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Abstract

Little is still known about the neuroanatomical substrates related to changes in specific cognitive 

abilities in the course of healthy aging, and the existing evidence is predominantly based on cross

sectional studies. However, to understand the intricate dynamics between developmental changes 

in brain structure and changes in cognitive ability, longitudinal studies are needed. In the present 

article, we review the current longitudinal evidence on correlated changes between magnetic 
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resonance imaging-derived measures of brain structure (e.g. gray matter/white matter volume, 

cortical thickness), and laboratory-based measures of fluid cognitive ability (e.g. intelligence, 

memory, processing speed) in healthy older adults. To theoretically embed the discussion, we 

refer to the revised Scaffolding Theory of Aging and Cognition. We found 31 eligible articles, 

with sample sizes ranging from n = 25 to n = 731 (median n = 104), and participant age ranging 

from 19 to 103. Several of these studies report positive correlated changes for specific regions 

and specific cognitive abilities (e.g. between structures of the medial temporal lobe and episodic 

memory). However, the number of studies presenting converging evidence is small, and the large 

methodological variability between studies precludes general conclusions. Methodological and 

theoretical limitations are discussed. Clearly, more empirical evidence is needed to advance the 

field. Therefore, we provide guidance for future researchers by presenting ideas to stimulate theory 

and methods for development.
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Introduction

Life expectancy has risen steadily due to innovations in medicine and improved living 

standards. In 2015, life expectancy at birth exceeded 80 years in 22 European countries 

(World Health Organization, WHO, 2016). Globally, it is estimated to increase by a further 

6 years until 2050 (United Nations, 2017). With an extended lifespan, it is increasingly 

important to understand how these additional years of life can be spent in good health. To 

foster research in this matter, the WHO recently announced the ‘Decade of Healthy Aging’ 

from 2020 until 2030, defining healthy aging as the ‘process of developing and maintaining 

the functional ability that enables well-being in older age’ (WHO, 2015). Cognitive health 

is of high importance for aging healthily (Lawton et al., 1999), with a substantial impact 

on tasks of independent living (Salthouse, 2012), such as medication adherence (Insel et 

al., 2006), telephone use, financial management, or nutritional choices (Gregory et al., 

2009). For the present article, we therefore limit our definition of healthy aging to the 

cognitive domain. Specifically, we refer to aging processes that occur in the absence of 

pathological cognitive impairments, as previous literature has not yet reached a consensus on 

the definition of healthy cognitive aging.

Previous research has identified cognitive frailty as one of the most important threats 

for well being in healthy aging with an enormous impact on the decision to discount 

hypothetical years of life (Lawton et al., 1999) and linked cognitive frailty to the 

degradation of neural mechanisms. Specifically, a vast number of studies have focused on 

the relationship between indicators of brain function derived from task-related functional 

magnetic resonance imaging (MRI) studies and task-based indicators of cognitive ability 

(e.g. episodic memory, processing speed, working memory) in healthy aging individuals (see 

Grady, 2012, for an overview). Much less is known, however, about the association between 

measures of brain structure and cognitive ability, although brain structure represents the 

hardware on which brain function is implemented (the neurobiological relevance of these 
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structural measures is discussed in Box 1). The current article aims to shed more light on 

this relationship.

The association between brain structure and cognitive ability can be illuminated from 

different perspectives, depending on the research question one is interested in. Whereas 

the choice of the research question is mainly driven by theoretical considerations, the type 

of data, and methods available constrain whether one is able to address it (see Boker and 

Martin, 2018 for an in-depth discussion). As follows, we will discuss four research questions 

that are of theoretical relevance regarding the relation between brain structure and cognitive 

ability in healthy aging, and relate them to the data and methods needed to answer them, 

using Catell’s (1988) data box. Figure 1 shows how the three dimensions of the data box 

(persons × variables × measurement occasion) are related to the different possible research 

questions.

Research question type 1 (cross-sectional/univariate, see panel A): ‘Do people differ in 
specific measures of brain structure or cognitive ability?’

To answer this question, cross-sectional data of several participants measured in indicators 

of brain structure (e.g. whole brain volume) or cognitive ability (e.g. working memory 

performance) are needed. As illustrated by the gray shaded cubes, this type of data varies 

along the dimension persons and is fixed along the dimensions variables × measurement 

occasions. Brain structure serves as an example for the selected variable here; however, 

cognitive ability could be used interchangeably. The measure of interest is the mean and 

the variance between persons (interindividual differences) in a measure of brain structure 

(or cognitive ability). Methodologically, this variance component can then be related to 

predictors by using, for example, regression analysis. A relevant predictor if one is interested 

in healthy aging is chronological age: if participants are sampled at different ages, the 

between-person variance also contains information about age-differences. For example, 

after controlling for height and sex, a study found age-related differences in a sample of 

participants aged from 18 to 77 years in several regional brain volumes with a specific 

vulnerability of the prefrontal cortex, such that older adults had smaller prefrontal gray 

matter (GM) volumes than younger adults (Raz et al., 1997).

It is well documented that both brain structure and cognitive ability are not stationary, but 

subject to dynamic changes over the lifespan (Deary, 2001; Hedden and Gabrieli, 2004; Fjell 

and Walhovd, 2010; Salthouse, 2010). As the cross-sectional design contains information 

about interindividual differences between persons of different chronological ages, it is not a 

viable basis for the inference of change processes across time (Lindenberger et al., 2011). 

Furthermore, cohort differences are a common problem in cross-sectional designs, masking 

the effects of true change within individuals (Sliwinski et al., 2010). For example, several 

recent studies report a reduction of the prevalence of Alzheimer’s disease (AD) over the 

past decade when comparing older adults of different cohorts, but similar age range (e.g. 

75-year-olds in 2000 vs. 2012) (Larson et al., 2013; Matthews et al., 2016; Langa et al., 

2017), suggesting cohort differences in age-related brain and cognitive changes. Although 

less problematic, cohort differences can also confound longitudinal estimates of change, 

especially when these studies include a wide age range (Hofer and Sliwinski, 2001). While 
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longitudinal studies are faced with their own limitations, such as attrition (e.g. Lindenberger 

et al., 2002) or practice effects due to repeated cognitive testing (e.g. Salthouse et al., 2004), 

longitudinal measurements are necessary to make valid inferences on developmental change 

(Raz and Lindenberger, 2011), leading to the next type of question:

Research question type 2 (longitudinal/univariate, see panel B): ‘Do measures of brain 
structure or cognitive ability change over time within persons?’

To answer this question, longitudinal data of several people repeatedly measured in 

indicators of brain structure (or cognitive ability) are needed. In contrast to the previous 

example, the observations shaded in gray now also vary along the dimension measurement 

occasions (besides the persons dimension). The dimension variables is still held constant 

to one level, in this example it is again a measure of brain structure, but cognitive ability 

can be used as well. This type of data represents interindividual differences in how the 

values of one person in brain structure (or cognitive ability) change across measurement 

occasions within this individual (intraindividual change). Methodologically, such data can be 

analyzed in two ways. First, one can compute a difference score for each person to represent 

intraindividual change between two measurement occasions. This procedure reduces the 

dimension ‘measurement occasion’ to one value, allowing the application of the same 

methods as in research question type 1. The resulting outcome carries information about 

changes in interindividual differences. A second possibility is to use sophisticated methods 

for the analysis of change. With these methods, it is possible to analyze intraindividual 

change trajectories, and interindividual differences in intraindividual change, with the 

advantage of retaining all values along the dimension measurement occasion in the analysis, 

as well as all persons, regardless of how much longitudinal information they provide (see 

section ‘The benefits of longitudinal designs’ for more detail).

Taken together, these two types of data complement each other to generate valuable insights 

into how brain structure and cognitive ability each develop across the lifespan. As the 

cross-sectional design is less time and cost intensive, it has the advantage of informing about 

age-differences across a wide age range. In contrast, the feasibility of a longitudinal study 

covering the entire adult lifespan is highly unlikely, especially when studying brain aging, 

as MRI scanners would need to endure over a period of around 60 or 70 years. Even if 

this would be possible, technological advances would most likely result in the collected 

data being outdated and no longer meaningful. Longitudinal data are needed, however, to 

examine developmental change processes, both in the individual domains as well as on their 

associated changes. The next two questions focus on the association of brain structure and 

cognitive ability:

Research question type 3 (cross-sectional/bivariate, see panel C): ‘Do people with more 
intact structural brain features demonstrate higher (or lower) levels of specific cognitive 
abilities’?

This question builds upon research question type 1, with the only difference that now two 

variables are included: brain structure and cognitive ability. Thus, the measured values vary 

along the dimensions persons × variables, and measurement occasions is held constant. The 
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association of interest can be calculated via the correlation between these two dimensions, as 

indicated by the purple arrow.

As implied by the question above, cross-sectional data convey information about how 

specific structural brain characteristics and levels of cognitive ability are related in the 

population. However, another perspective that we deem specifically important and that has 

not received enough attention yet focuses on how change processes in brain structure and 

cognitive ability are differentially related within individuals:

Research question type 4 (longitudinal/bivariate, see panel D): ‘Are changes in measures 
of brain structure differentially associated with changes in measures of cognitive ability 
within persons?’

This question is based upon research question type 2, with the only difference that two 

variables are assessed longitudinally and the two trajectories are related to one another. 

In the data box, the measured values vary along all dimensions: persons × variables × 

measurement occasions. The association of interest is the correlation between changes 

in these two dimensions as shown by the purple arrow, which is henceforth defined as 

correlated change. Building on the methods described in research question type 2, correlated 

change can be computed by correlating either the difference scores, or the intraindividual 

change slopes between two variables with each other across people. Different types of 

correlated changes can be distinguished depending on the sampling intensity and timing 

of measurements in each domain (see section ‘A theoretical framework on longitudinal 

brain-cognition-environment interactions’ for a detailed explanation). With a high number 

of repeated measurement occasions in both domains, intraindividual change slopes could 

also be correlated entirely within individuals. However, to date, only a small number of 

longitudinal studies have investigated correlated changes in brain structure and cognition, 

with typically low sampling intensity. This is not surprising, due to the financial and time

consuming expenses of conducting longitudinal MRI studies. Correlated changes between 

brain structure and cognitive ability are of major interest, however, as they can provide 

new insights into the intricate developmental dynamics and interactions between these two 

domains as people age. This knowledge is especially important for the development of 

personalized interventions to promote better health and well-being in old age. Therefore, 

the present article will review the literature on correlated brain-cognition changes (section 

‘Literature review’) in a broader context of a current theoretical model on brain-cognition

environment relations, which will be presented in the next section. Furthermore, the present 

article will discuss methodological limitations of the reviewed studies and present ideas 

for method development and application (section ‘Methodological limitations and the need 

for method development’). Of specific relevance to the field of cognitive neuroscience, 

statistical methods for handling longitudinal neuroimaging and cognitive data are presented 

and explained (section ‘The benefits of longitudinal designs’), and issues related to the 

handling of big data are discussed (section ‘Handling and profiting from big data’). Finally, 

we present several trends and ideas for the development of theories on correlated changes 

between brain structure and cognitive ability in the future (section ‘Theoretical limitations 

and the need for theory development’).
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A theoretical framework on longitudinal brain-cognition-environment 

interactions

One of the most pressing questions in the cognitive neuroscience of aging is to explain 

why some healthy aging individuals experience drastic age-related cognitive decline while 

others can maintain their levels of cognitive ability. Accordingly, several theoretical concepts 

have emerged that revolve around the idea that aging individuals may differ with regard to 

compensatory resources that support the maintenance of cognitive performance in the face 

of age-related brain degeneration (Reuter-Lorenz and Park, 2010; Park and Festini, 2016). 

For example, the different theoretical ideas of reserve assume that people differ in either 

neural capacity (brain reserve: e.g. number of neurons or brain size) or cognitive processing 

mechanisms (cognitive reserve: e.g. mental flexibility, strategy use) that allow them to cope 

with pathological brain damage, and thus stave off detrimental impacts on cognitive ability 

(for a detailed explanation see Stern, 2002, 2009). One multifactorial theoretical model that 

includes the dynamic interrelations between environmental variables, brain structure and 

function, and cognitive ability is the revised Scaffolding Theory of Aging and Cognition 

(STAC-r) model (Reuter-Lorenz and Park, 2014). STAC-r is a regulatory model, which 

assumes that compensatory mechanisms, termed compensatory scaffolding, can directly 

regulate the impact that brain structure or function changes exert on cognitive ability. The 

exact mechanisms of compensatory scaffolding are not clearly established, however, the 

authors suggest scaffolding to reflect a form of positive brain plasticity (Reuter-Lorenz and 

Park, 2014). For example, from functional imaging studies, it is known that healthy older as 

compared to younger adults recruit different brain regions (e.g. functional over-recruitment 

of prefrontal regions, or bilateral overactivation) during demanding cognitive tasks (see 

Eyler et al., 2011, for a review). These distinct functional activation patterns are interpreted 

as compensatory, if they are also related to better memory performance. Furthermore, 

structural brain reorganization, such as (to a limited extent) neurogenesis, synaptic, or 

axonal changes (Zatorre et al., 2012), or the use of different cognitive strategies (Stern, 

2002, 2009), may potentially also serve a compensatory function. To illustrate STAC-r as 

a framework for the current literature review, Figure 2 displays the key parts of the model. 

Please note that we introduced a small adaptation to tailor the model to the specific focus of 

this review: the broad term ‘cognitive function’ of the original model is changed in Figure 2 

to the more specific term ‘cognitive ability,’ as we will refer only to basic cognitive abilities 

as assessed by cognitive tests in the laboratory and not to cognitive functioning, for example, 

during daily activities like solving a crossword puzzle (Verhaeghen et al., 2012). The factors 

of specific interest in the present article are highlighted in white.

According to STAC-r, different pathways can be distinguished through which brain structure 

might be related to cognitive ability. Brain structure can affect cognitive ability via a direct 

pathway. For example, brain atrophy in old age might be linked to declines in cognitive 

ability. This is the hypothesis typically posited in the literature. Additionally, the model 

proposes an indirect pathway, in which the relation between brain structure and cognitive 

ability is shaped via compensatory scaffolding. For example, during a difficult cognitive 

task, additional brain networks might be recruited to compensate for age-related structural 

alterations in the primary network. First attempts were made to study this indirect path 
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between brain structure, function, and cognitive ability longitudinally. These studies suggest 

a link between age-related structural brain reductions and increased functional activation 

in healthy older adults (Hakun et al., 2015; Fjell et al., 2016; Pudas et al., 2018; Vidal

Piñeiro et al., 2018). However, with regard to the association with cognitive ability, it is 

still unclear whether these findings reflect compensation or rather an age-related loss of 

efficiency (Pudas et al., 2018). Arguing from the theoretical basis proposed by STAC-r, as 

long as compensatory scaffolding mechanisms function properly, the relationships between 

rate of brain structure and cognitive ability change would be expected to be weakened 

or even close to zero in healthy older adults, as compensatory scaffolding can buffer the 

immediate impact of brain structure deficits within individuals. Hence, the indirect pathway 

between brain structure and cognitive ability is especially relevant when focusing on the 

population of healthy older adults. The STAC-r model further proposes that compensatory 

scaffolding is impacted by a variety of factors. Besides changes in brain structure or 

function, neurally enriching or depleting experiences, termed life-course experiences, are 

assumed to stimulate scaffolding across the lifespan (Reuter-Lorenz and Park, 2014). 

Neurally enriching factors relate to activities or behaviors which positively stimulate brain 

plasticity, such as education, physical exercise, or multilingualism, while neurally depleting 

factors denote activities or influences that have a detrimental impact on the brain, such 

as high blood pressure, smoking, or stress (see Hertzog et al., 2009). As depicted in 

Figure 2, life-course experiences can either directly influence brain plasticity or stimulate 

compensatory scaffolding and thus potentially attenuate or delay cognitive decline. Also, 

interventions, for example, in the form of cognitive training or neurofeedback, can directly 

trigger compensatory scaffolding (Reuter-Lorenz and Park, 2014).

Using STAC-r as a theoretical framework, important implications can be derived for 

the present purpose. As compensatory scaffolding is assumed to modify the impact of 

detrimental structural brain alterations on cognitive ability, the strength of the concurrent 

association of brain structure and cognitive ability is expected to be weak in healthy 

aging individuals. Due to the variety of factors influencing the capacity of compensatory 

scaffolding, however, large interindividual and intraindividual variability in the strength of 

brain structure-cognition relations can be expected. In the following sections, we will review 

the current literature regarding the four research questions discussed in the introduction (see 

Figure 1), using the STAC-r model as a theoretical framework.

To introduce the terminology that will be used in this context, Figure 3 shows the 

possible cross-sectional and longitudinal cross-domain relations between brain structure and 

cognitive ability. As the literature so far has mainly investigated the direct pathway between 

brain structure and cognitive ability, scaffolding is not included in this figure. However, 

as the indirect pathway is considered as specifically relevant in the context of healthy 

aging, future theoretical development is encouraged to move into this direction (see section 

‘Theoretical limitations and the need for theory development’ for an extended discussion).

In this figure, measures of brain structure properties and levels of cognitive ability 

(square shapes) and respective changes (ΔTn+1−Tn) in these variables are depicted between 

subsequent measurement occasions. Linking this figure to the multivariate research 

questions presented in the introduction, research question type 3 can be answered by looking 

Oschwald et al. Page 7

Rev Neurosci. Author manuscript; available in PMC 2021 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at the cross-sectional correlation between specific structural brain features and levels of 

cognitive ability at a fixed measurement occasion. Regarding research question type 4 of 

longitudinal relations between brain structure and cognitive ability, several associations can 

be conceptually distinguished.

First, level-change associations might be observed, referring to any relationship between a 

cross-sectional measure – hereafter termed as level – of either structural brain properties or 

cognitive ability and longitudinal changes in the respective other domain. The term level 

is used in a statistical sense here to distinguish baseline assessments from longitudinal 

changes. For example, people with more intact structural brain features at baseline might 

be less likely to show age-related cognitive decline than people with lower levels of 

healthy brain tissue (in the sense of brain maintenance; see Nyberg et al., 2012). The 

reverse directionality is also plausible – higher levels of cognitive ability might protect from 

premature brain aging (in the sense of a cognitive reserve; see Stern, 2009; Barulli and Stern, 

2013). In addition, both directions might be observed, such that bidirectional influences 

are at play. However, level-change associations are only quasi-longitudinal, as at least for 

one of the two variables, information on intraindividual change processes is lacking. It is 

impossible to know whether an individual with a seemingly more atrophied brain at baseline 

actually experienced intraindividual declines before the study period, as this longitudinal 

information is missing. As such, level-change associations only provide partial insights into 

change relations between the two domains.

Second, correlated change relationships between brain structure and cognitive ability 

might be observed. We refer to correlated change relationships to describe any temporal 

relationship between changes in both structural brain measures and cognitive measures. 

Furthermore, any correlated change relationship can either occur simultaneously or in 

a time-lagged fashion, such that changes in one variable over a certain time correlate 

with changes in the other variable at a later time-period. Simultaneous correlated changes 

between structural brain features and a specific cognitive ability carry information about the 

association of changes that occur within the same observational time frame. Conceptually, 

such parallel cross-domain associations might either reflect directed relationships between 

the two domains that occur within the studied time frame, or the influence of a third 

variable on both developmental trajectories, in the sense of a common cause (Baltes and 

Lindenberger, 1997; Lindenberger and Ghisletta, 2009), which is, however, impossible to 

disentangle with this type of data.

The advantage of investigating lagged correlated changes is that they can yield more 

insights into the temporal dynamics of the association between changes in measures of 

brain structure and cognitive ability, allowing to investigate leading and lagging relationships 

(Grimm et al., 2012). Especially as scaffolding networks might be able to compensate for 

accumulating brain damage only until a certain threshold, such as posited by the theory of 

brain reserve (Satz et al., 2011), it is to be expected that detrimental changes in structural 

brain measures might significantly impact cognitive performance only after a certain time 

lag. As can be seen from looking at Figure 3, more than two measurement occasions are 

needed to study lagged correlated change associations.
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Literature review

In the following sections, we will first summarize the existing literature on age-differences 

and changes (research questions type 1 and 2) in selected measures of brain structure 

and cognitive ability across the adult lifespan, with a focus on healthy old age, which – 

according to traditional conceptions – is defined as age 60 and older (e.g. Baltes and Smith, 

2003). Second, cross-sectional and longitudinal associations between the two domains 

(research question type 3 and 4) will be discussed in the context of the STAC-r model (see 

Figure 1), presenting a systematic literature review of the available evidence on longitudinal 

correlated changes between brain structure and cognitive ability.

Age-differences and changes in brain structure in adult development

The brain undergoes substantial structural changes throughout the lifespan (Lockhart and 

DeCarli, 2014). With the advent of MRI, it has become possible to observe these changes 

in vivo. The MRI-derived parameters commonly used to describe aging can be roughly 

divided in measures of GM, white matter (WM) tissue, and cerebrospinal fluid (CSF), 

which together constitute whole brain volume (see Table 1 for detailed explanations). GM 

indices include volume-based measures, such as GM volume or density, and surface-based 

measures, such as cortical thickness or surface area. WM indices consist of volume-based 

measures, such as WM volume and WM hyperintensity (WMH) volume, and measures of 

WM anisotropy, and diffusivity, which yield information about the restrictedness of water 

diffusion in the WM tissue of the brain, and thus indirectly, about WM microstructural 

properties. Regarding whole brain volume and CSF, different measures are distinguished 

(see Table 1). As follows, we will give an overview over age-differences and changes in 

these structural brain indices in healthy aging.

GM—The GM volume gradually declines across the adult lifespan (Hedman et al., 2012). 

However, the onset, and the shape (e.g. linear, quadratic) of tissue loss are dependent on the 

brain region under study (Ziegler et al., 2012). Cross-sectional estimates of age-differences 

suggest that the implied decline of GM volume typically follows a last-in-first-out pattern, 

with anterior brain regions (e.g. prefrontal cortex) being the latest to mature and the first 

to show age-related deficits, and posterior regions that mature early in development (e.g. 

visual, auditory cortex) being less vulnerable to GM atrophy (Sowell et al., 2004). This 

pattern of structural brain differences across age is confirmed by a longitudinal study, with 

the exception of structures of the medial temporal regions (e.g. hippocampus, amygdala), 

which showed moderate reductions in children and young adults, but declined substantially 

in older adults (Tamnes et al., 2013). Regarding the shape of GM change across the 

adult lifespan, an age-heterogeneous longitudinal study (age range 23–87 years) reported 

nonlinear (implied) declines over age for GM volume in most areas of the cortex, with 

accelerating declines in temporal and occipital, and decelerating declines in prefrontal and 

anterior cingulate regions (Storsve et al., 2014). As cortical thickness and surface area 

are the two constituent measures of GM volume, those measures were also investigated. 

Interestingly, larger and nonlinear changes were found for cortical thickness, while surface 

area showed smaller and predominantly linear curves across most regions of the cortex. The 

authors interpreted this as evidence that cortical thickness contributes more strongly to GM 
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volume changes in old age than surface area. Measuring middle-aged to older adults for 

up to five measurement occasions, Rast et al. (2017) reported nonlinear cortical thinning 

over 8 years in five lobar composites across the cortex, but with decelerating changes, 

which were most pronounced for older adults in frontal, temporal, and cingulate cortices. 

With regard to subcortical structures, cross-sectional evidence across multiple sites shows a 

pattern of age-differences indicative of predominantly nonlinear decline trajectories across 

chronological age (e.g. hippocampus, caudate), but also of linear decline slopes for some 

structures (e.g. thalamus, accumbens; Walhovd et al., 2011; Ziegler et al., 2012; Fjell et 

al., 2013). These findings need to be interpreted with caution, however, as the automated 

reconstruction of subcortical structures is shown to be of variable reliability, depending, for 

example, on segmentation choices or the size of the structures (i.e. lower reliability for small 

structures, Morey et al., 2010).

WM—Cross-sectional estimates of age-differences (Westlye et al., 2010; Liu et al., 2016) 

and longitudinal estimates of change (e.g. Hedman et al., 2012) suggest that WM volume 

follows a nonlinear developmental pattern across the adult lifespan, with (implied) increases 

up to around age 50, and accelerated age-differences or declines thereafter. Similar to GM 

volume, the onset of WM volume decline is region-specific. The largest age-differences 

and declines were found in the frontal cortex, succeeded by the temporal (Bartzokis et al., 

2001; Raz et al., 2005) and parietal cortices (Resnick et al., 2003), whereas occipital regions 

remain relatively spared (Raz et al., 2005).

Besides volumetric deficits, WM degradation in the course of healthy aging manifests itself 

also as age-differences and declines in microstructural properties of WM fiber tracts, and 

as an accumulation of WMH with increasing age (see Bennett and Madden, 2014 for a 

review). The former can be estimated with diffusion-weighted MRI (DW-MRI), a MRI 

method sensitive to the diffusion of water molecules in the brain (Jones, 2010). Compared 

to non-restricted diffusion of water molecules (i.e. in a glass of water), diffusion is highly 

directed in WM with the fibers acting as natural boundaries limiting the diffusion movement 

in certain directions. Indices derived from a tensor model fitted at each voxel reflect, 

for example, the degree of directedness of diffusion (fractional anisotropy, FA), or the 

mean rate of diffusion of a tissue (mean diffusivity, MD), independent of directionality 

(see Table 1; Beaulieu, 2002). Findings from cross-sectional studies show lower FA and 

higher MD in older as compared to younger adults (e.g. Cox et al., 2016), which is often 

interpreted as age-related deficits in the integrity of WM tracts. However, this interpretation 

is criticized (Jones, 2010), due to the lack of specificity of these measures with regard to 

their neurobiological foundation (see also Box 1). The few existing longitudinal studies 

demonstrate changes in WM microstructure with increasing age that are indicative of WM 

degradation, with prefrontal fiber systems being especially vulnerable to degradation (e.g. 

Barrick et al., 2010; Sullivan et al., 2010; Teipel et al., 2010). In addition, some longitudinal 

studies are suggestive of a similar last-in-first out pattern of change as seen in brain 

volumetric indices (e.g. Bender et al., 2016b; Storsve et al., 2016). However, exceptions to 

this trend is noted, with larger declines in posterior than frontal regions (Salat et al., 2005), 

and some support also exists for a superior-inferior gradient of WM aging (e.g. Sexton et 

al., 2014). Also, studies of WM microstructure in healthy aging increasingly differentiate 
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between diffusion parallel (axial diffusivity; AD) and perpendicular (radial diffusivity; RD) 

to the main axis (see Table 1). Besides the changes in diffusion properties, increasing age 

is associated with a higher amount of WMHs, with cross-sectional estimates indicating 

a linear trajectory (e.g. Birdsill et al., 2014). WMHs can be detected and extracted from 

T2-weighted MRI images (particularly from pulse sequences; Fluid-Attenuated Inversion 

Recovery) using manual or (semi)-automated approaches (see Wardlaw et al., 2015) and 

are linked to pathological changes in vascular functions (Bennett and Madden, 2014). In 

a longitudinal study with healthy elderly, WMH volume increase was most pronounced in 

anterior regions of deep WMH (Sachdev et al., 2007).

CSF—Cross-sectional estimates suggest that CSF volume is larger in older compared 

to younger adults, and the CSF-filled ventricles appear to expand quadratically over the 

lifespan, with relative stability up to middle adulthood, and accelerated expansion thereafter 

(DeCarli et al., 2005; Carmichael et al., 2007; Fjell et al., 2013). Ventricular expansion is 

often used as a nonspecific proxy for global structural brain differences and changes and is 

shown a sensitive biomarker for AD progression (Madsen et al., 2013).

Whole brain volume—Especially in earlier publications, authors used variables reflecting 

combinations of tissue classes in order to make conclusions about differences and changes 

in whole brain volume. Depending on whether CSF is included in these measures or not one 

can dissociate total brain volume (TBV) from intracranial volume (ICV); (for more details, 

see Table 1). Some authors also use a measure of TBV that is normalized for some estimate 

of overall head size (e.g. ICV), hereafter termed as normalized brain volume (NBV). NBV 

is a widely used index for brain atrophy, as overall head size as measured by ICV remains 

relatively stable across the lifespan and thus serves as a good measure to reduce between

subject differences with regard to maximum healthy brain size (e.g. Whitwell et al., 2001). A 

meta-analysis of 22 longitudinal studies implies a gradual decline in whole brain volume of 

0.2% per year around the age of 35, and accelerated declines around age 60 (0.5% per year; 

Hedman et al., 2012). As whole brain volume includes both GM and WM, this estimated 

trajectory reflects a combination of the latter indices. Consequently, whole brain volume is a 

rather crude estimate of structural brain changes.

Summary—The mean trends reported above show that age exerts a stronger influence 

on brain structure in older than younger adults, which is reflected in the dominance of 

age-differences and decline in healthy old age. Interestingly, the average onset and the 

shape of age-related structural brain degradation varies depending on the type of tissue and 

the brain region under investigation, implying regional differences in structural brain aging 

that are shared among individuals. Roughly, GM atrophy onset is estimated at earlier ages, 

while WM remains relatively stable until old age. Moreover, a mean trend towards higher 

vulnerability of anterior, late developing regions as opposed to posterior, early developing 

regions is reported by several studies of WM and GM aging. A premise of STAC-r is that 

life course experiences of various kinds shape brain structure besides the mere influence 

of passing time. Assuming that the brain remains plastic up into higher ages, variability 

between healthy aging individuals with regard to the onset and shape of brain structure 

change can be expected (i.e. including maintenance and growth as potential trajectories). 
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The finding of predominantly nonlinear average trajectories for many brain structures (e.g. 

cortical thickness, subcortical GM, WM) lends some support to this hypothesis.

Age-differences and changes in cognitive ability in adult development

To date, research in the field of cognitive aging has provided ample support for the 

multidirectional development of cognitive abilities across the lifespan (Baltes, 1987). A 

prominent theory is the division of cognitive abilities into fluid and crystallized intelligence 

proposed half a century ago by Cattell (1963). Fluid intelligence describes the ability 

of reasoning and novel problem solving, and is often discussed as a higher-order factor 

of fluid cognitive abilities. Crystallized intelligence refers to well-practiced abilities and 

knowledge accumulated across the lifespan. In general, fluid processing mechanisms, (e.g. 

perceptual speed, working memory) gradually decline with age, whereas well-practiced 

crystallized abilities, such as vocabulary, knowledge, and autobiographical memory show 

patterns of increase, and stability well into older adulthood (Hedden and Gabrieli, 2004; 

Salthouse, 2010). However, recent evidence also suggests that the broad division into fluid 

and crystallized abilities falls somewhat short on the complexity and heterogeneity of 

developmental patterns of cognitive domains (Hartshorne and Germine, 2015). Therefore, 

we will summarize the evidence of age-differences and changes separately for a selected set 

of specific cognitive abilities relevant in the scope of the current review.

Memory—Roughly, memory can be divided in retrospective and prospective memory 

(Baddeley et al., 2009). First, retrospective memory refers to the memory for information 

acquired in the past and can be further distinguished into short-term and long-term memory. 

Regarding the memory for short-term information, age-differences and changes are mainly 

observed for working memory, which is discussed separately below. Long-term memory can 

be divided into explicit memory (involving episodic and semantic memory) and implicit 

memory (Schacter, 1987). Episodic memory refers to the recollection of events experienced 

in the past and is especially vulnerable to aging (Tulving, 1972). Tasks testing episodic 

memory require participants to memorize a set of stimuli (e.g. words) and later, to recall 

them (free recall) or decide whether they have encountered the stimulus before (recognition). 

Older adults show more difficulties with recall than recognition of previously memorized 

information (Craik and McDowd, 1987). Whereas age-related differences suggest an early 

onset of episodic memory decline in young adulthood (Salthouse, 2003), longitudinal 

evidence does not support age-related declines before age 60 (Rönnlund et al., 2005; Schaie, 

2005). Semantic memory describes the memory for factual knowledge (e.g. vocabulary) and 

comprehension (Tulving, 1972). Due to life-long accumulation of knowledge, longitudinal 

evidence suggests that semantic memory increases or remains stable at least until age 

55 (Rönnlund et al., 2005), with late-life declines smaller in size than for episodic 

memory. Longitudinal findings from the Berlin Aging Study demonstrated stability in 

verbal knowledge even up to the age of 90 (Park et al., 2002). Implicit memory refers 

to the unconscious influence of previously acquired information on present performance. A 

meta-analysis of the cross-sectional literature showed that the deficit that older participants 

show in implicit memory performance as compared to younger participants is much smaller 

compared to the age-differences in episodic memory (Light et al., 2000). Furthermore, a 

longitudinal study did not show implicit memory declines in healthy older participants over 
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3 years, suggesting relative stability of implicit memory in healthy aging (Fleischman et al., 

2004).

Second, prospective memory is needed to remember and enact a previously made plan in 

the future. In the laboratory, prospective memory is tested by abstract tasks, for example, 

remembering to ask for a pen at 9 AM (time-based) or whenever the investigator mentions 

a code word (event-based). Prospective memory is highly relevant in everyday situations, 

for example, when one needs to remember taking medication every morning. Evidence 

from cross-sectional studies shows that older adults perform worse in laboratory-based 

prospective memory tasks as compared to young adults (Henry et al., 2004; Kliegel et al., 

2016), especially in strategically more demanding tasks (i.e. specified task order, see Ihle et 

al., 2013; nonfocal task cues, see Kliegel et al., 2008). However, outside of the laboratory, 

older adults show similar or even superior performance in naturalistic prospective memory 

tasks. This paradoxical finding has been related to differences between the two settings, 

such as higher motivation, more flexibility for self-management, and less engagement in 

distracting activities in older adults when tested in their everyday life (Schnitzspahn et al., 

2011).

Executive functions—Executive functions (EF) are higher-order abilities needed to 

pursue complex tasks of planning, organization, and goal-directed behavior (Burgess, 1997). 

Besides a general component, EF are composed of a set of basic abilities involving the 

inhibition of prepotent responses, shifting between mental representations, and updating of 

representations held in working memory (Miyake et al., 2000). As updating tasks tap into 

working memory ability (Schmiedek et al., 2009), we will discuss this line of research 

in the section on working memory. Overall, absolute age-differences can be found in 

tasks requiring executive control compared to tasks involving only little control demands 

(Verhaeghen, 2011). Regarding inhibition and shifting, cross-sectional (Healey et al., 2014; 

Treitz et al., 2007) and longitudinal studies have shown age-differences and declines (Goh 

et al., 2012; Van der Elst et al., 2013; Adólfsdóttir et al., 2017). However, a meta-analysis 

could not support age-related deficits specific to inhibition, as compared to a baseline 

condition with the inhibitory control aspect removed (Verhaeghen, 2011), suggesting age

differences in more basal processes. For shifting, specific age-related deficits of older adults 

were only found for global shifting (Wasylyshyn et al., 2011), a measure for monitoring 

ability in dual-task as opposed to single-task situations.

Attention—Attention involves the capacity-limited ability to direct one’s focus to selected 

stimuli in the environment (Jäncke, 2017). Important aspects of attention are sustained 

attention (maintain focus and vigilance over a prolonged time), selective attention (focus 

on one stimulus while ignoring irrelevant information), and divided attention (focus on two 

stimuli at the same time) (Drag and Bieliauskas, 2010). While older adults typically do not 

differ from younger adults regarding sustained attention (e.g. Berardi et al., 2001), selective 

and divided attention seem to be more sensitive to aging. First, selective attention requires 

the inhibition of distracting information. Similar to the literature on inhibition, negative 

age-differences are reported for selective attention (e.g. Plude and Hoyer, 1986; Brink and 

McDowd, 1999). However, recent evidence suggests that these deficits are limited to specific 
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modalities (e.g. auditory task with visual distraction), and it is yet unclear whether this 

modality-dependency can be explained with age-differences in inhibition (Van Gerven and 

Guerreiro, 2016). Second, divided attention is assessed with the performance in dual-task 

situations, and task-switching experiments that are also used to assess the shifting factor of 

EF (Verhaeghen and Cerella, 2002). The results from a meta-analysis indicate negative age

differences in dual-task situations for older adults beyond age-related slowing (Verhaeghen 

et al., 2003). Regarding the performance in task-switching experiments, age-differences are 

restricted to a global disadvantage of managing dual-task situations (compare to results of 

EF shifting).

Working memory—Working memory describes a limited-capacity system that is involved 

in the simultaneous storage, and processing or updating of information (Cowan, 1995; 

Baddeley, 1998; Oberauer, 2009). It is typically tested with tasks that require participants 

to hold a certain number of stimuli in working memory, while simultaneously updating 

or manipulating information. For example, the reading span task requires participants to 

read sentences, answer related questions, and then recall the last word of each sentence 

(Daneman and Carpenter, 1980). Working memory is discussed to be highly related to fluid 

intelligence, however, it still has independent explanatory value (Salthouse and Pink, 2008). 

Age-related differences are reported as early as from young adulthood (20 years), following 

a linear trend (Brockmole and Logie, 2013). Longitudinal evidence has suggested declines 

in working memory capacity in middle-aged to older adults over the time span of 3 years 

(Hultsch et al., 1992).

Processing speed—Processing speed refers to the speed with which information is 

processed and can be divided in measures of psychomotor speed and perceptual speed. 

While psychomotor speed refers to the speeded performance in very basic motor task (e.g. 

finger tapping), perceptual speed tasks additionally include varying amounts of executive 

control (e.g. copying symbols or substituting digits with symbols) (Cepeda et al., 2013). As 

the distinction between these two types of speed measure is often neglected in the literature, 

we will hereafter refer to processing speed as a broader construct. Processing speed is a 

core component of higher-order cognitive abilities and thus suggested to drive age-related 

changes in other fluid cognitive domains (Robitaille et al., 2013). The rationale is that 

if simple processing steps take up more time due to age-related slowing, the remaining 

time for more complex operations is consequently limited. Furthermore, the slowing of 

basic mental operations might lead to the loss of information (e.g. through mechanisms 

of decay) by the time it is required for higher-order operations (see Salthouse, 1996). 

Cross-sectional studies indicate that age-deficits in processing speed can already be found 

in early adulthood, implying an early onset of cognitive slowing (Salthouse, 2010). While 

longitudinal findings of the Seattle Longitudinal study suggest a much later onset of decline 

around the age 60, processing speed is still one of the earliest fluid cognitive abilities to 

decline (Schaie, 2005).

Summary—On average, age-differences and declines with old age are found for episodic 

and prospective memory, EF (although driven partly by basal processes), selective and 

divided attention, working memory, and processing speed, whereas implicit, semantic 
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memory, and sustained attention show relative stability into older age. From the perspective 

of STAC-r, such multidirectional changes might reflect differences in the extent to which 

these cognitive domains rely on cognitive processes which can be compensated by strategy 

use or experience when biological resources are not sufficient anymore. For example, 

vocabulary knowledge (semantic memory) might be more strongly influenced by experience 

(i.e. education, frequent social interactions or reading the newspaper) and thus more adept to 

compensatory maintenance than the ability to complete a task as fast as possible (processing 

speed). The latter might thus rely more on a youthful brain structure and function. Regarding 

the onset of age-related differences and declines, cross-sectional studies typically estimate 

an earlier onset than longitudinal studies. This discrepancy can be explained in part by 

methodological limitations inherent to the respective study designs (e.g. practice effects 

in longitudinal studies, Salthouse, 2014; cohort-effects in cross-sectional studies, Schaie, 

2005). As scaffolding is a regulatory process that occurs within individuals over time, 

only longitudinal studies can directly capture this process. This might also explain why 

longitudinal studies report stability of cognitive ability into much higher ages. Specifically, 

accelerated cognitive declines (e.g. of episodic memory, processing speed) observed in 

longitudinal studies could reflect a turning point when compensatory mechanisms start to 

lose their functionality (e.g. due to degradation of the frontal cortex).

Associations between changes in brain structure and cognitive ability in 

healthy aging

So far, the relation between brain structure and cognitive ability was mainly investigated by 

cross-sectional studies. This literature has previously been reviewed elsewhere (see Kaup 

et al., 2011; Salthouse, 2011), which is why we refer to these works for an in-depth 

discussion. In brief, cross-sectional studies typically correlate a measure of brain structure 

and a measure of cognitive ability while controlling for age (see research question 3). 

Several of these studies show a trend toward a positive brain-cognition correlation (but see 

Salat et al., 2002; Van Petten et al., 2004), suggesting that people with larger brain volumes, 

a thicker cortex, or better WM health (i.e. less WMH load, more intact WM microstructure) 

on average perform better in a variety of cognitive tasks, independent of their age. However, 

the results remain largely inconclusive with regard to the association of specific brain 

regions and single cognitive domains, given vast methodological differences between studies 

in terms of brain structure proxies, the selection of cognitive tasks, or varying sample 

sizes. Furthermore, the focus has often not been on (healthy) aging, but more generally 

on brain-cognition relations. Although other studies have tested more specific hypotheses 

with regards to aging (e.g. investigating brain structure as a mediator of age-effects on 

cognitive performance), these studies often fall short in contrasting their findings with 

alternate theories (Salthouse, 2011). Moreover, mediational analyses are not sufficient to 

disentangle directional relationships (Hofer et al., 2006; Lindenberger et al., 2011). As is 

discussed already in the introduction, longitudinal studies are necessary to draw inferences 

about the interrelation of change trajectories in brain structure and cognition over time. 

Therefore, we will comprehensively review this literature in the following sections.
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Literature search and inclusion criteria

To review the longitudinal literature on brain structure-cognition relations in healthy aging, 

we searched Pubmed using the terms (‘brain structure’ OR ‘brain volume’ OR ‘white 

matter’ OR ‘grey matter’ OR ‘gray matter’ OR ‘cerebrospinal fluid’ OR ‘CSF’ OR 

‘ventricle’ OR ‘ventricular’ OR ‘cortex’ OR ‘cortical’ OR ‘diffusion’ OR ‘hippocampus’ 

OR ‘hippocampal’) AND (‘cognition’ OR ‘cognitive’ OR ‘speed’ OR ‘memory’ OR 

‘executive functions’ OR ‘EF’ OR ‘intelligence’ OR ‘attention’) AND (‘old age’ OR ‘aging’ 

OR ‘ageing’ OR ‘elderly’) AND (‘change’ OR ‘changes’ OR ‘trajectory’ OR ‘trajectories’) 

AND (‘longitudinal’ OR ‘over time’ OR ‘follow-up’). Figure 4 shows a flow-diagram of our 

search procedure, adapted from the Preferred Reporting Items for Systematic Reviews and 

Meta-analyses (PRISMA) guidelines (Moher et al., 2009). The search was conducted on 13 

February 2019, and yielded 1180 results. In addition, we identified four articles from other 

sources (i.e. reference lists of the screened articles) that seemed relevant, resulting in 1184 

articles. We screened the titles and abstracts and included only those articles that:

1. studied older participants over 60 years of age (articles spanning a wider age 

range were also included if part of the sample was older than 60 years),

2. studied cognitively healthy participants (full sample or a subset),

3. reported two or more measurement occasions of both a measure of brain 

structure and cognitive ability,

4. reported information regarding the statistical analysis of correlated changes 

between brain structure and cognitive ability,

5. and were prospective observation studies.

We retained 268 articles for closer examination that fulfilled these criteria or that were 

not providing sufficiently clear information in the title/abstract to be excluded. In the next 

step, we screened the full text of these articles for eligibility and excluded 238 articles 

(for reasons see Figure 4), resulting in 31 relevant articles, which will be reviewed in 

the following sections. The results for GM (see Table 2), WM (see Table 3), and whole 

brain volume and CSF (see Table 4) are reported separately (see column brain-cognition 

relations). Whole brain volume and CSF are reported in the same table, as both measures 

reflect direct or indirect (in the case of CSF) estimates of global changes in brain tissue. If 

an article included results for multiple indicators (e.g. both GM and WM), the results for 

these indicators are listed in separate tables, thus leading to overlapping samples between 

tables. In addition, if an article reported results for both cognitively healthy and pathological 

participants, only the results for the healthy subgroup are reported. If some initially healthy 

participants converted to mild cognitive impairment or dementia during the time of the 

study, we only included the respective article if it reported results without the cognitively 

impaired participants. Due to a lack of consensus in the field on a definition of healthy 

aging in general and cut-offs for cognitive health in specific, we decided to leave the 

decision on exclusion criteria for healthy cognitive aging up to the researchers (see column 

‘Healthy cognitive aging’ in Tables 2–4), while, however, discussing this variability as a 

methodological limitation (see section ‘Methodological limitations’). In the scope of this 

literature review, we limited our search to brain structure measures that are commonly 
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reported in the literature (see Table 1). For the cognitive ability measures, we did not include 

measures from screening instruments for the detection of cognitive impairment [e.g. mini 

mental state examination (MMSE)], unless they were part of a composite score with other 

neuropsychological and/or psychometric cognitive tasks. In addition, in Tables 2–4, we list 

only structural brain and cognitive measures that were also considered for the analysis of 

brain-cognition relations. All reviewed studies used MRI to measure brain structure. Only 

one of the reviewed studies reported lagged correlated changes. For reasons of simplicity, we 

thus refer to correlated changes when reporting results on simultaneous correlated changes 

and will specifically highlight the discussion of lagged correlated changes.

Due to the similarities in study design and measures investigated, we also give an overview 

of the literature on cognitive training in healthy older adults (see Box 2). In addition to 

delivering a cognitive intervention, these studies also included cognitive and neuroimaging 

assessments at least at pretest and post-test. We limit our discussion to cognitive training 

studies that included a control group (active or passive) and administered a substantive 

amount of training sessions (at least 10).

Results

The results discussed in the following sections can be interpreted as follows: (1) positive 

level-change correlations suggest that higher levels of brain structure (or cognitive ability) 

are associated with a more positive change (i.e. less decline) in cognitive ability (or brain 

structure) and vice versa, (2) positive change-change correlations suggest that a more 

positive change (i.e. increase or less decline) in brain structure (or cognitive ability) is 

associated with a more positive change in cognitive ability (or brain structure) and vice 

versa. To avoid misinterpretations, the results are presented such that higher values in 

cognitive tasks reflect better performance.

GM and cognitive ability

In total, 18 studies investigated longitudinal associations between measures of GM structure 

and cognitive ability (see Table 2). Among these articles, 10 reported level-change 

associations, of which eight showed a significant result (Raz et al., 2008; Persson et al., 

2012; Fjell et al., 2014; Möller et al., 2016; Persson et al., 2016; Hohman et al., 2017; 

Anblagan et al., 2018; Yuan et al., 2018) and two did not (Leow et al., 2009; Ritchie et 

al., 2015b). Moreover, 16 studies were able to compute results for correlated changes, of 

which eight were also significant (Persson et al., 2012; Fjell et al., 2014; Ritchie et al., 

2015b; Möller et al., 2016; Gorbach et al., 2017; Leong et al., 2017; Sala-Llonch et al., 

2017; Anblagan et al., 2018) and eight were nonsignificant (Cohen et al., 2001; Raz et 

al., 2007; Leow et al., 2009; Daugherty et al., 2015; Mak et al., 2015b; Fjell et al., 2016; 

Persson et al., 2016; Hohman et al., 2017). However, as not all studies did report results for 

both level-change and correlated change associations, the proportion of significant results 

might be biased. In addition, the potential threat of a publication bias needs to be taken into 

account. Studies with nonsignificant associations are less likely to get published (Ioannidis 

et al., 2014), and it is possible that the studies reported here are a selective subset of the 

literature reporting significant results.
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Intelligence—Five studies observed level-change or correlated change associations of GM 

with a measure of intelligence (Raz et al., 2008; Ritchie et al., 2015b; Persson et al., 2016; 

Leong et al., 2017; Yuan et al., 2018). Two very well-powered studies used latent change 

score models (LCS; McArdle and Hamagami, 2001; McArdle, 2009) to assess correlated 

changes between latent measures of GM volume and latent measures of cognitive ability 

(Ritchie et al., 2015b: n = 657; Persson et al., 2016: n = 167). The LCS model is estimated 

in the structural equation modeling (SEM) framework and allows the estimation of a latent 

change score between two subsequent measurement occasions, thus separating true change 

(at least in part) from measurement error. Furthermore, using the LCS model, it is possible 

to separate interindividual differences from intraindividual change (for a further explanation 

of this model, see section ‘The benefits of longitudinal designs’ on latent change models). 

Ritchie et al. (2015b) found significant correlated changes between GM volume and fluid 

intelligence, such that steeper declines in GM volume were associated with steeper declines 

in fluid intelligence over a period of 3 years. Furthermore, Persson et al. (2016) reported that 

participants with lower baseline GM volume in cerebellar hemispheres, parahippocampal 

gyrus, and hippocampus showed larger declines in fluid intelligence over 2 years. Also 

using the LCS model, Raz et al. (2008) found that steeper changes in entorhinal cortex 

volume were associated with lower levels of fluid intelligence in a sample of young and 

older adults (age range 20–77). Moreover, Yuan et al. (2018) reported differential effects 

of fluid and crystallized intelligence on GM aging: while participants with higher fluid 

intelligence levels demonstrated reduced cortical GM volume shrinkage over a time span of 

around 5 years, participants with higher levels of crystallized intelligence showed steeper 

declines in cortical GM volume and total cortical thickness. The authors were, however, 

unable to compute correlated change, due to a lack of interindividual differences in the 

cognitive variables. Finally, using a composite of global cognition across five fluid cognitive 

tasks (i.e. EF, processing speed, verbal, and visuospatial memory), Leong et al. (2017) 

reported positive correlated changes of this measure with total GM volume (specifically 

frontal, parietal, and temporal lobar volumes) and hippocampal volume. In contrast, the 

authors reported negative correlated changes between lobar GM in the occipital cortex and 

global cognition, indicating that on average, increases in occipital GM were associated with 

decreases in global cognition.

Memory—The most consistent evidence was found for correlated changes between 

episodic memory and GM volume or GM thickness in medial temporal regions (Persson 

et al., 2012; Fjell et al., 2014; Gorbach et al., 2017; Hohman et al., 2017; Leong et al., 

2017; Anblagan et al., 2018). With one exception (n = 26: Persson et al., 2012), these studies 

included large (e.g. n = 111: Leong et al., 2017) to very large (e.g. n = 655: Anblagan et al., 

2018) sample sizes.

Two studies could show positive longitudinal associations between hippocampal volume 

and episodic memory, such that older adults with larger baseline hippocampal volumes 

(Hohman et al., 2017), or less hippocampal atrophy over time (Leong et al., 2017) showed 

less declines in episodic memory over a period of 4–8 years, respectively. Furthermore, 

Persson et al. (2012) reported that changes in episodic memory were positively correlated 

with changes in the right hippocampus, as well as hippocampal volume at follow-up (after 
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6–10 years) in a sample of middle-aged to older healthy participants. Similarly, Gorbach 

et al. (2017) found positive correlations between 15-year changes in an episodic memory 

composite of five tasks and simultaneous 4-year changes (towards the end of the same 

testing period) in GM volume of the hippocampus in a sample of healthy middle-aged to 

older adults. Notably, this effect was driven by the participants aged over 65. To reduce 

practice effects, the authors used slightly different versions of the episodic memory tasks 

across measurement occasions (i.e. by switching item lists between tasks or changing the 

item order). Also, one study found that baseline hippocampal microstructure as measured 

with MD (more conventionally used to detect WM changes; see Table 1), was associated 

with changes in verbal episodic memory (Anblagan et al., 2018), such that participants 

with higher MD showed steeper subsequent declines in episodic memory performance. In 

contrast, correlated changes between hippocampal volume and verbal episodic memory did 

not survive correction for multiple comparisons. The authors speculate that higher MD 

values might reflect an age-related increase in water content in hippocampal tissue that 

could be a precursor for age-related pathological changes that influence cognitive abilities 

before brain atrophy can be observed (Anblagan et al., 2018).

Positive correlated changes with episodic memory were also reported for cortical thickness 

in the entorhinal cortex (Fjell et al., 2014) and in right hemispheric regions (Sala-Llonch et 

al., 2014; Möller et al., 2016). Finally, one study reported a significant association of higher 

baseline episodic memory performance with reduced 2-year GM volume declines in the 

lateral prefrontal cortex in a sample including younger and older adults (age span of 19–79 

years; Persson et al., 2016).

EF—Four studies reported level-change associations for a measure of GM and EF: in a large 

sample of healthy controls of the Alzheimer’s disease and neuroimaging initiative (ADNI; n 

= 379), baseline hippocampal volume was positively related to changes in EF over 4 years 

(Hohman et al., 2017), suggesting that older adults with lower hippocampal volume showed 

steeper declines in EF. Similarly, Leong et al. (2017) reported positive correlated changes 

between hippocampal volume and EF over 8 years of follow-up. In addition, in one study, 

2-year changes in cortical thickness of the right occipital cortex were negatively correlated 

with simultaneous performance changes in EF tasks (Möller et al., 2016).

Working memory—Only one study found longitudinal relationships between 

hippocampal MD and working memory (Anblagan et al., 2018): unlike the level-change 

association, which went into the expected direction, correlated changes between MD and 

working memory were positive, suggesting that increases in MD (usually interpreted as 

disruptions in WM microstructure) were related to improvements in working memory. 

However, due to the lack of specificity of MD, other influences (e.g. crossing fibers) could 

potentially have led to a local increase in MD (Zatorre et al., 2012).

Processing speed—In two well-powered studies using data from the Lothian Birth 

cohort, more intact hippocampal GM at baseline (i.e. lower MD; Anblagan et al., 2018), and 

less decline in whole brain GM volume (Ritchie et al., 2015b) were associated with reduced 

declines in a latent measure of processing speed over 3 years.
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However, nine studies did not show any longitudinal relationships between GM and 

cognition regarding correlated change (Cohen et al., 2001; Raz et al., 2007; Daugherty 

et al., 2015; Mak et al., 2015b; Fjell et al., 2016; Persson et al., 2016; Hohman et al., 2017), 

level-change (Ritchie et al., 2015b) or both (Leow et al., 2009). Several of these studies had 

comparatively small sample sizes (between n = 25 and 56) and might have thus not been 

sufficiently powered to detect any significant effects (Cohen et al., 2001; Raz et al., 2007; 

Leow et al., 2009; Mak et al., 2015b; Fjell et al., 2016).

WM and cognitive ability

In total, 18 studies investigated longitudinal associations between measures of WM structure 

and cognitive ability (see Table 3). Out of these, nine studies reported level-change 

associations, of which four were significant (Ritchie et al., 2015a,b; Persson et al., 2016; 

Moon et al., 2017), and five were not (Raz et al., 2008; Silbert et al., 2008; Charlton et 

al., 2010; Bender et al., 2016a; Song et al., 2018). Moreover, 17 studies reported correlated 

change associations, of which 14 were significant (Schmidt et al., 2005; Raz et al., 2007; 

Silbert et al., 2008; Charlton et al., 2010; Lövdén et al., 2014; Ritchie et al., 2015a,b; Bender 

et al., 2016a; Köhncke et al., 2016; Persson et al., 2016; Fjell et al., 2016, 2017; Leong 

et al., 2017; Moon et al., 2017), and three were not (Schmidt et al., 1999; Gorbach et al., 

2017; Song et al., 2018). Again, many studies did not report results for both level-change 

and correlated change, therefore the proportion of significant results should be interpreted 

with caution.

Intelligence—Several studies found positive level-change or correlated change 

associations between global measures of WM health and some measure of fluid intelligence, 

such that lower baseline WM volumes or faster degradation of WM were associated with 

larger declines in intelligence performance. Specifically, accumulation of global WMH 

volume over time (Schmidt et al., 2005; Raz et al., 2007; Ritchie et al., 2015b), decrease 

in global FA (Ritchie et al., 2015a), and both lower baseline prefrontal WM volume and 

atrophy therein (Persson et al., 2016) were associated with declines in intelligence over time. 

These studies all covered a time span between 2 and 6 years. Furthermore, several of these 

studies used LCS models to investigate interindividual differences in intraindividual changes 

(Ritchie et al., 2015a,b; Persson et al., 2016), and included large to very large sample sizes 

given the standards in the field (n = 731: Ritchie et al., 2015a; n = 657: Ritchie et al., 2015b; 

n = 167: Persson et al., 2016).

Memory—Some evidence also exists for correlated change associations between WM 

health and measures of episodic memory (Schmidt et al., 2005; Silbert et al., 2008; Ritchie 

et al., 2015b; Fjell et al., 2016; Bender et al., 2016a; Leong et al., 2017). In one study, 

larger declines in global and lobar (i.e. parietal and frontal) WM volume were related to 

steeper declines in a composite reflecting verbal episodic memory performance (Leong et 

al., 2017). Furthermore, three studies reported negative correlated changes between WMH 

and episodic memory (global WMH: Schmidt et al., 2005; subcortical WMH: Silbert et 

al., 2008; global WMH: Ritchie et al., 2015b), which can be interpreted as a positive 

relationship between changes in WM health and episodic memory. Also, one study reported 

a relationship between changes in WM microstructure (increases in MD of the cingulate 
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gyrus) typically understood as WM deterioration, and declines in episodic memory (Fjell et 

al., 2016). However, Bender et al. (2016a) observed the opposite relationship. In their study, 

changes in WM microstructure (decreases in FA, increases in RD), which are commonly 

interpreted as WM degradation were correlated with improvements in episodic memory. 

Given the uncertainty regarding the cellular mechanisms of change in diffusion properties, 

however, it is also possible that the pattern of WM changes reflects a form of plastic 

reorganization (Bender et al., 2016a).

EF—Two studies reported evidence for level-change or correlated change associations 

between WM and EF (Fjell et al., 2017; Moon et al., 2017). Fjell et al. (2017) found a 

negative correlation between MD changes in the inferior and superior longitudinal fasciculi 

(averaged across hemispheres) with performance changes in a shifting condition of the 

stroop task across a period of 3 years. However, the result for the superior longitudinal 

fasciculus did not survive control for age. This means that increases in MD in the 

inferior longitudinal fasciculus were related to declines in inhibitory control, independent of 

participant age. In a subsample of cognitively healthy elderly, Moon et al. (2017) reported a 

negative association between WMH progression and steeper 3-year declines in EF, measured 

as performance in the Trail Making Test B. This relationship was not found for the entire 

sample, which contained also participants with impaired cognition (i.e. clinical dementia 

rating scale > 0).

Working memory—One study reported negative correlated changes between a measure 

of WM microstructure (i.e. MD; higher values reflect lower integrity) and a composite of 

two working memory tasks (Charlton et al., 2010). These tasks are elsewhere interpreted as 

measures of fluid intelligence (Ritchie et al., 2015a,b).

Processing speed—Overall, five studies found level-change or correlated change 

associations between WM health and processing speed. Notably, these studies were very 

well-powered, with sample sizes above n = 400 (with the exception of Moon et al., 2017). 

Based on participants from the same sample of healthy older adults, two studies reported 

positive correlated changes over 2 years between indices of WM microstructure (decreases 

in FA, increases in MD) of the corticospinal tract and processing speed (Lövdén et al., 

2014; Köhncke et al., 2016), indicating that older adults with less intact WM microstructure 

in the corticospinal tract show steeper declines in processing speed. Furthermore, lower 

baseline global FA (Ritchie et al., 2015a), higher global WMH at baseline, and higher WMH 

increases were associated with steeper declines in processing speed (Ritchie et al., 2015b; 

Moon et al., 2017).

Finally, seven studies did not show any longitudinal relationships between WM and 

cognition regarding correlated changes (Schmidt et al., 1999; Gorbach et al., 2017), level

change associations (Raz et al., 2008; Silbert et al., 2008; Charlton et al., 2010; Bender 

et al., 2016a), or both (Song et al., 2018). The sample sizes of these studies were very 

heterogeneous, with some including smaller (e.g. n = 84: Charlton et al., 2010; n = 55: Song 

et al., 2018), and others large samples of more than 200 participants (Schmidt et al., 1999, 

2005; Gorbach et al., 2017).
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Whole brain volume, CSF, and cognitive ability

Overall, six studies reported longitudinal associations between measures of whole brain 

volume or CSF, and cognitive ability (see Table 4). Four of these studies reported level

change associations, of which one showed a significant result (Ritchie et al., 2015b), and 

three did not (Charlton et al., 2010; Grimm et al., 2012; Mak et al., 2015a). Moreover, all six 

studies reported results for correlated changes, of which three were also significant (Schmidt 

et al., 2005; Grimm et al., 2012; Leong et al., 2017), and three were nonsignificant (Charlton 

et al., 2010; Mak et al., 2015a; Ritchie et al., 2015b).

Memory—Three studies found positive level-change (Ritchie et al., 2015b) or correlated 

change associations (Schmidt et al., 2005; Leong et al., 2017) of a measure of episodic 

memory and of a measure of whole brain volume (see Table 1), in the direction that 

participants with lower levels of episodic memory performance at baseline, or decreases 

therein, showed on average steeper decline in whole brain volume. These studies were well 

to very well-powered (n = 329: Schmidt et al., 2005; n = 657: Ritchie et al., 2015b; n = 111: 

Leong et al., 2017).

With regard to CSF, two studies found negative correlated change associations between 

ventricular volume and episodic memory performance, such that ventricular enlargement 

(CSF increases) was related to simultaneous or subsequent declines in memory performance 

(Grimm et al., 2012; Leong et al., 2017). Specifically, we would like to highlight the study 

by Grimm et al. (2012), which was the only one to model lagged correlated changes. 

The authors assessed 149 participants in a measure of CSF (lateral ventricle volume) and 

episodic memory with seven repeated measurements over a maximum period of 10 years. 

They estimated change across participant age (60–90 years) in a bivariate dual change 

score model (a variant of a LCS model). Conducting a series of model comparisons, they 

concluded that a final model where previous changes in CSF led to subsequent changes in 

episodic memory reflected the data best, whereas the other directionality (cognitive changes 

leading to brain changes) lowered model fit substantially. We would like to emphasize this 

study, as it provides the methodological tools to explore directional hypotheses in the study 

of dynamic within-person associations between changes in brain structure and cognitive 

ability. As the expansion of CSF in the ventricles indicates a loss of brain volume, these 

results, when taken together, mirror the findings for whole brain volume.

Other—In addition, Schmidt et al. (2005) reported positive correlated changes of NBV with 

a composite of four cognitive tasks that tap into attention and processing speed. Another 

study reported a negative association of ventricular expansion with executive function 

declines (Leong et al., 2017).

However, two studies did not find any significant association regarding level-change and 

correlated change associations (Charlton et al., 2010; Mak et al., 2017). These studies had 

smaller sample sizes compared to the studies reported above that found significant brain 

structure-cognition relations (i.e. n = 106: Charlton et al., 2010; n = 33: Mak et al., 2017), 

thus having less power to detect any significant effects.
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Summary—In conclusion, so far only a small number of studies have investigated 

level-change or correlated change associations between measures of brain structure and 

cognitive ability. Several of these studies report positive associations, indicating that declines 

(or increases) in structural brain intactness are related to simultaneous losses (or gains) 

in cognitive performance. However, others have found the opposite relation, such that 

brain structure was negatively associated with cognitive ability, or showed no significant 

correlation at all. In light of the scarcity of evidence, the positive association between 

structural brain properties of medial temporal regions (specifically the hippocampus) and 

global brain metrics with episodic memory has received comparatively more attention. As 

the hippocampus is involved in neurogenesis up into old age (Lillard and Erisir, 2011), 

this structure is highly relevant for brain plasticity, and potentially also for compensatory 

scaffolding (see also Park and Reuter-Lorenz, 2009). We also found some support for 

level-change or correlated changes of global GM and WM indices with fluid intelligence, 

and a few studies showed brain structure relations with EF and processing speed, however, 

these findings are more heterogeneous. Generally, the interpretation of significant correlated 

change associations between structural brain indices and cognitive abilities poses a 

challenge, as it is impossible to disentangle whether age-related neuroanatomical changes 

are causally linked to simultaneous cognitive declines, or whether a (positive) relationship 

between these variables reflects a common, underlying causal mechanism. Based on STAC

r, we expected associations between brain structure and cognitive ability to be weak 

especially in healthy older adults as they should be able to compensate for age-related 

brain atrophy and thus maintain cognitive performance. Unfortunately, it was not possible 

to derive a fully comparable measure of the strength of the correlated change relationships, 

due to large methodological differences between studies. Even if it was possible to gain an 

effect size estimate, it would be impossible to judge at the present moment if weak brain 

structure-cognition relationships resulted from methodological limitations of the reviewed 

studies or actually from intraindividual compensatory resources as predicted by STAC-r. We 

therefore conclude that the current limitations of the reviewed literature prohibit general 

conclusions on correlated change relationships in healthy aging. In the following sections, 

we will discuss these limitations in-depth, and provide ideas for the advancement of methods 

and theories in the field.

Methodological limitations and the need for methods development

The concerted findings from prospective observation studies provide evidence for 

intertwined changes between WM and GM and whole structural brain correlates and 

cognitive abilities in healthy aging individuals (see Tables 2–4). Furthermore, the results 

gained from cognitive intervention studies provide causal insights into the relation between 

brain structure and cognitive ability changes. However, taken together, the results are far 

from being consistent with respect to the brain regions and cognitive measures that are 

associated with each other, or even regarding the directionality of the relation between brain 

structure and cognition (Bender et al., 2016a; Leong et al., 2017; Anblagan et al., 2018). In 

the following sections, we will discuss methodological limitations of the reviewed studies 

and potential avenues for methodological advancement.
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Methodological limitations

Reliability, shape, and dynamics of change—The majority of the reviewed studies 

assessed only two measurement occasions. However, two-occasion studies are limited with 

regard to the reliability of the change estimate (Willett, 1989). A line drawn through two 

observations will always fit perfectly and hence measurement error will be ignored (King 

et al., 2018). Consequently, the reliability of the change estimate in two-occasion studies 

is highly dependent on the accuracy of the individual brain or cognitive measures observed 

at each occasion (see the sections on reliability and validity of structural brain measures/

cognitive ability measures below). Regarding the shape of change, two-occasion studies 

allow only the estimation of linear change. Ideally, at least four occasions are required to 

estimate nonlinear trajectories of change (King et al., 2018). As already touched upon in 

the beginning of this article, cross-sectional and longitudinal evidence supports nonlinear 

age-related changes in brain structure and cognitive ability. Furthermore, only with more 

than two measurement occasions it is possible to study time-lagged relations between 

changes in two variables, and thus test directional hypotheses of the dynamics between 

structural brain and cognitive changes. It is reasonable to assume that changes in two 

developmental variables are not perfectly synchronized, but rather follow a lagged pattern, 

potentially even with bidirectional relations (Salthouse, 2011). Only few studies included 

three or more measurement occasions (Schmidt et al., 2005; Silbert et al., 2008; Grimm et 

al., 2012; Gorbach et al., 2017; Leong et al., 2017; Moon et al., 2017; Yuan et al., 2018) that 

would allow the estimation of more complex change dynamics. Of these studies, all assumed 

linear curves to estimate correlated change, and only two studies specifically tested first if 

a nonlinear trajectory fit the data better (which it did not; Hohman et al., 2017; Leong et 

al., 2017). Furthermore, only one study estimated lagged change relations, using, however, a 

rough measure of global brain structure changes (lateral ventricle size; Grimm et al., 2012).

Choice of age-range—The samples used in the reviewed studies differed substantially 

regarding the age ranges covered. Several studies selected a lifespan approach, covering 

a broad age range from young or middle adulthood to old age. Such lifespan samples 

are useful for research, as they can inform about development across a longer time 

span that would otherwise be almost impossible to gather from following one cohort 

across the entire lifespan. However, one needs to be careful when comparing results 

of age-heterogeneous studies to those from studies with more narrow age ranges. In 

age-heterogeneous studies, average change is composed of both within-person change and 

between-person age-differences. This can be problematic if these two types of age effects 

do not converge. Age convergence can be formally tested for (Sliwinski et al., 2010), 

however, it is often not realistic to find age convergence in studies with broad age ranges, 

as very different developmental mechanisms might be at work in adults of different ages. 

For example, the chance of experiencing declines in structural brain features and cognitive 

performance is much higher around age 70 than age 50, and negligibly small for adults 

in their twenties. Thus, if these two sources of variance are not properly distinguished, 

estimated rates of change can be confounded with an increased probability of change with 

age at the between-person level (Hofer and Sliwinski, 2001). Different methodological 

approaches exist to include between-person age differences better into the analysis. For 
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example, participant’s baseline age can be included as a predictor to control for between

person age differences (see Sliwinski et al., 2010 for an extended discussion).

Definition of healthy aging—As already touched upon in the introduction of this article, 

healthy aging is not a well-defined term. The current definition of healthy aging provided 

by the WHO places importance on the interplay between a person’s resources (i.e. intrinsic 

capacity) and the living context on the micro to macro level that is necessary to retain 

satisfactory levels of well-being through the successful pursuit of one’s personal goals. This 

definition of healthy aging is more inclusive than the more general definition of health as 

a state of ‘complete physical, mental, and social well-being and not merely the absence 

of disease or infirmity’ (WHO, 1946). The recent definition from the First World Report 

on Ageing and Health (WHO, 2015) states that healthy aging is a process that applies to 

individuals at varying levels of functional capacity and health.

Given that the current review focuses on the association between brain and cognition, and 

that cognitive health is an important predictor of well-being in old age, we understand 

healthy aging from a cognitive ability point of view. Thus, when using the term healthy 

aging, we mean aging in the absence of clinically relevant cognitive impairment. All of 

the studies reviewed here tested for cognitive impairment using one or more common 

screening instruments for dementia or psychiatric illness related to cognitive impairment 

(i.e. depression) or described their participants as cognitively normal or dementia-free 

without closer information on specific instruments or cut-offs used (see column ‘Healthy 

cognitive aging’ in Tables 2–4). However, they showed vast differences regarding the exact 

protocols used to determine cognitive health (e.g. medical screening by trained experts vs. 

brief health interview), and the level of detail they provided in describing these protocols, 

which is why we direct interested readers to the original publications for more information. 

Many studies used the same instruments to screen for cognitive impairment (e.g. MMSE; 

Folstein et al., 1975), lending to some comparability. However, the cut-off values for healthy 

cognitive aging varied substantially between studies (e.g. from a minimum score of 24 

up to a score of 28 in the MMSE). Moreover, many studies applied additional exclusion 

criteria beyond cognitive health [e.g. diabetes, cardiovascular disease, or vascular risk 

(VR)], leading to substantial differences in the overall health status between study samples. 

For example, besides screening for a range of medical conditions (including neurological 

disorders such as AD), Möller et al. (2016) excluded participants with cerebrovascular 

disease. In contrast, Raz et al., specifically included a subsample of participants with 

medically treated hypertension, as they were interested in the effect of VR on brain and 

cognitive health (Raz et al., 2007, 2008). The choice of criteria influences the prevalence of 

people categorized as healthy agers substantially (McLaughlin et al., 2012; Rodriguez-Laso 

et al., 2018). This discrepancy in the use of screening instruments and cut-off criteria 

underlines the urgent need for a clear consensus on a definition of healthy aging. Finally, 

on a conceptual level, it is still a matter of debate whether cognitive decline is a normal 

aspect of healthy aging and disease represents a qualitatively different state of the brain or 

whether it simply reflects the starting point on a continuum to later disease progression (i.e. 

dementia) – and age serves as a proxy for pathological changes.
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Choice of time interval—The time intervals between measurement occasions varied 

between studies, ranging from 1 year (Leow et al., 2009; Grimm et al., 2012; Fjell et al., 

2014; Mak et al., 2015a,b) up to 15 years (Gorbach et al., 2017). Also, for some studies the 

time intervals were different for the MRI and cognitive measurements (e.g. Fjell et al., 2014; 

Gorbach et al., 2017). Depending on the width of the time window under investigation, 

it is possible that changes are driven by different developmental processes or external 

influences (Hofer and Piccinin, 2009). When planning a longitudinal study, researchers 

need to be aware that different neuroanatomical substrates (e.g. volumetric or surface-based 

measures, WMH, WM microstructure), or different regional structures most likely vary 

with regard to the timing and duration of age-related change processes. Thus, especially if 

neuroanatomical measurements are also combined with cognitive performance assessments, 

there will probably not be any ideal time interval that is suited to capture all of these change 

processes. Importantly, the choice of the length of the time intervals substantially influences 

the magnitude of the parameters estimated in traditional statistical models for the analysis 

of longitudinal data (Voelkle and Oud, 2013). Unfortunately, not many guidelines exist that 

help researchers in choosing the optimal spacing between measurements when planning a 

longitudinal study of aging (Dormann and Griffin, 2015).

Choice of covariates—Many authors included one or more covariates into their 

statistical analysis, to control for the potentially confounding influence of third variables on 

the relationship between changes in brain structure and cognitive performance (see column 

‘Covariates’ in Table 2). Notably, the selection of covariates was heterogeneous between 

studies, further preventing direct comparisons of the level-change and correlated change 

relations. For example, while some authors controlled for age only, others additionally 

included other covariates (e.g. VR, apolipoprotein E allele 4) to control for the impact 

of neurally depleting factors. A source of heterogeneity was also introduced by different 

approaches to control for brain size. While some authors decided to adjust the raw brain 

volumes with a measure of maximum healthy brain size such as ICV (e.g. Persson et al., 

2016), others included it as a covariate (e.g. Leong et al., 2017). At the present moment, no 

clear consensus is reached on one approach in the literature, as many factors play a role (e.g. 

the measure of brain size: Jäncke et al., 2015), and it is yet unclear how the correction with 

a global measure of brain size impacts findings in longitudinal developmental studies (Mills 

and Tamnes, 2014). We acknowledge that the choice of covariates is not a trivial matter, 

and often neglected in the discussion of results. Furthermore, covariates are often selected 

retrospectively, based on the variables that are available in a dataset, and not necessarily 

based on the most relevant potential confounds. This is especially an issue when using 

large, publicly available datasets that might not be designed for the research question at 

hand. Even in an ideal scenario where all potential confounds are observed, the decision on 

which variables to include into an analysis still remains subjective. Importantly, the choice 

of covariates can substantially alter the results of an analysis, as is nicely demonstrated 

in a recent study by Silberzahn et al. (2018). They asked 29 teams of researchers to 

independently analyze the same dataset and answer the question, whether soccer referees 

are more likely to give red cards to dark skinned players. The conclusions the researchers 

made varied immensely, in part because of their choice of covariates. Especially with regard 

to observational studies, the inclusion of certain types of covariates can impose a threat to 
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causal conclusions (see Rohrer, 2018). To enable future meta-analytical comparisons, we 

thus advocate the transparent reporting of the results both with and without the included 

covariates. In addition, future studies might consider including time-varying covariates 

in their analyses, if theoretical reasons exist that they impact brain and/or cognitive 

performance differentially over time. For example, high body mass index or hypertension is 

associated to higher risks of developing dementia if experienced in midlife (Kennelly et al., 

2009; Kivimäki et al., 2018).

Statistical method—Another source of variation between studies relates to the statistical 

methods used to model correlated change associations. In most cases, the investigators 

decided to compute two change scores (raw difference score or a change ratio) and either 

run a standard correlation between them, or include one score as a predictor and the other as 

a dependent variable in a regression model (see column ‘Statistical method’ in Tables 2–4). 

In contrast to a raw difference score, a change ratio is typically standardized with regard to 

baseline values of brain structure or cognitive ability, thus reflecting a relative difference. 

As many authors used different methods to compute change ratios (e.g. annual percentage 

change vs. the proportion of level at T2 to level at T1), this lack of consensus introduces 

another source of noise complicating the comparability of previous findings. Irrelevant of 

the computation, however, change scores include not only variation due to change within 

individuals over time but they are also confounded by variation stemming from between

person differences. Importantly, the main interest of every investigation of brain structure

cognition relations is to make assertions on how the two variables of interest are related 

to each other within individuals. Thus, appropriate statistical methods for the analysis of 

longitudinal change are necessary that are able to isolate these different portions of variance. 

Such methods are, for example, variants of latent growth curve models (i.e. random 

coefficient or multilevel models) (Raudenbush and Bryk, 2002), or latent change models 

(McArdle and Hamagami, 2001; McArdle, 2009), which allow to estimate interindividual 

(i.e. between-person) differences in intraindividual (i.e. within-person) change. Specifically, 

a variant of latent change modeling, the bivariate LCS model estimated in a SEM framework 

is well-suited to address questions of correlated change associations between two variables 

(Kievit et al., 2018; for more details on the method see section ‘The benefits of longitudinal 

designs’). Several of the reviewed publications have already adopted this approach (Raz et 

al., 2008; Grimm et al., 2012; Lövdén et al., 2014; Daugherty et al., 2015; Ritchie et al., 

2015a,b; Köhncke et al., 2016; Bender et al., 2016a; Persson et al., 2016; Anblagan et al., 

2018).

Power to detect change—The sample sizes studied were highly diverse between studies. 

Especially, to detect correlated change, sufficient statistical power is necessary. While this 

is not usually a concern for moderately sized longitudinal studies covering a few years, 

power can be an issue for short-term longitudinal studies with few measurement occasions, 

few participants and small effect sizes (cf., Rast and Hofer, 2014). Generally, in order to 

investigate developmental change in both, cognitive abilities and brain structure, studies will 

need to cover years rather than months to provide robust estimates of (correlated) change 

(von Oertzen and Brandmaier, 2013).
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Problem of multiple comparisons—Especially in the field of neuroimaging, many 

statistical tests are often conducted concurrently (e.g. for voxel-wise comparisons across the 

brain). Specifically, as in the case of the studies reviewed here, when testing hypotheses 

about correlated changes between different regions of the brain and multiple cognitive 

abilities, the number of simultaneous hypothesis tests is high, leading to an increased risk 

of making a type I error (Lindquist and Mejia, 2015). Some authors solved this problem 

by applying a correction for multiple comparisons (Lövdén et al., 2014; Persson et al., 

2014, 2016; Ritchie et al., 2015b; Fjell et al., 2017; Gorbach et al., 2017). Such corrections 

typically lower the threshold of the p-value, which lowers the risk of false positive results, 

however, on the downside also leads to a reduction of the statistical power to find the effect 

of interest (e.g. correlated change). Different methods for dealing with multiple comparisons 

exist that are designed to keep the loss in statistical power to a minimum (see Lindquist and 

Mejia, 2015 for an overview). Another possibility in the current context is to use advanced 

multivariate statistical methods that are able to run multiple hypothesis tests in one model 

(see section ‘The benefits of longitudinal designs’). In any case, we consider it of high 

importance to report the applied procedure transparently, and ideally results both with and 

without corrections for multiple comparisons, as was done, for example, by Ritchie et al. 

(2015b).

Reuse of data—Several of the reviewed publications use the same sample, or a subsample 

of the larger participant pool, to address different research questions. Conducting large-scale 

longitudinal studies requires a lot of time and resources and we strongly agree that it is 

important to pool efforts and use the collected data in a sustainable and efficient manner. 

However, it would be desirable to openly communicate this matter and to explicitly address 

the statistical consequences of using data from the same sample to answer different research 

questions. We therefore advocate the transparent documentation of the publications that have 

used data from the same longitudinal database, for example, via an open science platform, 

such as the Open Science Framework (Foster and Deardorff, 2017).

Reliability and validity of structural brain measures—Another limitation relates to 

the reliability and validity of indices derived from brain imaging. First, the protocols used 

to process longitudinal brain imaging data vary greatly between research groups. Whereas 

some groups use manual or semi-automated methods to delineate anatomical regions of 

interest, others rely on fully automated procedures. Some use default settings and others 

additionally apply fine-tuning to such default protocol parameters. This variety introduces 

unwanted noise into any efforts of replication (Mills and Tamnes, 2014).

An important topic for longitudinal investigations is the concern of retest-reliability. 

Generally, the measurement of compartmental volumes, surface area and cortical thickness 

with automated methods is reliable across repeated testing (Vijayakumar et al., 2017), with 

regional scan-rescan reliabilities ranging between 0.8 and 0.9 (Liem et al., 2015). However, 

factors such as the measured structure (Morey et al., 2010), choice of segmentation software 

and protocol (Jovicich et al., 2013; Heinen et al., 2016), or magnetic field strength (Heinen 

et al., 2016) can impact the reliability. With regard to the assessment of brain structure

cognition relationships, Dickerson et al. (2008) reported reliable estimation of cortical 
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thickness correlates of cognitive performance across different sessions, scanners, and field 

strengths in a group of healthy older adults. In comparison, measurements from DW-MRI 

are less robust, with estimated scan-rescan reliabilities between 0.5 and 0.8 in dependence of 

preprocessing choices and WM measure of interest (cf., Madhyastha et al., 2014). As DW

MRI registers signal-loss due to the movement of water-molecules, the sensitivity to detect 

changes is specifically affected by head motion artifacts (Yendiki et al., 2014). Even though 

to a lesser extent, head motion has also been reported to bias estimates of cortical thickness 

and GM compartmental volumes (Reuter et al., 2015; Alexander-Bloch et al., 2016; Pardoe 

et al., 2016; Savalia et al., 2017). Especially in longitudinal studies, artefacts such as head 

motion or changes in scanning systems across occasions (e.g. from field strength 1.5–3T) 

can increase measurement error and substantially reduce the sensitivity to detect change. To 

diminish the impact of measurement error when aligning multiple occasion imaging data in 

three-dimensional space, longitudinal imaging pipelines are now emerging that are designed 

to re-align the brain images within participants over time (e.g. Reuter et al., 2012; Yendiki 

et al., 2016). However, only limited evidence is available on how these processing streams 

perform in the case of long-term longitudinal studies (Willis et al., 2013). Simulation studies 

would help to shed light on the conditions under which longitudinal processing streams 

perform optimally or result in an underestimation of change.

Regarding the validity of the brain structure indices with regard to the underlying biological 

basis, all studies suffer from the same limitation that structural brain measurements from 

MRI are only estimates of the underlying cellular structure (see Box 1). Furthermore, 

most of the reviewed studies correlated individual brain measures (either local or global 

structural indices) with one or more cognitive measures. However, cognitive abilities are 

most likely based on distinct and distributed brain networks. Thus, a single regional brain 

measure may capture only a fraction of the variance of the underlying cognitive ability of 

interest. Another limitation is that single structural brain measurements are often biased by 

noise. One solution to reduce measurement error and thus to increase the validity of the 

assessed construct is the use of latent variables to capture the shared variance across multiple 

brain measures (Kievit et al., 2018). Using such a latent approach, it is also possible to 

separate more brain-wide effects of aging, which are shared among different structural brain 

measures from measurement-specific changes (for an example, see Lövdén et al., 2014; 

Ritchie et al., 2015a,b; Bender et al., 2016a).

Quality control procedures—The reporting and application of quality control 

procedures was very heterogeneous across the studies reviewed here. This is not surprising, 

as no consensus exists on standardized procedures for the control of head motion (but 

see: Yendiki et al., 2016), or quality of the MR images in general (see Vijayakumar et 

al., 2017, for a review). While there exist many metrics that quantify image quality and 

can be calculated with tools like QAP (Quality Assessment Protocol, Shehzad et al., 2015) 

or MRIQC (MRI Quality Control tool, Esteban et al., 2017), determining which metrics 

provide a good judgment of image quality is nontrivial. Rosen et al. (2018) have recently 

proposed the Euler number as a metric for the quality of surface reconstruction. Importantly 

for the fields of development and aging, they demonstrated in a young sample that scan 

quality mediated the relationship between age and cortical thickness. Furthermore, Esteban 
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et al. (2017) proposed an automatic prediction of an image quality label. However, further 

work is needed in order to derive quality control standards for those measures.

Reliability and validity of cognitive ability measures—Regarding the assessment 

of cognitive ability, similar challenges can be discussed that threaten the reliability and 

validity of repeated assessments. It is well known that in longitudinal studies, practice 

effects can lead to the underestimation of age-related decline and thus negatively impact 

reliability (Hertzog and Nesselroade, 2003). One intuitive solution to deal with this problem 

is to use longer time intervals. However, this might not match the theoretical question at 

hand. In addition, Salthouse et al. (2004) showed that very long time intervals are required 

(between 7 and 13 years) until practice effects are no longer observable. Other possibilities 

are the inclusion of a new subsample at each wave to estimate the performance gains due to 

repeated testing, or the administration of parallel task versions. Also, estimates of long-term 

longitudinal change in a cognitive test can be compared to performance gains in a control 

condition where a subset of the same sample or a different group of individuals complete 

the same test repeatedly over a short time interval (Tucker-Drob and Salthouse, 2008). 

Furthermore, practice effects can be explicitly included in the statistical model, if the time 

intervals between measurements are not confounded with age (see Ferrer et al., 2004).

Regarding the validity of the cognitive measurements, the reviewed studies differ 

substantially with regard to the assessment of the ability of interest. Whereas some 

investigators tested associations between brain structure indices and single tasks, others 

created composites, or latent variables of multiple tasks. The advantage of using multiple 

tasks is that the problem of task-impurity can be lowered (Miyake and Friedman, 2012). 

Specifically, estimating latent factors of cognitive abilities with multiple indicators has the 

advantage of extracting their shared variance, which is free from task-specific measurement 

error. Another source of variance between studies was the choice of the type of tasks 

that were used as indicators of a respective cognitive domain. Due to the aforementioned 

problem of task-impurity, it is often not possible to clearly assign a cognitive task to a 

specific cognitive ability. For example, whereas one study used the digit span backwards and 

the letter-number sequencing task as indices for a latent factor of fluid intelligence (Ritchie 

et al., 2015a), another study combined the same tasks into a composite of working memory 

(Charlton et al., 2010). As many tasks assessing working memory resemble those measuring 

some aspect of fluid intelligence (Salthouse and Pink, 2008), both methods are defendable, 

however. Especially tasks developed in the field of neuropsychology, as were used by many 

of the reviewed studies, are designed to assess multiple aspects of cognitive abilities (Snyder 

et al., 2015). For example, the verbal fluency task (i.e. list words of a semantic category 

or a given starting letter), taps into verbal ability, as well as aspects of executive function 

(shifting between word clusters, inhibiting non-relevant words).

In general, we note that the lack of common standards for the assessment of cognitive 

ability in older age is a major reason for inconsistencies in the results of brain-behavior 

correlations.
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Method development and application

To address the methodological limitations discussed above, we distinguish two different 

topics relevant for the advancement of future method development and application. First, 

the benefits of longitudinal designs and longitudinal statistical methods are discussed (see 

section ‘The benefits of longitudinal designs’). Second, with more and more large-scale 

longitudinal studies emerging, it is of utmost importance to reflect on how to best handle and 

profit from big data (see section ‘Handling and profiting from big data’).

The benefits of longitudinal designs

As outlined above, the currently best way to extract information on development and 

correlated change over time is by relying on longitudinal studies. Only data from 

longitudinal research designs offer the possibility to partition within- from between-person 

variance and only longitudinal methods provide unbiased parameter estimates under 

repeated sampling. While these designs are still rare in neuroscience, an increasing number 

of ongoing studies are now reaching the stage in which actual longitudinal inference can be 

drawn. For example, Rast et al. (2017) used five waves covering 8 years from the Seattle 

Longitudinal Study (SLS) to characterize and identify change in cortical thickness in midlife 

and adulthood. While long-term longitudinal studies are not yet the norm in the field of 

developmental neuroscience the path in this direction is set and it is helpful to consider some 

of the advantages and caveats inherent in planning longitudinal studies.

Study design and power to detect change—Attention to study design (i.e. number 

and temporal spacing of assessments) and measurement-related issues (i.e. reliability, 

number of indicators, measurement modeling) are fundamental to life course and lifespan 

developmental research and will have direct influence on the type and quality of results 

obtained from a research study. Given the extensive costs associated with longitudinal 

research, especially when neuroimaging is involved, we need to be able to make informed 

decisions about our designs beforehand in order to get sufficient statistical power with 

minimal requirements. As such it is imperative to understand what design elements increase 

statistical power while keeping participant burden, sample size, and measurement occasions 

minimal without compromising the quality of the data.

Longitudinal studies vary in a number of elements (Lerner et al., 2009; von Oertzen 

and Brandmaier, 2013; Rast and Hofer, 2014) such as differences in samples (e.g. age 

homogeneous vs. age heterogeneous; representativeness), number of occasions (e.g. few, 

many), spacing between assessments (e.g. widely spaced panel designs; single session 

repeated testing experiment), and whether new samples of individuals are obtained at 

subsequent measurement occasions (e.g. sequential designs). Moreover, depending on the 

questions of interest, individuals can be drawn from different populations of birth cohorts, 

cultures, and nations, born at different historical periods, with short-term or long-term 

intervals between assessments, and with measures that are time-invariant or time varying 

within individuals. These features can be combined in a number of ways to create study 

designs that are particularly suitable for answering research questions that vary in scope 

from regarding population change across birth cohorts to focusing on the dynamics of 

short-term within-person processes.
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Once the type and expected temporal trajectory of the change process of interest is 

identified, the longitudinal study needs to be designed accordingly. Assuming that the effect 

sizes of the phenomenon (e.g. covariance among cortical thinning and cognitive decline) 

are given in the population and cannot be modified experimentally, researchers typically 

only have control over the duration of the study, the number and spacing of measurement 

occasions, and the number of participants that enter the study. These decisions can be 

optimized in terms of detecting individual differences in change and correlations among 

change processes. Rast and Hofer (2014), for example, illustrate the interplay among study 

duration, number of measurement occasions and interval lengths among measurements for 

statistical power to detect (co) variances of rates of change. Importantly, they showed 

how statistical power differentially reacts to changes of the study design – these changes 

can be exploited to optimize the study design. For example, power can be maximized if 

measurement occasions are spaced out unequally towards the beginning and the end of a 

longitudinal study. While these decisions can optimize power in general, they should not 

replace a tailored analysis to investigate what the exact data requirements are for a specific 

research question and what precautions need to be taken, especially to get the most out of 

studies in early stages. While Monte Carlo simulations are the most flexible tool as they 

can recreate the conditions, which our modeling assumption ultimately will be based on, 

they can also be rather complex. To mitigate the complexity of designing a power analysis 

and to obtain a ‘feeling’ of how study ingredients are interrelated, Brandmaier et al. (2015) 

developed the LIFESPAN tool for that specific purpose, which builds on the notion of 

power equivalence to analytically, and immediately, derive power for different parameter and 

design combinations (von Oertzen, 2010).

Statistical models—A variety of statistical approaches can be used for the estimation of 

change and the interaction of change processes in brain structures and cognitive abilities. 

From our perspective, regression models that have often been used in the past do not 

adequately capture the between-person variability that is present in datasets of healthy 

older adults. The multilevel approach and the SEM approach are well suited to model this 

important aspect. Both approaches contain different techniques, which focus on different 

modeling aspects. For example, a distinction might be drawn according to the number of 

dependent variables present in the model (univariate vs. multivariate). Also, models can 

be divided into ‘static’ and ‘dynamic’ models for change. While static models capture 

the change process in terms of a given functional form, such as a slope or a nonlinear 

trajectory, dynamic models follow the tradition of dynamical systems where the focus is on 

the dynamics underlying the change process itself. While the focus of multilevel approaches 

is mainly on the measurement model, that is, on the link between observed and latent 

variables, the SEM approach focuses on the structural models that links the latent constructs 

to additional covariates or to each other. There is no clear distinction between the two 

different classes of models, as they can be made equivalent for the most part, but they tend 

to be applied in different fields and as a result, they have approached longitudinal data from 

different perspectives.

Univariate multilevel models—A rather simple representation of such an approach 

and a common analytic method for the analysis of longitudinal data is the technique of 
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latent growth curve modeling (i.e. random coefficient or multilevel modeling). Repeated 

measurement designs yield at least two levels of analysis: the Level 1 model summarizes 

individual level outcome data at three or more occasions in terms of ‘true’ initial 

level of performance (intercept), slope (improvement or rate of change), and error 

(residual) parameters. The Level 2 model estimates fixed (i.e. average), and random 

(i.e. individually varying) interindividual and intraindividual differences and can include 

predictors of individual/group differences in Level 1 parameters (i.e. intercept, slope). 

Detailed descriptions of these methods are available elsewhere (McArdle and Epstein, 1987; 

McArdle, 1988; McArdle and Hamagami, 1992; Snijders and Bosker, 1999; Verbeke and 

Molenberghs, 2000; Raudenbush and Bryk, 2002; Ferrer and McArdle, 2003; Singer and 

Willett, 2003). Conceptually, growth curve analysis involves estimating within-individual 

regressions of change or performance over time and on expected predictors of these 

individual regression parameters.

Multivariate multilevel models (MMLM)—One step towards higher complexity is to use 

more than one dependent variable. For the particular case of brain-behavior relationships, 

one automatically has multiple dependent variables of interest. In addition, within the 

domain of longitudinal structural brain data several levels of dependency need to be 

addressed in a statistical model. Measurements of GM or WM can be obtained for 

certain parcels nested within larger areas, nested within both hemispheres and obtained 

within individuals who were measured repeatedly over time. These data points are highly 

dependent on each other and any attempt to take this hierarchical structure into account 

will yield better parameter estimates in terms of biased and standard errors (e.g. Verbeke 

and Davidian, 2009). Multilevel or mixed-effects models are optimally suited to account 

for this dependency. Moreover, they make full use of the available data as they do not 

require that all participants have the same number of visits, or require all participants 

to be measured at common time points (cf., Raudenbush, 2001). To complicate matters, 

brain related data are also multivariate in the sense that GM or WM can be obtained 

from adjacent and correlated areas. To account for the multivariate nature of these data 

one may jointly examine the association structure in longitudinal change among different 

areas and composites within individuals. For example, Rast et al. (2017) modeled up 

to five dependent variables simultaneously over 8 years with a MMLM (MacCallum et 

al., 1997). In addition to estimating covariances among growth parameters (intercept and 

slope) the MMLM also accounts for covariances among all random effects between the 

different dependent variables. For example, in a model with random intercept and slope, the 

univariate MLM estimates the variance for both parameters (intercept variance and slope 

variance) as well as the covariance among the intercept and slope. In addition to these 

estimates, the multivariate MLM also accounts for the covariances among the dependent 

variables of the intercept and slope. That is, if five areas are included in the model as 

dependent variables, the MMLM estimates covariances for each of the random effect within 

and across these areas. In that case, the MMLM with random intercepts and slopes for each 

dependent variable estimates 45 different covariances and 10 variances. At the same time, 

the MMLM addresses seamlessly the issue of multiple comparisons, which typically arises 

in analysis of variance-type analyses. MMLMs do not necessitate pairwise comparisons 

and post-hoc alpha-value corrections because group mean comparisons are obtained via 
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according coding patterns (e.g. dummy coding) that enter the model as predictors. With this 

approach, predictors compete for explained variance and significance tests of each predictor 

will be stringent. While the fit of the model to the data will increase with more parameters 

entering the model, the significance for each single parameter decreases. Further, multilevel 

techniques shrink group-level variances toward the mean, which inherently reduces the 

number of statistically significant comparisons, thus reducing the risk of type I errors in 

multiple comparisons (cf., Gelman et al., 2012). These classes of models can be expanded 

to address nonlinear trajectories or non-Gaussian processes. Moreover, they can be expanded 

to include submodels for the within-person variance structure. This is especially useful if 

within-person variability is the focus.

A note on the metric of change—In these models, a level and a slope parameter are 

generally specified for change relative to a particular time metric. The selection of the time 

metric is not trivial as it results in different models that reflect different assumptions about 

the underlying process of change. A common choice is to define the level as the initial point 

of measurement in a longitudinal data set whereas the slope parameter captures the rate 

of change over time in study. Especially in models with higher order terms or interactions 

(including all models with predictors of slope variance) the choice of the centering method 

influences the interpretation of the parameters (cf., Biesanz et al., 2004). The intercept 

or initial level should be carefully chosen to reflect the hypotheses tested in this context, 

especially when time-varying covariates are used as predictors of change (e.g. Curran and 

Bauer, 2011; Hamaker and Grasman, 2015; Wang and Maxwell, 2015).

While age heterogeneity of the sample is not a problem for growth models in particular, it 

is necessary to consider it in all cross-sectional or longitudinal models. Unlike traditional 

single-cohort longitudinal designs, individuals may vary considerably in age (and birth 

cohort membership) at each wave in the study, and the range of these between-person, 

cross-sectional, age differences tends to exceed the range of within-person, longitudinal, age 

changes over the course of data collection. A common technique to obtain ‘longitudinal’ 

data from studies with few (e.g. two) measurement occasions, is to combine the longitudinal 

with the cross-sectional age information by indexing change via the age of the study 

participants (e.g. Grimm et al., 2012). These age-heterogeneous samples were seen as an 

opportunity to virtually ‘accelerate’ longitudinal designs (e.g. McArdle and Bell, 2000; 

Mehta and West, 2000) by representing time as the different ages available in the study, 

rather than as time as the inception of the study. While this enables one to model growth 

trajectories that exceed the individual time-in-study span over the full age range they also 

bear the risk of confounding between-person differences with within-person change. That 

is, without the continued inclusion of baseline age differences, the resulting model produces 

estimates that represent a mix of the cross-sectional and longitudinal effects.

For models using chronological age as the time basis with a focus on random effects, it 

is important to keep in mind the variance component shrinkage due to the extrapolation 

beyond individual data (i.e. random effects will be estimated closer to the population 

mean) (e.g. Raudenbush and Bryk, 2002, Ch. 5). With greater age heterogeneity than study 

duration, the population mean will be dominated by the cross-sectional information. In 

addition, the confounding of between-person age differences and within-person age changes 
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in longitudinal models muddles the potential for inference to increasingly selective, and 

thus conditional, ‘aging’ populations. Selectivity of participants must be accounted for 

as between-person sampling will be based on the proportion of the population who are 

alive (population mortality selection) and healthy but will also dropout from the study 

due to health and mortality causes. Such inference to aging populations must, therefore, 

be conditional on survival, and may be more directly obtained using between-person age 

differences and survival age (or time-to-death) as conditional predictors in a time-in-study 

longitudinal model (e.g. Johansson et al., 2004; Hoffmann, 2012).

Latent change models—Multilevel models can also be specified in the SEM framework, 

which has the advantage of incorporating additional models that operate at the latent level. 

For instance, instead of averaging dependent measures from several cognitive tasks into 

one composite score, a latent factor for the respective cognitive ability can be specified, 

thus estimating the shared variance among tasks while attenuating the effect of error 

variance. This also means that SEMs can be expanded to higher orders to include, for 

example, mechanisms of change. This can be in the form of latent growth models that 

define a linear (or nonlinear) model for lower order factors or in the form of LCS models 

that define the observed change from an occasion to the next as a sum of higher order 

factors. Moreover, SEMs easily lend themselves to measurement invariance (MI) testing. 

By constraining different elements of the measurement model, MI defines conditions under 

which meaningful comparisons among groups or within individuals across time can be 

drawn.

While most models discussed so far serve the field well, they might be considered static 

models because they define change resulting from static element such as the slope in a linear 

model. For example, Figure 5 represents a simple univariate latent growth model for five 

time points in the typical structural equation path diagram notation. The squares represent 

manifest variables (x1 to x5) and the circles represent latent, unobserved variables, the 

intercept (I) and the slope (S). Double-headed arrows denote undirected relationships such 

as covariances and single-headed arrows represent directed relationships such as regression 

weights, or loadings. Both, the intercept and slope have associated variances that capture the 

individual differences therein. Moreover, the intercept and slope are allowed to covary.

Another approach is to capture the change trajectory through models that originate in 

dynamical systems where the current state of the system is defined by previous states of the 

system (e.g. Boker and Wenger, 2007). Notably, the LCS (McArdle and Hamagami, 2001; 

McArdle, 2009) model and its multivariate extension, the bivariate LCS have been applied 

successfully in recent years to longitudinal data. The LCS addresses change, from one time 

point to the next, from a SEM standpoint. That is, while one could index change from one 

time point t−1 to t on the observed data, the LCS indexes these changes at the latent level, 

thus separating measurement error from the true score. Once the differences among time 

points are defined, the LCS focuses on the rate of change, rather than latent change itself. 

Figure 6 represents a basic LCS for one common factor over five time points. The manifest 

variables (x1 to x5) are again symbolized by squares. η1–η5 represent latent true scores, 

Δη0–Δη4 are the LCS and I and S define the latent intercept and slope, or rate of change. 

Unlabeled paths are fixed to 1. Here, the first change score is defined as Δη0. The change 
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does not affect the prior score η1 but it does influence the second true score directly and it 

is an indirect part of all the other latent variables. The same holds for the following change 

scores. α paths represent constant change and β paths represent proportional change from 

the variable measured at the previous time point. The rate of change is passed into the 

latent change scores, typically with a constant weight of 1 for equally spaced time intervals. 

Essentially, the rate of change is defined as the difference between two latent variables 

divided by the length of the given discrete time interval among them. A constant rate of 

change would be nothing else than the first partial derivative of a linear function with respect 

to time–but with nonlinear changes, the rate of change will take different values for different 

measurement occasions.

While the constraint for discrete time seems rather restrictive, Voelkle et al. (2012) expanded 

the LCS to a continuous time model where this constraint is resolved. Importantly, LCS and 

continuous time models (and variants thereof) can be readily expanded to the multivariate 

case which makes them ideal candidates for modeling correlated changes in brain related 

and cognitive longitudinal data. Moreover, given that these models do not impose a 

functional form of change, they are very flexible and can handle a multitude of curvilinear 

trajectories in one or more processes and relate changes in one variable to changes in 

another. While the adoption of latent change models is slow, likely due to a rather high level 

technical sophistication in order to implement these models, new software developments 

now facilitate the use of LCS models (see Kievit et al., 2018 for a tutorial). For example, to 

depict the models in Figures 5 and 6, we used Ωnyx (von Oertzen et al., 2015), a freely and 

openly accessible graphical tool that provides an easy and intuitive approach to depicting 

SEM-based models.

Advanced models—Besides the models discussed above, other methodological advances 

have recently emerged and/or are being developed that are of particular relevance for 

aging and lifespan studies. For example, growth mixture models permit the identification 

of subpopulations that exhibit distinct multivariate patterns of change and are therefore 

well suited for exploratory analyses. Similar to latent class models, growth mixture models 

(e.g. Muthén, 2001) assume that the sample is composed of members from more than one 

population that exhibit distinct patterns of change. Using individual response patterns in 

a longitudinal setting with repeated measurements to define trajectories, growth mixture 

models (1) identify homogeneous groups of individuals or trajectory classes, (2) assign 

each participant a probability of belonging to a particular trajectory class, and (3) use class 

membership information to estimate the influence of individual characteristics on trajectory 

shape. A related, but less familiar method are SEM trees (Brandmaier and McArdle, 2013), 

which split the data into homogeneous subgroups based on a set of predictors and fit an 

SEM separately to each of these subgroups (see Jacobucci et al., 2017, for a comparison of 

the two methods). In contrast with other SEM-based statistical approaches, SEM trees are 

designed as an exploratory method. Especially in light of the many variables that influence 

aging, such approaches of data reduction gain more and more importance.

Ultimately, most of the above-discussed models can also be estimated in a Bayesian 

framework. The Bayesian approach to inferential statistics has the advantage that it can 

overcome the typical problems surrounding the p-value in null hypothesis testing (e.g. 
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corrections for multiple comparisons), and allows to incorporate previous knowledge about 

the expected effect into the analysis (Kruschke, 2010). For example, Bayes Factors provide 

an estimate of the strength of evidence both for the null hypothesis (i.e. absence of the 

effect), and the alternative hypothesis (i.e. presence of the effect), necessitating researchers 

to think about what they would actually consider plausible values for the alternative 

hypothesis (Dienes, 2014). Thus, using Bayesian estimation, it is possible to test specific 

theoretical predictions, and gain an estimate of the strength of the evidence for the presence 

or absence of the predicted effect. Recent software developments have provided novel tools 

to efficiently estimate Bayesian models of change both in the MLM (Bürkner, 2017) and the 

SEM framework (Asparouhov and Muthén, 2010; Merkle and Rosseel, 2016).

Overall, a wide range of longitudinal modeling tools now exist or are emerging that 

can capture multivariate change and correlated change with models that are able to 

accommodate a wide range of developmental questions in brain and cognitive aging.

Handling and profiting from big data

Making science more reproducible is a growing concern in cognitive neuroscience and 

beyond (Munafò et al., 2017). This can be achieved by making science more transparent, 

for instance, by openly sharing data sets and analysis tools. Additionally, the need for well 

powered brain imaging studies (Button et al., 2013; Nord et al., 2017) resulted in steadily 

growing sample sizes over the last two decades (Poldrack et al., 2017). Early data sharing 

initiatives pooled data from multiple sites to increase sample size (for instance the 1000 

Functional Connectomes Project; Biswal et al., 2010).

More recently, data from large-scale projects, investigating hundreds to thousands of 

participants, have been made public. The mode of accessing the data varies from download 

without registration, to signing a data usage agreement to submitting a project proposal. 

Open brain-behavior data sets investigating the adult lifespan in a cross-sectional approach 

and providing a large variety of brain (functional, structural), and cognitive data include the 

Nathan Kline Institute-Rockland Sample (Nooner et al., 2012), the Cambridge Centre for 

Ageing Neuroscience study (Cam-CAN) (Shafto et al., 2014; Taylor et al., 2017), the UK 

Biobank (Palmer, 2007), and the Harvard Aging Brain Study (HABS) (Dagley et al., 2017). 

Some of those projects aim to also provide longitudinal data in the future (Cam-CAN and 

HABS). Additionally, the dementia-focused projects Open Access Series of Imaging Studies 

(Marcus et al., 2010) and the ADNI (Petersen et al., 2010) currently provide longitudinal 

anatomical brain data. Another effort to combine several lifespan cognitive neuroscience 

samples has recently been launched, the Lifebrain project (Lifebrain, n.d.).

Open data enables researchers to validate their results in independent data sets. However, 

the heterogeneity in data organization between projects can make it tedious to apply a 

processing pipeline to a new data set. The recently introduced brain imaging data structure 

(BIDS) initiative proposes a system to harmonize data organization and provides guidelines 

for the documentation of important imaging meta-data (Gorgolewski et al., 2016).
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As analysis pipelines are complex and cannot be fully described in the text of a scientific 

paper, many researchers make analysis code repositories publicly available on websites like 

GitHub (GitHub, n.d.) or the Open Science Framework (Open Science Framework, n.d.). A 

more recent trend in simplifying software (re)use is to provide executable code as software 

containers, making the installation of dependencies obsolete and facilitating archiving of 

entire software environments for later (re) analysis. This approach is championed by the 

BIDS Apps project (Gorgolewski et al., 2017), which provides neuroimaging analysis 

pipelines that seamlessly can be applied to BIDS-formatted data sets, making it very 

efficient to run (1) established pipelines on newly acquired data, and (2) newly developed 

pipelines on available data sets.

As a consequence of increasing sample size and the increased availability of high 

performance computing resources, data processing is moving from local computers to 

clusters and cloud systems (Sherif et al., 2014; Vogelstein et al., 2016; Kiar et al., 2017). For 

instance, this can be in the form of OpenNeuro (OpenNeuro, n.d.), a neuroimaging analysis 

service that allows scientists to upload their raw data to a server, which executes standard 

analysis pipelines. Another innovative approach for collaborative neuroscience is followed 

by the Open Neuroimaging Laboratory (Open Neuroimaging Laboratory, n.d.), which allows 

scientists to conjointly work on publicly available data via the web.

Theoretical limitations and the need for theory development

The study of the relationship between the structure of the brain and observable cognitive 

performance is tapping into one of the oldest problems of psychological science and 

philosophy: the relation of the mind and body. While initial conceptions proposed a dualistic 

theory of mind and body as separate and independent entities (Descartes, 1641/2013), 

modern-day approaches are moving towards more holistic theories (e.g. the principle of 

complementarity; Fahrenberg, 1979). Yet, still no final consensus has been reached on 

how to integrate these different levels of observation theoretically and methodologically. 

Generating and developing theories is a major challenge for researchers in this field, and it 

does not come as a surprise that the studies we reviewed here did not build their hypotheses 

on strong theoretical grounds. As a consequence, we believe that future efforts are needed to 

invest in the development of theories on the intersection between brain and behavior. Here, 

we outline several theoretical ideas and trends that we deem important in the context of 

studying correlated changes between brain structure and cognitive ability.

Refining and developing existing theories

While the STAC-r model provides a multifactorial framework for the complexity of 

cognitive aging (Reuter-Lorenz and Park, 2014), more specific theories are needed to 

derive concrete, testable hypotheses for individual components within this larger framework. 

Several well-established theories already exist that serve this function. For example, the 

theories of reserve propose that individuals differ with regard to their neural (brain reserve) 

or cognitive resources (cognitive reserve), such that some individuals are better able to 

compensate for age-related brain changes than others (Stern, 2002, 2009). Comparable to 

compensatory scaffolding in the STAC-r model, reserve is assumed to be malleable by 
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life course experiences (Reuter-Lorenz and Park, 2014). Empirically, however, it is still a 

matter of debate how to best operationalize compensatory scaffolding and reserve capacity 

(Nilsson and Lövdén, 2018). For example, some authors assess cognitive reserve with 

enriching life course experiences (leisure time activities: Hertzog et al., 2009; education: 

Boots et al., 2015; occupational complexity: Serra et al., 2015) and others via levels of 

cognitive ability (e.g. intelligence: Barulli et al., 2013). We therefore argue that future 

efforts of theory development need to be directed towards refining and consolidating already 

existing theories, and towards developing a common consensus of how to operationalize 

the theoretical core mechanisms of interest and their interactions (see Cabeza et al., 2018; 

Stern et al., 2018 for promising advances in this direction). Besides working towards more 

consistent operationalizing, the conceptual integration of advantageous, and adverse life 

course experiences in theories on age-related structural brain and cognitive changes presents 

an important challenge in the near future (e.g. Köhncke et al., 2016).

One potentially fruitful approach to inform and complement established theories is the use 

of predictive methods (Yarkoni and Westfall, 2017; Bzdok and Ioannidis, 2019). The goal 

of predictive methods is to make use of large data sets and to identify patterns therein that 

most accurately predict individual behavior. For instance, machine learning approaches are 

used to detect those variables that best predict a relevant outcome in a subset of a sample, 

a process which then needs to be cross-validated in another subset of the sample (or in 

a new sample), to ultimately identify the algorithm that most accurately approximates an 

outcome of interest (e.g. change in cognitive abilities). The relative importance of individual 

predictors can be evaluated by comparing the predictive accuracy of different models 

with and without the predictors of interest (Yarkoni and Westfall, 2017). In the context 

of investigating correlated changes between brain structure and cognitive ability, such an 

approach may be helpful to determine the relative importance of changes in a number of 

structural brain measures (e.g. WM and GM volume, cortical thickness, WMH etc.) for 

the prediction of changes in certain cognitive abilities. Finally, traditional theory-guided 

statistical approaches can benefit from cross-validating models in independent datasets as it 

is usually done in predictive modeling (Yarkoni and Westfall, 2017).

Correlated change relationships across the lifespan

So far, studies on correlated change have focused more on the direct relation between brain 

structure and cognitive ability (direct path in STAC-r), ignoring the role of compensatory 

scaffolding networks as a moderator of brain structure-cognition relations (indirect path in 

STAC-r; see Figure 2). Related to testing the latter, future research would be welcome to 

further elaborate how correlated changes between structural brain and cognitive abilities 

change across the lifespan. A first step into this direction would be to investigate whether 

specific structural brain measures and cognitive abilities show increased (de)coupling over 

the adult lifespan, such that the strength of correlated changes between brain structure 

and cognitive ability either varies between persons of different ages or changes within 

persons with increasing age. According to STAC-r, correlated changes between brain 

structure and cognitive ability should be higher in younger than (healthy) older adults, 

as scaffolding networks should gain more importance with increasing age, when brain 

damage starts to accumulate. Moreover, after a certain advanced age, when compensatory 
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scaffolding networks are no longer functional to compensate for brain damage, change 

correlations might increase again. According to this rationale, larger brain structure

cognition correlations should also be found in individuals with preclinical pathological brain 

changes, who are most likely included in many aging samples. However, it is still unclear 

how much pathology can be accumulated before observable detrimental brain changes 

manifest in cognitive performance measures. So far, the hypothesis of developmental 

(de)coupling of brain structure and cognitive ability with aging has only been directly tested 

in cross-sectional studies (e.g. de Mooij et al., 2018).

Insight from imaging brain function

Another fruitful avenue for future research is the application of findings and theories derived 

from functional MRI studies to structural brain measures. The functional MRI literature has 

paid more tribute to the indirect path of the STAC-r model. For example, functional evidence 

found that older adults show different patterns of functional brain activation than younger 

adults when faced with a difficult cognitive task (Reuter-Lorenz and Park, 2010), suggestive 

of a compensatory reorganization of functional brain networks (comparable to scaffolding; 

but see Morcom and Johnson, 2015).

One prominent theory in the functional literature interprets these activation patterns as a 

sign of neural dedifferentiation in the sense that older adults show lower neural specificity 

than younger adults when performing distinct cognitive tasks (e.g. Cabeza, 2002; Park et 

al., 2004). This theory originates from behavioral findings relating the deterioration of fluid 

cognitive abilities with aging to sensory declines, which is interpreted as evidence for a 

common cause of cognitive aging (Baltes and Lindenberger, 1997). Only little research 

has, however, investigated whether this loss in neural specificity with aging can also be 

found in structural brain measures, and the results are difficult to reconcile: Cox et al. 

(2016) showed that single WM fiber pathways were more correlated with increasing age, 

suggesting similar age-related dedifferentiation as reported in functional MRI studies. In 

contrast, de Mooij et al. (2018) reported the opposite pattern of lower correlations between 

regional GM volumes and FA in a subset of WM pathways with increasing age, indicating 

age-related differentiation. Importantly, however, there is a lack of research studying neural 

(de)differentiation longitudinally.

Interdisciplinary contributions to theory advancement

To develop novel ideas or to refine existing theories that capture the manifold factors 

influencing brain and cognitive aging, interdisciplinary collaborations are gaining more and 

more importance. This pertains to closely related research fields, such as child and youth 

development, as well as to more distant disciplines. Given the multitude of collaboration 

opportunities, we restrict ourselves to providing some examples to substantiate our claim.

Aging research, for example, can clearly benefit from insights made in other domains of 

life span research (e.g. Goddings et al., 2014; Mills et al., 2014, 2016) given that theoretical 

approaches and methodology is partly overlapping. Moreover, recent studies suggest a 

link between early life influences, such as birth weight, parental education, or childhood 

cognitive ability, on cognitive and brain developmental processes in older adulthood 
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(Karama et al., 2014; Walhovd et al., 2016). Also, the liaison with medicine seems very 

promising. For example, by merging epidemiological research with healthcare databases, a 

wide array of health-related information can be obtained and fed into models and analyses. 

The epidemiological UK Biobank project, which combines questionnaire, cognitive and 

neuroimaging data from 500 000 participants with biological samples (e.g. blood, saliva) and 

genomic data (e.g. genotyping) (Miller et al., 2016), follows this approach. By linking the 

newly collected data with participant’s health records from the UK National Health Service 

it allows the long-term monitoring of the participants’ health state. Most importantly, big, 

interdisciplinary databases, such as the UK Biobank, might enable researchers to detect 

biomarkers which can serve as early predictors of future pathologies. Future efforts will 

need to be increasingly directed towards determining how the resulting multimodal data can 

be meaningfully aggregated across multiple levels of analysis (e.g. from genes, to cognitive 

performance and brain properties, to the larger societal context) (Falk et al., 2013).

Third, aging research is benefiting from technological advances in various disciplines, 

such as geoinformatics or computer science in general. While life course experiences, 

for example, are traditionally assessed via self-report, new mobile technologies facilitate 

ambulatory assessment. With small electronic devices, people’s behaviors (e.g. physical 

activity, social engagement, mobility), or physiology (e.g. blood pressure, electrodermal 

activity) can be sampled with high density and in real-time as people go about their life 

(Conner and Mehl, 2015) and, in a further step, linked to processes of cognitive and brain 

aging (e.g. Seresinhe et al., 2015). Besides person-specific variables, also information about 

the broader contextual situation (e.g. weather conditions, air pollution, etc.) can be recorded 

via sensor technology and integrated into theoretical models. While many of these tools and 

devices are just emerging and still awaiting further validation, these developments hold great 

promise to gain new, ecologically valid insights into the daily processes influencing brain 

and cognitive aging.

Conclusion and outlook

In the present article, we have provided a broad overview over the literature on the 

association of the neural architecture and cognitive abilities in healthy old age. Specifically, 

we reviewed the existing longitudinal studies that investigated correlated changes between 

these domains over time, and discussed the present stance of the literature from a theoretical 

perspective, adopting the STAC-r model (Reuter-Lorenz and Park, 2014). While the overall 

evidence suggests a trend towards positive change-associations between measures of brain 

structure and cognitive ability in healthy aging, the number of longitudinal studies reviewed 

here is small, and the variability between them regarding the methods used (e.g. study 

design, statistical analysis) precludes meta-analytical comparisons of effect sizes. While 

some evidence supports correlated changes for specific regions and specific cognitive 

abilities (e.g. between structures of the medial temporal lobe and episodic memory), the 

number of studies reporting converging results is considerably small, and most of the 

reported change relations are very heterogeneous and far from conclusive. One reason for 

these mixed findings is certainly that large methodological differences exist between studies. 

However, we argue that from the perspective of an individual regulatory model such as 

STAC-r, weak relationships between brain and cognitive ability, and large interindividual 
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variability in these relations are to be expected in healthy aging individuals, since many 

other influencing factors play a role that have an impact on the capacity of the brain to 

compensate. The inclusion of such factors into future research will impose a challenge, 

but also a chance to advance the study of aging. Moreover, it would be even more 

interesting for future research to focus on alternative metrics such as change trajectories 

in the strength of brain-behavior correlations throughout adult life. To capture such dynamic 

processes such as in the case of brain cognitive development, many more measurement 

occasions and complex statistical models are needed. Current longitudinal studies, such as 

the SLS, or the longitudinal healthy aging brain (LHAB) study are moving towards this 

direction, by including multiple repeated assessments of cognitive and MRI assessments 

(SLS; Schaie, 1996; Schaie and Willis, 2010; LHAB; Zöllig et al., 2011). In addition, in the 

moment of writing this review, further measurement occasions in these and other large-scale 

longitudinal studies are under way. The development towards open science and big data 

sharing will help to cover a broad spectrum of variables influencing structural brain and 

cognitive aging and will in the future, facilitate the development of individually targeted 

interventions to promote health and well-being.
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Box 1:

Neurobiological foundation of age-related change in brain structure and 
methodological advances in neuroimaging.

Recent reviews of cross-sectional brain imaging studies summarizing data from many 

subjects as well as large-scale longitudinal brain imaging studies report mean percentage 

changes per year for GM and WM ranging between 0.5% and 0.8% (Fjell and 

Walhovd, 2010; Ritchie et al., 2015b). The age-related GM loss may result from several 

neuroanatomical changes comprising loss of neuropil (unmyelinated axons, dendrites, 

and glial cells), shrinking of neural bodies, changes to the dendritic morphology (e.g. 

decline in the number of dendritic spines, shortening of dendritic shafts, and reduction 

of dendritic branching), or a decrease in synaptic density, probably indicating a loss 

in the number of synapses (Pannese, 2011; Juraska and Lowry, 2012). Furthermore, 

age-related degradation of WM may result from axonal degeneration, myelin changes 

(e.g. demyelination, deformation of the morphological structure), or other changes, such 

as glial scars or accumulation of cellular debris (Juraska and Lowry, 2012; Bennett and 

Madden, 2014). Overall, the cellular foundation of age-related neural changes as captured 

by MRI is still poorly understood, as the current knowledge is mostly based on animal 

research and post-mortem studies with humans. Nevertheless, several authors argue that 

the age-related brain tissue loss might be one of the reasons why cognitive functions 

decline on average with ongoing age. One technique that has become very popular due 

to its ease of use and its potential to study human brain tissue microstructure in vivo 
is diffusion-weighted MRI (DW-MRI). Tensor-derived diffusion indicators (see Table 1) 

are now frequently used to study WM microstructural changes in aging. However, these 

measures are difficult to interpret with regard to their biological basis, as many factors 

of the complex WM architecture (e.g. crossing fibers, glial cells) can modulate diffusion 

properties (Jones, 2010; Concha, 2014). While most of the current in vivo literature on 

neuroanatomical aging relies on T1-weighted and/or tensor-derived diffusion measures, 

several new promising brain imaging techniques are emerging, which might provide a 

more detailed view into the macroanatomical and microanatomical age-related changes.

One alternative to tensor-derived diffusion measures is neurite orientation dispersion, 

which allows the in vivo estimation of the microstructural characteristics of axons 

and dendrites (Zhang et al., 2012). Furthermore, Myelin Water Fraction as modeled 

based on the T2 relaxation properties of water captured between myelin sheets was 

shown to provide more specific estimates of myelin content than the tensor-based 

diffusion parameters (Arshad et al., 2016). Particularly promising are recent advances 

in quantitative MRI, which are computational methods that allow for the derivation 

of voxel-wise quantitative maps of MRI biomarkers, reflecting specific microstructural 

tissue properties, such as iron, myelin content, or axonal fiber orientation (Draganski et 

al., 2011; Weiskopf et al., 2015). In addition, scanners with ultrahigh field strengths of 7 

Tesla are now available for practical use. While these scanners allow an increased signal

to-noise ratio and thus very high spatial resolution of brain images, their applicability 

is limited by a number of challenges, for example, an increased sensitivity to motion 
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artifacts, inhomogeneities in the magnetic and radiofrequency field, and an increased 

specific absorption rate (Barisano et al., 2019).

Besides advances in MRI techniques, novel methods to process and quantify brain

imaging data hold promise for the study of brain structure-cognition associations in 

the future. For example, network connectivity and graph analysis methods allow the 

inference of information about organizational properties of structural brain networks 

based on structural MRI and DW-MRI data (see Bullmore and Sporns, 2009). These 

methods are particularly relevant for the cognitive neurosciences, as they can map 

network properties that are probably more reflective of the complexity of the underlying 

cognitive abilities than single structural brain measures. Another interesting development 

is the use of machine learning techniques to predict individual’s biological age on the 

basis of structural brain imaging data (i.e. brain age) (Gaser et al., 2013; Valizadeh et 

al., 2017; Cole et al., 2018). Brain age prediction can provide important insights into 

potential biomarkers associated with premature brain aging and neurocognitive disorders. 

For example, higher brain age than chronological age is associated with increased 

mortality risk (Cole et al., 2018) and cognitive impairment (Liem et al., 2017). Brain 

age is found to be a superior predictor of later dementia conversion compared to common 

cognitive tests or CSF-derived biomarkers (Gaser et al., 2013).
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Box 2:

Evidence from cognitive training studies.

According to STAC-r, interventions such as cognitive training can stimulate 

compensatory scaffolding directly. Consequently, experimental training studies using 

neuroimaging provide the unique opportunity to investigate the indirect pathway 

between structural brain and cognitive aging, deepening the understanding of how 

compensatory mechanisms on the level of structural brain changes may reverse or 

attenuate age-related cognitive decline. In recent years, there has been an increasing 

interest in cognitive training interventions, because they constitute a potentially powerful, 

safe, and economical approach to prevent age-related cognitive decline. Compared 

to nonexperimental longitudinal studies, combined training, and neuroimaging studies 

provide strong causal inference on the influence of cognitive exercising on brain 

structure. To gain insight into the neuroanatomical underpinnings associated with 

training-related cognitive changes in older adults, a number of neuroimaging studies were 

conducted to reveal alterations in GM and WM, respectively (see Valkanova et al., 2014; 

ten Brinke et al., 2017, for reviews).

Cortical increases in GM in areas that are associated with the trained cognitive ability 

are found after an 8-week strategy memory training (i.e. the method of loci; Engvig 

et al., 2010) and 12-week computer-based multi-domain training targeting memory, 

attention, response speed, EF, and language (Lampit et al., 2015). Interestingly, the 

observed structural changes seem to be stronger at the beginning of training than in later 

stages of training. In the study of Lampit et al. (2015), more than half of the increase 

in GM occurred within the first 3 weeks of training, whereas the following 9 weeks 

of training resulted in relatively smaller increase. These findings are in line with the 

recently proposed expansion-renormalization model (Wenger et al., 2017). According 

to this model, learning- or training-related neuroanatomical changes are characterized 

by three stages: expansion, selection, and renormalization. Whereas at the beginning of 

a training intervention brain tissue expands (potentially by changes to synapses, glial 

cells, or vasculature and to a limited extent via the generation of additional neurons), 

brain tissue starts to return to the normal, baseline level when the cognitive process 

can be optimally performed. However, as the cellular mechanisms underlying GM 

tissue changes in humans are still not sufficiently understood and studied, this model 

requires further validation. In addition, these promising findings are contrasted by studies 

that found no differences in GM tissue between the experimental and a control group 

after an 8-week attention and distractibility training (Mozolic et al., 2010), a 26-week 

multidomain COGPACK training (Suo et al., 2016), and a 16-week spatial navigation 

training (Wenger et al., 2012). However, Wenger et al. (2012) found a trend towards 

cortical thinning in the control group, which was not observed in the navigation group.

A small number of studies have also investigated training-related changes in WM. They 

consistently found that the experimental group exhibited an increase in FA compared 

to the control groups (both passive and active) in related brain areas (Lövdén et al., 

2010; Engvig et al., 2012; Chapman et al., 2015; de Lange et al., 2017). Further, training

related changes in MD have also been reported (Lövdén et al., 2010, 2012; de Lange et 
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al., 2017). One study has also investigated long-term changes in WM 12 months after 

completion of a cognitive training intervention compared to an active control (Cao et al., 

2016). The authors found an overall trend that in the multidomain training group, AD 

decreased while FA, MD, and RD remained stable. In the control group, however, FA 

decreased, while MD and RD increased.

Only few studies have, however, directly investigated the association between the size 

of training gains and the size of training-induced structural brain changes. Some of 

them reported a positive relationship between training-induced cognitive improvement 

and neuroanatomical change indices, indicating that individuals who showed the largest 

improvements during training also showed the strongest changes in GM (Engvig et 

al., 2010; Lampit et al., 2015), and WM (Engvig et al., 2012; de Lange et al., 2017). 

But again, other studies found no correlation between cognitive training performance 

and training-induced changes in GM (in younger adults; Wenger et al., 2012) and 

WM (Lövdén et al., 2010, 2012). So far, only one study has investigated the effect of 

repeated phases of cognitive training on neural plasticity and training-gains (de Lange 

et al., 2018). The authors could show that age-related WM microstructural decline 

over the study period of 40 weeks was attenuated during phases of memory training, 

supporting a mitigating effect of cognitive training on brain aging. In contrast, memory 

performance was less dependent on continued training, showing stability after an initial 

training-induced gain.

In conclusion, so far only a small number of cognitive intervention studies have 

investigated training-induced structural brain changes, finding either increases or stability 

in brain structure, as compared to a control group. In addition, if reported, associations 

between structural brain changes and cognitive training-gains were either positive or 

nonsignificant. However, large methodological differences between studies limit the 

generalizability of these findings. In general, the field of cognitive intervention studies 

is still emerging and further research is required to determine what type of cognitive 

training and in which dosage (i.e. intensity, frequency, and duration) is required 

to achieve maximum training gains and structural brain changes. Besides cognitive 

interventions, studies administering physical interventions have also reported training

induced structural brain and cognitive performance changes, however, this literature goes 

beyond the scope of the present literature and is reviewed elsewhere (e.g. Brehmer et 

al., 2014; Mandolesi et al., 2018). While most of the existing training studies rely on a 

group design, a promising trend for future research is the development of individually 

targeted interventions, based on neuroanatomical predispositions (Park et al., 2018) and 

nonbiological factors (Guye et al., 2016) that can help individuals to best maintain their 

health and well-being far into old age.
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Figure 1: 
Four different research questions on the relation between brain structure and cognitive 

ability, as illustrated with Cattell’s (1988) data box.

Panel A: research question type 1 refers to interindividual differences in a measure of 

brain structure or cognitive ability assessed at one measurement occasion. Panel B: research 

question type 2 refers to intraindividual changes in a measure of brain structure or cognitive 

ability assessed across several measurement occasions. Panel C: research question type 

3 refers to the bivariate association between interindividual differences in a measure of 

brain structure and interindividual differences in a measure of cognitive ability assessed at 

one measurement occasion (correlation). Panel D: research question type 4 refers to the 

bivariate association between intraindividual change in a measure of brain structure and 

intraindividual change in a measure of cognitive ability assessed across several measurement 

occasions (correlated change).
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Figure 2: 
Scaffolding Theory of Aging and Cognition (STAC-r) model adapted from Reuter-Lorenz 

and Park (2014).

*Under brain structure we subsume both structural brain properties and rate of brain 

structure change.
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Figure 3: 
Potential cross-sectional (research question 3: correlation) and longitudinal (research 

question 4: level-change, simultaneous, and lagged correlated change) relations between 

brain structure (= Brain) and cognitive ability (= Cog). T = time/measurement occasion. 

ΔTn+1−Tn represents developmental change between two measurement occasions. Square 

shapes represent observed measures of a domain at a specific measurement occasion.
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Figure 4: 
Preferred reporting items for systematic reviews and meta-analyses flow-chart of the 

literature search procedure.
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Figure 5: 
A univariate latent growth curve model. Circles represent latent variables while squares 

represent manifest variables. One headed arrows denote directed relationships and double 

headed arrows represent undirected relationships. Here, I is the latent intercept and S is the 

latent slope, each with their corresponding variances σI
2 and σS

2 .
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Figure 6: 
A univariate latent change score model. x1–x5 represent the observed variable measured at 

five time points, η1–η5 represent latent true scores, Δη0–Δη4 are the latent change scores 

and I and S define the latent intercept and slope α paths represent constant change and β 
paths represent proportional change from the variable measured at the previous time point.
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