analytical tools should be connected to the data lake to 
scrub data, fill in missing values, and filter out corrupted or missing data 
in an automated train of technologies. While the framework described 
here uses a manual approach to clean data, the wrapper provides 
automated functionality to receive streaming data, run the EPANET 
model, and write out results. The EPANET model is designed to execute 
in real-time by updating new model parameters automatically using AMI 
data. Boundary conditions are not automatically updated using 
streaming values from SCADA, and future studies should integrate 
SCADA and other streaming data into the data cycle to improve the 
digital twin’s ability to realistically represent its physical counterpart. 
For example, Twitter data was analyzed during flooding events associ-
ated with a hurricane to analyze spatial and temporal impacts on resi-
dential neighborhoods (Fan et al., 2020). Social data that is available 
through social media platforms (e.g., Twitter and Facebook) and 
transportation applications (e.g., Waze) can be automatically collected, 
cleaned, and analyzed to update predictions of the location and timing 
of water demands for use within a digital twin of water infrastructure 
systems. 

7. conclusions 

This research develops a digital twin to evaluate the effects of 
changing demands on water infrastructure during the COVID-19 
pandemic. Smart metered data was used to determine how water de-
mand changed due to COVID-19 stay-at-home restrictions. Twelve 
weeks of data were used from February-April of 2019 and from 
February-April of 2020 to represent pre-COVID-19 and COVID-19 con-
ditions, respectively. AMI data showed that the typical daily consump-
tion curve with two peaks, one in the morning and one in the evening, 
was replaced by a one-peak curve occurring at early evening hours 
during weekdays. A digital twin was implemented to connect AMI de-
mand data with a hydraulic model and explore emerging infrastructure 
performance. Pressure, energy consumption, and water quality were 
simulated using the digital twin, with large variations in the first few 
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weeks of the shut-down, when compared with the 2019 scenario. System 
parameters returned to pre-COVID-19 conditions after 3–4 weeks, with 
the return to pre-COVID-19 demands. A water outage at the main 
treatment plant was simulated to test how these changes in demand 
affect the resilience of the system, and results quantify that vulnerabil-
ities to loss of pressure decrease due to the reduction in demands. 

Smart technologies support urban management goals, including 
resilience of urban services, infrastructure renewal, and efficiency in 
resource use, which contribute to the development of sustainable cities. 
By studying the effects of the responses related to the COVID-19 
pandemic on water demands and infrastructure, utilities can gain new 
insight about unexpected demand scenarios to plan for a more resilient 
water infrastructure that can recover from external shocks caused by a 
future pandemic or other types of natural and human-made disasters. 
The performance of civil engineering infrastructure, as a sociotechnical 
system, relies heavily on the patterns of demands exerted by customers, 
and unexpected demand profiles can feed back to the system to create 
new performance regimes and change the level of service experienced by 
consumers. Changes in demands may cause new system vulnerabilities, 
and analysis such as the research presented here is needed to develop 
insight into the type of changes that may emerge for unexpected demand 
profiles associated with disasters and natural hazards such as heatwaves, 
droughts, and contamination events that can exacerbate water scarcity 
or water quality issues. Hydraulic models with real-time streaming de-
mand can assist utility managers to analyze scenarios to improve system 
response and reduce vulnerabilities. The digitalization of water systems 
as part of the smart city paradigm can accelerate the development of 
digital twin models and the use of streaming data in reporting and 
managing changes in the network during extreme events and 
emergencies. 
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