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Abstract

We present a mixed-effects location scale model (MELSM) for examining the daily dynamics of 

affect in dyads. The MELSM includes person and time-varying variables to predict the location, 

or individual means, and the scale, or within-person variances. It also incorporates a submodel to 

account for between-person variances. The dyadic specification can accommodate individual and 

partner effects in both the location and the scale components, and allows random effects for all 

location and scale parameters. All covariances among the random effects, within and across the 

location and the scale are also estimated. These covariances offer new insights into the interplay 

of individual mean structures, intra-individual variability, and the influence of partner effects on 

such factors. To illustrate the model, we use data from 274 couples who provided daily ratings 

on their positive and negative emotions toward their relationship – up to 90 consecutive days. The 

model is fit using Hamiltonian Monte Carlo methods, and includes subsets of predictors in order to 

demonstrate the flexibility of this approach. We conclude with a discussion on the usefulness and 

the limitations of the MELSM for dyadic research.
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Introduction

Modeling interactions between two individuals requires methods that are able to capture the 

dynamics of such interactions, as they unfold over time, and separate these interactions from 

dynamics that take place within each individual. A number of models have been developed 

to examine these dynamics (e.g., Kenny, 1996; Raudenbush, Brennan, & Barnett, 1995). 

We argue that, although some of these methods have very desirable features, an important 

shortcoming is the fact that all the unexplained variance goes into the residual component. In 

this paper, we propose a mixed-effects location scale model (MELSM). This model allows 

partitioning this unexplained variance, which consists of within-person variance over time, 
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and explain it as a function of covariates. The MELSM is particularly well suited to examine 

the changes (or fluctuations) in a given process for each individual in a dyad, together with 

the interrelations between both individuals.

Intra-individual variability designs

A key methodological question in investigations of social interactions concerns the study 

design for yielding information about within- and between-person dynamics. One such 

design, suited to identify dynamics with a high temporal resolution, is based on intra­

individual variability (IIV). In this design, individuals are measured across multiple variables 

and multiple occasions with short intervals, such as weekly, daily or hourly measurements, 

allowing researchers to study processes, as they unfold over time (e.g., Ferrer & Rast, 

2017). Depending on particular features, these studies go by names such as Ecological 

Momentary Assessments (EMA; Shiffman, Stone, & Hufford, 2008) or experience sampling 

and daily diary studies (Bolger, Davis, & Rafaeli, 2003). These intensive measurements may 

be combined across multiple waves spanning years to obtain intensive measurement bursts 

allowing for the investigation of within- and between-person dynamics that span across 

different time scales (Nesselroade, 1991b; Sliwinski, 2008). Generally, short time intervals 

among measurement occasions in intra-individual variability designs are well suited to 

capture behavioral fluctuations or variation within persons and/or partners.

The focus on these designs is largely on day-to-day variability, which is typically referred 

to as within-person or intra-individual variability. The main assumption of IIV is that 

such variability does not merely reflect measurement error, but that it conveys systematic 

information that is potentially important and that would go otherwise unaccounted 

for (Cattell, Cattell, & Rhymer, 1947; Eizenman, Nesselroade, Featherman, & Rowe, 

1997; Fiske & Rice, 1955; Horn, 1972; Hultsch, Hertzog, Small, McDonald-Miszczak, 

& Dixon, 1992; Nesselroade & Salthouse, 2004; Woodrow, 1932). IIV is commonly 

used to describe the amount of reversible, short-term behavioral fluctuations that are 

observed over time (Ram & Gerstorf, 2009). Fluctuations can also occur across situations 

and are often interpreted as carrying information about short-term adaptive processes, 

regulative mechanisms and the system’s vulnerability (Baltes, Reese, & Nesselroade, 1977; 

Nesselroade, 1991a; Röcke & Brose, 2013).

Most importantly, it is assumed that IIV reflects another quality of behavioral outcomes 

such as consistency or precision in responses, compared to individual levels, that are thought 

to provide information on average effects. Hence, with the availability of intensive data, 

the focus of the interaction among individuals can be widened to include dynamics of 

within-person variability in the sense that not only average effects may be influenced by the 

partner but also variability in one’s behavior may be related to, and interact with, a partner’s 

traits.

Models for dyadic interactions

There have been important advances in the development of methodology suited to model 

dynamics in social interactions, including dyads. Some of these models include, for 

example, the Actor-Partner Interdependence Model (Kenny, 1996) or the “Two-Intercept” 
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multilevel model (Raudenbush et al., 1995), which incorporates individual and partner 

effects over time. While there are many ways to model data from intensive repeated 

designs, multilevel, or mixed-effects, modeling techniques are probably the most common 

choice, perhaps due to the fact that they take into account clustering in the data (repeated 

measures nested within individuals, nested within dyads) and partition the variance 

accordingly. Specifically, in research on dyads, multilevel models have been successfully 

used to distinguish among actor, partner, and interaction effects (Campbell & Kashy, 2002; 

Kenny, Kashy, & Cook, 2006), investigate the quality of marital roles in married couples 

(Raudenbush et al., 1995), characterize the interrelations of affect between romantic partners 

(Butner, Diamond, & Hicks, 2007), model daily intimacy and disclosure in married couples 

(Bolger & Laurenceau, 2013; Laurenceau, Troy, & Carver, 2005), and capture emotional 

contagion between couple members undergoing a stressful event (Thompson & Bolger, 

1999).

Besides multilevel models, a number of other methods have been developed and 

implemented as well. One of such models is, for example, the dynamic factor analysis 

(DFA; Browne & Nesselroade, 2005; Molenaar, 1985), which combines factor analysis with 

time series and allows the identification of the factorial structure of the data as well as its 

time-related signature (Ferrer & Nesselroade, 2003; Ferrer & Zhang, 2009). Another method 

that has been applied to intensive measurement data is differential equation models (DEM) 

which are useful for modeling continuous data. In dyadic interactions, DEM have been 

used to develop theoretical models (Felmlee, 2006; Felmlee & Greenberg, 1999) but they 

have also proven useful for modeling empirical data on the emotional interaction between 

spouses and subsequent break-up (Gottman, 2002), daily intimacy and disclosure in married 

couples (Boker & Laurenceau, 2006), and the dynamics of emotional experiences between 

individuals in close relationships (Chow, Ferrer, & Nesselroade, 2007; Ferrer, Gonzales, 

& Steele, 2013; Ferrer & Steele, 2014; Ferrer, Steele, & Hsieh, 2012; Steele, Ferrer, & 

Nesselroade, 2014).

Another class of models that are well suited to capture the dynamics of change in 

the variance components are generalized autoregressive conditional heteroscedasticity 

(GARCH) models (Bollerslev, 1986). These models are popular in the econometric literature 

and are used to predict the mean and variance (volatility) in a time-series, conditional 

on past information. The typical GARCH model assumes that the current variance is 

the sum of an average variance, the lagged (e.g., t − 1, with t = 1, …T) variance, and 

the lagged error variance. The multivariate extension (MGARCH; Engle, 2002) includes 

a time-varying covariance matrix Ht that includes the covariances among the GARCH 

parameters for each time series. The covariance is allowed to change across time which 

makes the estimation of the Ht matrix challenging (Laurent, Rombouts, & Violante, 2012; 

Tse & Tsui, 2002). While MGARCH models have proven to be useful in economics 

settings with only few simultaneous time-series, their application in psychological research 

with multiple individual time-series remains limited. The research in psychology typically 

involves multiple individuals and, thus, each individual time series would have to enter the 

MGARCH covariance matrix. The dimension of H would expand to N × N × T, making it 
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extremely difficult to estimate in the context of most psychological applications, even for 

small N (de Almeida, Hotta, & Ruiz, 2018).

In this paper, we focus on mixed-effects models because of their desirable features for 

extracting information about variability. Specifically, mixed-effects models partition the 

overall variance into between- and within-person variance. The within-person component 

represents the residual variance that remains unexplained at the individual level while 

controlling for all predictors at the person level. In research on IIV, this “unexplained” part 

is the very focus of interest, the target of exploration in further modeling steps (e.g., Hultsch, 

Strauss, Hunter, & MacDonald, 2008). To date, probably the most common index of IIV 

is the intra-individual standard deviation (iSD; see e.g., Ram & Gerstorf, 2009), which can 

be computed from the residuals of a mixed effects model or individual models, or from 

observed scores. As such, the investigation of IIV is often treated as a two-stage approach: 

In the first stage, IIV is extracted to compute some form of person-specific variability 

index, such as the iSD. In the second stage, the IIV index is then used in a model either 

as a predictor or as the outcome. While this approach has been widely adopted to extract 

within-person information, it is not without controversy. IIV indices can lead to estimates 

that are highly correlated with other within-person moments, such as the intra-individual 

mean, especially when Gaussian normality is violated (Mestdagh et al., n.d.; Rast, Hofer, & 

Sparks, 2012; Wang, Hamaker, & Bergeman, 2012). Moreover, IIV indices or estimates tend 

to be unreliable especially when the number of measurement occasions is small (Estabrook, 

Grimm, & Bowles, 2012; Wang & Grimm, 2012).

The model that we present here to examine IIV in dyads is the mixed-effects location scale 

model (MELSM; Hedeker, Mermelstein, & Demirtas, 2008), an extension of the standard 

multilevel model. This model is particularly well suited to examine changes (or fluctuations) 

in a given process for individuals in dyadic relationships. The model expands the focus from 

the “classic” actor-partner interrelation on location effects (individual means) to include 

dyadic interactions on the IIV, the scale effects. As outlined earlier, the investigation of IIV 

and dynamics in partner relationships is strongly tied to the design, which must entail some 

form of intensive repeated measurements.

A distinguishing feature of the MELSM with respect to multi-stage models, is that the 

MELSM does not rely on multiple steps but rather estimates intraindividual means (iM) and 

iSD’s simultaneously in one model. By estimating these two components simultaneously, 

we are able to account for possible correlations that arise among iM’s and iSD’s, which 

ensures that we can make valid inferences about our parameter estimates (Verbeke & 

Davidian, 2009). The MELSM jointly models location and scale random effects by keeping 

them in one covariance matrix – as with any covariance matrix, its individual values are 

conditional on the other values. Multi-stage approaches, on the other hand, do not jointly 

model the covariances among its location and scale parameters. This makes the covariances 

oblivious to the correlations among its parameters. As a result, they only provide unbiased 

estimates for the rare case when location and scale are indeed completely uncorrelated (for 

a simulation, see e.g., Leckie, French, Charlton, Browne, & Langford, 2014). Moreover, 

the MELSM includes explanatory components for the between- and within-person variance, 

which circumvents the need for multiple modeling steps to capture IIV (see also Leckie 
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et al., 2014; Rast et al., 2012). That is, while standard mixed-effect models relegate 

all the unexplained variance into the residual term, the MELSM allows partitioning the 

within-person variance over time and modeling it as a function of time-varying as well as 

person-level covariates. This is a particularly important feature because such within-person 

variance can be examined in relation to variables external to the system. For example, a 

researcher interested in, say, emotion in romantic couples, will want to use variables related 

to emotion to predict the stability or volatility in emotions. But, in addition, there might 

be variables external to the modeled system (e.g., work, daily stressors, weather) that could 

potentially explain part of the emotional ups and downs that are not accounted for by the 

main components of the model (Ferrer & Rast, 2017).

The aim of this paper is to extend the MELSM to accommodate data from two individuals 

who are part of a dyadic system (e.g., romantic couple, teacher-student). The remainder of 

the manuscript is organized as follows. First, we formally describe the general MELSM for 

dyads (or other dyadic system). Second, we provide an example involving empirical data 

from daily fluctuations in emotion from romantic couples. Third, we discuss the findings 

in the context of dyadic interactions and list shortcomings and possible extensions of the 

MELSM model.

A mixed-effects location scale model (MELSM) for dyads

The mixed effects location scale model (MELSM) put forward by Hedeker et al. (2008), 

combines earlier work on variance heterogeneity (Aitkin, 1987) and models for random 

scale effects (Cleveland, Denby, & Liu, 2002). Here, we briefly recast the model and 

then we expand it to accommodate cases with dyadic interactions involving partner and 

individual predictors. The starting point is the standard linear mixed effects model with 

repeated measurement on occasions j (j = 1, 2, …, ni occasions) that may be specified as

yi = Xiβ + Zibi + ϵi, (1)

where yi is the ni × 1 response vector for observations in person i. Xi is the ni × k design 

matrix for the fixed effects for observations in person i. β captures the fixed effects and its 

dimension is k × 1. The random effects are in the ni × q matrix Zi for observations in person 

i where bi is the according q × 1 vector with the random effects coefficients. These effects 

characterize a person’s mean response or location. ϵi is a vector of errors specific to person 

i. The general assumption in standard mixed effects models is that random effects are bi ~ 

N(0, Φ). Where Φ is a q × q covariance matrix for the random effects with the variances 

σb
2 and the covariances σbb′ (for q ≠ q′). The errors ϵi are also assumed to be normally 

distributed with a mean of 0 and covariance of σϵ2Ψi where Ψi is a ni × ni matrix which can 

take different structures. In these models the between-person variance is captured by σb
2 and 

the within-person variance is represented in σϵ2.

Within-person variance

In this standard form, the error variance σϵ2 is a fixed entity. In order to allow it to differ at 

the individual level, we add the subscript i to the within-person variance term (cf. Hoffman, 
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2007; Myles, Price, Hunter, Day, & Duffy, 2003) but we also allow it to differ among 

j-time points to obtain σϵij
2 . Changes in the within-person variance σϵij

2  are explained by 

time-varying covariates in the ni × m matrix Wi for the fixed effects and Vi, with dimension 

ni × p (and m ≥ p) for the random effects (Rast et al., 2012). Hence, with the inclusion of 

time-varying covariates the within-person variance not only varies across persons but also 

across time given the model:

φi = exp Wiη + Viti . (2)

φi then is the ni × 1 vector that contains all error variances σϵij
2  for individuals i and for each 

measurement occasion j. η is comparable to the regression weights β in Equation (1). That 

is, for an intercept and slope term, η0 defines the average within-person variance and η1 

weights the influence of the predictor on the variance. The individual departures from the 

fixed effects that are captured in the random effects ti are normally distributed with ti ~ N(0, 

Θ), where Θ is a covariance matrix dimension p × p that contains the random effects of the 

scale. Note that Wi and Vi may, or may not, be the same as Xi and Zi. In fact, the model that 

we will discuss here contains different predictors for the location and the scale. Given that 

Equation (2) is for variances, we need to ascertain that the estimates are positive real values. 

This can be obtained, for example, via the exponential function (e.g., Hedeker et al., 2008; 

Rast et al., 2012). Note that by doing so, we assume that σϵij
2  is log-normally distributed.

Between-person variance

The MELSM also introduces a submodel for the between-person variance. It is important 

to note here that we now have random effects bi from the location of the model (the 

means structure) and random effects ti from the scale of the model (the within-person 

variance structure). All these random effects are assumed to come from a Gaussian Normal 

distribution with mean zero. Hence, we can stack both bi and ti vectors, resulting in ui ~ 

N(0, Σi). This also means that Σi contains the variances and covariances of both, the location 

and scale. In order to define a variance model for Σi, we can decompose Σi = τiΩτi′, where 

τi is a diagonal matrix for person i in which the diagonal elements are the random-effect 

standard deviations and Ω is the correlation matrix that contains the correlations among all 
random effects. That is, Ω is of dimension (q + p) × (q + p) and contains the correlations 

among the random effects of the location, the correlations among the random effects of the 

scale, and the correlations among the random effects of the location and the scale. Given this 

definition, Ω remains constant across conditions. We can now define a model for the random 

effects, which, in SD metric, can be defined as

τi = exp giι (3)

where, for example, ι0 is an intercept and ι1 is a slope parameter. gi is the design matrix 

that contains between-person predictors. This means that the random-effects variance is not 

constant but may change due to person- or group-specific characteristics (e.g., Leckie et al., 

2014).
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Hence, having specified all elements, we can define the full MELSM as

yi N μi, φi
μi = Xiβ + Zibi
ϕi = exp Wiη + Viti

with the random effects for both the location and the scale coming from the same 

multivariate distribution

bi
ti

N 0, Σi
Σi = τiΩτi′
τi = exp giι .

Dyadic effects

In order to account for the interrelationship of the dyad members, we introduce dummy 

variables to address each of the two partners of the couple (cf. Ferrer & Rast, 2017; 

Raudenbush et al., 1995). In particular, we introduce a dyad-specific level k at both the 

location and scale part. The mean structure from Equation (1) can be expanded to

yki = ∑
k = 1

m
dk Xkiβk + Zkibki (4)

where, k = 1, …, m represents the number of units in the level (two in our case). Hence, in 

this specification for dyads, we define m = 2 dummy variables, one for each partner, where 

dk = 1 if a given measure is yk and dk = 0 otherwise. Considering a given value in ykij*, 

then dk = 1 if k = k* and dk = 0 if k ≠ k*. The elements in dk are mutually exclusive and 

ensure that the model is estimated either for one or the other partner in the dyad. The same 

approach can be used for the scale part, so Equation (2) can be rewritten as

φki = ∑
k = 1

m
dk exp Wkiη + Vkitki . (5)

In order to model within-dyad dependencies, the design matrices X and W typically contain 

variables that are thought to influence the other partner’s outcome. For example, the same­

day positive affect of partner A might influence partner’s B positive affect for that same day 

– and vice versa.

Again, the within-person variances are estimated for both partners and are mutually 

exclusive. This approach does not preclude one from obtaining covariances among random 

effects of both partners, as they are still drawn from a common multivariate distribution. 

This enables one to model the correlations among the individuals in the dyads, within and 
across the location and the scale part of the model. This constitutes a unique feature of the 

MELSM for dyads.
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Estimation

Mixed-effects location scale models can be estimated via maximum-likelihood methods in 

standard software (Ferrer & Rast, 2017; Hedeker, Mermelstein, Berbaum, & Campbell, 

2009; Leckie et al., 2014), using specific software such as MIXREGLS (Hedeker & 

Nordgren, 2013), or Bayesian estimation procedures (Kapur, Li, Blood, & Hedeker, 2015; 

Rast et al., 2012). To minimize estimation issues when relying on maximum-likelihood 

techniques, we take advantage of a Bayesian framework that performs better with covariance 

matrices (such as Σ) that are prone to high collinearity and multidimensionality (cf. 

Rast et al., 2012; Rast & MacDonald, 2014). No-U-turn sampling (NUTS), an extension 

of the Hamiltonian Monte Carlo (HMC) Sampler, is particularly well suited to handle 

these situations (Hoffman & Gelman, 2014). This method is implemented in Stan (Stan 

Development Team, 2016b) and it has the added advantage, compared to Gibbs-sampling 

that the priors do not need to be conjugate to the likelihood of parameters.

Illustrative example

Subjects and procedure

The data for this empirical example come from 274 heterosexual couples that were recruited 

as part of a study of dyadic interactions (Ferrer et al., 2012; Ferrer & Widaman, 2008). 

Participants included couples involved in a romantic relationship who completed a daily 

questionnaire about their affect for up to 90 consecutive days. They ranged in age from 17 to 

74 years (M = 25.08, SD = 10.39) and reported having been in the relationship from 1 month 

to 54 years (M = 3.26 years, SD = 6.06).

Materials and design

To obtain daily measures of affect, we used the Relationship-Specific Affect scale (RSA; 

Ferrer et al., 2012), a set of 18 Likert-scale items (ranging from 1 to 5) that tapped into 

positive and negative emotions specific to one’s relationship. In this example, positive 

affect (PA) serves as the dependent variable and negative affect (NA) as a predictor for 

within-person variance. In addition, we use a measure of relationship satisfaction based on 

six items from the Perceived Relationship Quality Component Inventory (Fletcher, Simpson, 

& Thomas, 2000). These items were rated on a 7-point Likert scale ranging from 1 (not at 
all) to 7 (extremely) and were completed by the participants at the beginning of the study.

Statistical analyses

We tested a sequence of increasingly more complex models, starting from an empty linear 

mixed effects model to the final mixed effects location scale model with all predictors.1 

Here, we describe the final model that was used to obtain the parameter estimates reported 

in the results section. In order to make the structure of the model more visible, we rewrite 

Equations (4) and (5) following multilevel notation.

1The annotated Stan-code for the final two models is in the Appendix and the code for all models can be obtained from https://
github.com/phrast/MELSM
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Location model

The location submodel of positive affect RSA (PA) for each person i at day j is given at level 

1 as:

ykij = ∑
k = 1

m
dk βk0i + βk1iPALag1ij + βk2iPAPartnerij . (6)

The predictors in level 1 of the location are each person’s own PA rating of the previous 

day (PALag1) as well as the partner’s PA rating (PAPartner) at the same day. Both level 1 

predictors PALag1 and PAPartner are person-mean centered.

The person effects are defined at level 2 separately for both partners. For females

k = 0 = F

βF0i = γF00 + γF01Rel.satFi + γF02PAPartner,Fi* + uF0i
βF1i = γF10 + γF11Rel.satFi + γF12PAPartner,Fi* + uF1i
βF2i = γF20 + γF21Rel.satFi + γF22PAPartner,Fi* + uF2i

and for males

k = 1 = M

βM0i = γM00 + γM01Rel.satMi + γF02PAPartner,Mi* + uM0i
βM1i = γM10 + γM11Rel.satMi + γF12PAPartner,Mi* + uM1i
βM2i = γM20 + γM21Rel.satMi + γF22PAPartner,Mi* + uM2i

At level 2, we introduce the moderator Rel.satki (individual relationship satisfaction), which 

was measured at the beginning of the study. This variable was centered at its grand-mean (M 
= 6.2). PAPartner, ki*  is the person-mean that was obtained when centering the corresponding 

level 1 variable PAPartner,ij and it captures between-person differences in individual levels of 

partner affect. The person-mean for the lagged effect is practically identical to the random 

intercept and is thus not included as a level 2 variable (Hamaker & Grasman, 2015). The F 
and M subscripts denote the model for females (F) and males (M).

Scale model

Equivalently, the scale part of the model follows Equation (5) with level 1:

σϵkij
2 = ∑

k = 1

m
dk exp η0ki + η1kiNAPartner,ij . (7)

The predictor for the scale is the person-mean centered negative affect of the partner 

(NAPartner) for the same day. Negative affect has been shown to influence affect, both 

positive and negative (e.g., Röcke, Li, & Smith, 2009) and here we test its effect on the 

scale parameter. It is worthwhile reconsidering what predictions from Equation (5) signify 

in terms of observed values. For days where the partner reports higher NA, σϵkij
2  will result 
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in larger (or smaller, depending on the valence) values resulting in more (or less) variance 

around the location parameter for that same day. In other words, NAPartner influences the 

daily changes in uncertainty or unreliability that surround the location estimate.

Level 2 is defined for the female as

k = 0 = F
ηF0i = ξF00 + ξF01Rel.satFi + ξF02NAPartner,Fi* + uF3i
ηF1i = ξF10 + ξF11Rel.satFi + ξF12NAPartner,Fi* + uF4i

and for the male

k = 1 = M
ηM0i = ξM00 + ξM01Rel.satMi + ξM02NAPartner,Mi* + uM3i
ηM1i = ξM10 + ξM11Rel.satMi + ξM12NAPartner,Mi* + uM4i

At level 2, we have again Rel.satki, the grand mean centered relationship satisfaction that 

moderates the level 1 effects in the within-person variance, and NAPartner, ki* , the person­

mean of NAPartner,ij.

Random effects variance model

All level 1 parameters (location intercept, PALag1 slope, PAPartner slope, scale intercept 

and NAPartner slope) for both female and male, have associated random effects that allow 

individual departures from the individual (male or female) mean. As described earlier, this 

is true for both the location and scale components, and all random effects are assumed ui 

~ N(0, Σi). Σi contains the variances of the random effects of the location and the scale 

as well as all covariances. Hence, the off-diagonal elements of Σi contain information on 

how individual differences are related both within individuals and within dyads. That is, 

we obtain relations within and between females and males but also across the location and 

the scale components. As noted earlier, this is a unique feature of the MELSM as it not 

only models dependencies among partners via level 2 predictors but it also identifies the 

relatedness within dyads as correlated random effects throughout the location and the scale.

As described in Equation (3) we also include a between-person model to govern the random 

effects standard deviations across different conditions. We re-expressed Σi as τiΩτi′, where Ω 

is a (q + p) × (q + p) correlation matrix and τi are the SD’s. The final model contains three 

location random effects for each partner (Female: σ1
2, σ2

2, σ3
2; Male: σ4

2, σ5
2, σ6

2) resulting in q 

= 6 random effect variances and two scale random effects for each partner (Female: σ7
2, σ8

2; 

Male: σ9
2, σ10

2 ), resulting in p = 4 variances for the scale. Hence, the dimension of the final 

covariance matrix Σi is 10 × 10 with the diagonal diag Σi = σ1
2, …σ6

2, σ7i
2 , …σ10i

2 ′. Note that 

only the scale elements have a subscript i, indicating that they are allowed to vary between 

participants.
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In order to capture changes in the scale random effects only, we introduce a submodel 

for the four elements σ7i, …σ10i ′, where g1 = log(years in the relationship) influences the 

random effect SD of the scale as

σ7i = exp ιF30 + g1iιF31
σ8i = exp ιF40 + g1iιF41
σ9i = exp ιM30 + g1iιF31
σ10i = exp ιM40 + g1iιM41 .

(8)

The first two lines in Equation (8) refer to the random effects SDs of the females and 

the last two lines refer to the SD’s of males. The ιkp0’s (e.g. ιF30) are the intercepts that 

define the average random effect SD of the scale for partners who were, on average, one 

year in their relationship (note that years in relationship was on the log scale where log(1) 

= 0). The ιkp1’s (e.g., ιF31) capture the change in the average random effects variance 

given the relationship length, resulting in possibly different random effect variances for the 

scale component of the model. That is, individual differences in the scale random effects 

are not constant but are allowed to vary across individuals as a function of differences in 

relationship length.

A note on centering

Once we include time-varying predictors, we need to decide on how they should enter the 

model. There are mainly three options on how we can include these variables: uncentered, 

grand-mean centered, and person-mean centered (Wang & Maxwell, 2015). Uncentered 

predictors that are included at level 1 can be conceptualized as carrying two kinds of 

information. An average, between-person part for each individual, and a within-person 

fluctuation around that average. In the logic of multilevel models, we can separate these 

two sources of variation and place them in the corresponding levels: level 1 for the within­

person fluctuation and level 2 for the between person effect. As such, uncentered variables 

confound within- and between-person effects and potentially bias the results (Curran, Lee, 

Howard, Lane, & MacCallum, 2012; Raudenbush & Bryk, 2002). This issue cannot be 

resolved by grand-mean centering level 1 variables, as the within-person effect remains 

confounded with the between-person differences, and hence, only within-person centering 

can resolve this issue. A viable approach is to extract the person-mean from time-varying 

predictors and introduce it as a level 2 predictor while the centered within-person time­

varying effects enter the model as a level 1 predictor (for a discussion on different versions 

of centering and detrending, see Curran & Bauer, 2011).

In the case of autoregressive effects, the decision on whether or not to center is less 

clear. For example, Hamaker and Grasman (2015) noted that person-mean centering 

autoregressive effects can downward bias the within-person slope of the lagged parameter 

while no centering does not lead to bias in the level 1 parameter. However, once level 

2 predictors are added, the person-mean centered autoregressive parameters fares better 

than the noncentered. For the current application, we chose to person-mean center all 

time-varying level 1 predictors, including the autoregressive predictors.
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Software, estimation and prior specification

All models were fitted in Stan with the NUTS algorithm using the RStan package (Stan 

Development Team, 2016a), with four chains and a warm-up period of half the total 

chain length. To ensure good quality of the parameter estimates, we chose to keep the 

number of iterations at a level where the models converged with potential scale reduction 

factors R smaller than 1.1 (cf. Gelman, 2006). As measures of relative model fit, we report 

the deviance and the Pareto smoothed importance sampling-Leave-one-out cross-validation 

(PSIS-LOO; Vehtari, Gelman, & Gabry, 2017) with the corresponding standard errors. PSIS­

LOO is a fully Bayesian approach to assess predictive accuracy of the converged model 

and it is asymptotically equivalent to the widely applicable information criterion (WAIC; 

Watanabe, 2010) which is, in turn, asymptotically equivalent to the Akaike information 

criterion (Akaike, 1973). Further, we report 95% credible intervals (C.I.) to indicate the 

statistical relevance of the parameters. If a given point estimate (e.g., zero) is included in 

the C.I., the estimate may not be considered to be different from zero or a null-effect – 

and vice-versa, if the point estimate is not within the reach of the C.I. we conclude that the 

parameter is relevant. Models were compared on their respective differences in the values of 

PSIS-LOO and standard errors are reported as units of reference. We report a sequence of 

comparisons starting with a standard mixed effects model and ending with the final MELSM 

(cf. Table 1). PSIS-LOO or WAIC can be used to select among (nested or nonnested) 

models with respect to their predictive performance as long as few models are compared. As 

the number of compared models increases, the estimated predictive performance becomes 

increasingly biased (Gelman et al., 2013; Piironen & Vehtari, 2017). Approaches for variable 

selection are described elsewhere in the literature (e.g., O’Hara & Sillanpää, 2009).

Given the complexity of the models, we first started with a mixed effects model with all 

location predictors (Rel.sat and PAPartner* ), then added random intercepts for females and 

males in the scale (uF3i and uM3i) to obtain MELSM 1. MELSM 2 was obtained by adding 

the remaining predictors in the scale (Rel.sat and NAPartner* ). Finally, we added the submodel 

for the random effects variance of the scale [see Equation (8)] to obtain MELSM 3.

The likelihood for the MELSMs was specified as

yi N μi, φi
μi = Xiβ + Zibi
φi = exp Wiη + Viti .

MELSM 1 and 2 were given the same weakly informative priors

bi
ti

N 0, Σi
Σi = τiΩτi′
τi HC+(0, 2)
Ω LKJcorr(ν = 1)
β N(0, 100)
η N(0, 100) .
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Regardless of their sample mean and variance, the priors for the location and scale 

parameters in the MELSM were set to cover a parameter space that was considerably larger 

than the admissible parameter space in the observed data. For example, given the range of 

the PA scale, we know that the intercept can only lie between 1 and 5. Our prior was defined 

to have mean of zero and a SD of 100, as such, this approach regularizes the parameters only 

mildly and the data easily overwhelm the prior.

For the covariance matrix Σ, we followed standard recommendations (Barnard, McCulloch, 

& Meng, 2000) and modeled it in terms of its corresponding correlation matrix Ω (Σ = 

τΩτ′). Hence, instead of specifying a (scaled) inverse-Wishart as prior for the random 

effects (cf. Rast et al., 2012), we use the Lewandowski-Kurowicka-Joe (LKJ; Lewandowski, 

Kurowicka, & Joe, 2009) correlation prior with shape ν ≥ 1, Ω ~ LKJcorr(ν). ν governs 

the correlation among the parameters, and with ν = 1, the LKJ correlation distribution 

can be considered uninformative. This approach adds the benefit of reducing issues that 

arise from the Wishart distribution that biases posteriors either toward the variance or 

the covariances (Gelman, 2006). Note that there are several alternative approaches to 

parameterize the covariance matrix. For example, Kapur et al. (2015) successfully used 

the spherical parameterization (as discussed in Barnard et al., 2000) to assign weak priors to 

the elements of the correlation matrix in a simulation study on a multivariate MELSM. The 

SDs of the random effects were assumed to come from a heavy tailed half-Cauchy (HC+) 

distribution with location 0 and scale 2.

For the final MELSM 3, we re-specified the priors for the random effects.

bi
ti

N 0, exp giι Ω exp giι ′

ι1, …6 N( − 1.5, 3)
ι7, …10 N( − 1.5, 3)
Ω LKJcorr(ν = 1.5)
β N μMELSM2, 0.5
η N μMELSM2, 0.5

Notably, the HC+ prior was replaced by a log-normal distribution for the parameters in the 

random effects SD’s submodel (τi = exp(giι)). The priors for ι were defined separately for 

the location (ι1, …ι7) and the scale elements (ι8, …ι10). Although they are set to be the 

same here, one could define different priors for the location and the scale elements. Overall, 

the priors for the final model were more informative to increase regularization and reduce 

computation time. For example, the prior for ι which defines the random effects SD was 

set to −1.5 with a SD of 3 on the log-scale. The mode of this prior is at exp(−1.5) = 0.2 

SDs and it puts 95% of the probability mass between exp(−1.5±2 × 3) = [0.0006, 90.02] 

SDs – which is still largely unspecific. The location and scale parameters were not expected 

to change substantially from MELSM 2 to MELSM 3. Hence, the priors were informed by 

the previous model; the prior means were close to the posterior means of MELSM 2 and 

the SDs of 0.5 were more narrow. This approach mainly reduced the computation time to 

15 h in 3000 iterations while hardly influencing the posterior estimates, compared to an 
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earlier model with less informed priors that took almost the double amount of time with 

5000 iterations to converge.

Results

We investigated a sequence of models, starting with a standard linear mixed-effects model, 

as described in Equation (1), and ending with the final MELSM described in Equations (4), 

(5) and (8). This sequence allowed us to verify the plausibility of results and model fit. 

All PSIS-LOO and deviance values as well as their increment in model fit are reported in 

Table 1. A positive difference denotes an increment in model fit while a negative difference 

indicates a decrement in fit. Note that PSIS-LOO from MELSM 3 indicates a somewhat 

poorer fit compared to MELSM 2 but we decided to report this model to illustrate the use of 

the between-subject variance submodel defined in Equation (3).

The final model was fit using four chains and 3000 iterations, with 1500 warm-up iterations. 

The values in the priors were all chosen to be mildly informative and the range of the 

parameter space was inferred from previous models in the sequence. ν, the LKJ prior for the 

correlation matrix of random effects Ω, was set to ν = 1.5 to reflect our assumption that we 

would see correlations among the random effects. The final model converged after 15 h on a 

Linux operated system with an IntelCore i7 at 3.4 GHz, with four cores (8 threads) and 16 

GiB RAM.

Fixed location

The results for the full location and scale parameters, for both females and males, are 

reported in Table 2. All fixed location parameters are interpretable as in any standard 

mixed-effects model. The overall pattern and effect sizes of the parameter estimates for 

both female and male were very similar. All main effects were relevant (more than 99.2% 

of the posterior probability mass was above a parameter value of zero) and contributed to 

changes in their reported PA. While the males reported, on average, higher PA (compared 

via the posterior density of the difference between males and females; Kruschke, 2013), all 

other effects were very similar in size across both genders. Given that all predictors were 

grand-mean and person-mean centered, the intercept represents the average PA rating across 

the study. The level 2 predictors, overall relationship satisfaction (Rel.sat.) and the average 

partner PA rating (PAPartner* ) were positively linked to the average PA of the respondent. 

That is, the average respondent’s PA was higher for those who reported higher than average 

satisfaction with their relationship and for those who’s partners also reported higher than 

average PA. The time-varying level 1 predictors, the lagged PA rating (PALag1) and the 

daily changes in the partners PA (PAPartner.pc) were also positively related to the daily PA 

reports. Hence, the mood from the previous day carried forward to the next day, and the 

daily partner’s changes in PA affected the respondents’ same day PA in the same direction. 

The interaction term between the average partner’s PA and the daily changes in the partner’s 

PA (PAPartner.pc × PAPartner* ) was positive, indicating that the effect of the daily partner’s 

changes in PA was amplified (reduced) for partners who reported on average higher (lower) 

PA. Figure 1 shows individual predictions for PA as a function of changes in partner’s PA 

ratings (while keeping the PALag1 effect constant at the person average, panel a) and lagged 
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PA response (while keeping the PAPartner effect constant at the person average, panel b). 

Both panels show an obvious positive effect on PA.

Fixed scale

The effects for the fixed scale are reported on the log-metric. In order to obtain the 

average within-person SDs, the parameters need be exponentiated (e.g., exp(−.83) = 0.44). 

All predictors (Rel.sat., NAPartner* , and NAPartner.pc) contributed to changes in the average 

within-person SD. The time-invariant level 2 predictors had opposite effects on the average 

within-person variance. The association from relationship satisfaction was negative so, on 

average, higher satisfaction ratings were associated with smaller within-person SDs. That is, 

the PA ratings tended to be more stable over time for participants with higher relationship 

satisfaction, whereas the PA ratings from participants with lower relationship satisfaction, 

on average, tended to fluctuate more. These effects were similar in size for both genders, 

except for the intercept which was considerably smaller for the males (more than 99.7% 

of the posterior probability mass for the difference between males and females was below 

zero). In turn, average partner NA influenced the variance positively, indicating that the 

overall within-person variance was higher for those respondents whose partners, on average, 

reported higher NA.

At level 1, there was only one time-varying predictor (NAPartner.pc). The partner’s daily 

changes in NA ratings had a positive effect on the within-person SDs. That is, on days when 

the partner reported higher than average NA, variability increased, whereas on days when 

NA was lower than average, variability decreased. This relation is depicted in Figure 2, 

where partner’s NA ratings are related to larger within-person SDs. The positive interaction 

between daily fluctuations in partner’s NA and relationship satisfaction (NAPartner.pc × 

Rel.sat.) suggests that increased relationship satisfaction amplifies the effect of daily 

fluctuations in the partner’s NA on the within-person variance. That is, those who were more 

satisfied with their relationship also reacted more strongly to changes in their partner’s NA 

and vice versa. The interaction between the partners daily changes with their average NA 

rating (NAPartner.pc × NAPartner* ) was negative and thus larger average partner NA attenuated 

the effect of the daily changes in the partners NA on the respondents within-person variance.

Random effects

From Figures 1 and 2 it is apparent that there were considerable amounts of individual 

differences around the fixed effects in both the scale and the location components. These 

individual differences are captured by the random effects reported in the diagonal of Table 3. 

The first three diagonal elements (τLF1, τLF2, τLF3) are the random effects for the intercept, 

the PALag1 and the PAPartner.pc of the location component, for the females. The following 

three elements (τLM1, τLM2, τLM3) are the same parameters for the males. Note that all three 

parameters showed large variation across individuals, for both females and males.

The top left quadrant (6 × 6 matrix) of Table 3 captures the correlations among the 

location parameters. The brackets contain the 95% credible intervals of the corresponding 

correlations in the lower triangular. The pattern of correlations among females and males 

was remarkably similar, except for the correlation between the intercept and the PA partner 
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effects (τLF1 with τLF2) and the lagged effect (τLF1 with τLF3). For both females and males, 

the relevant correlations were negative. However, males had two additional correlations 

indicating that individuals who reported higher than average PA tended to have smaller 

carry-over effects from one day to the next (correlation r among τLM1 and τLM2 = −.18) and 

were less susceptible to their partner’s PA the same day (r among τLM1 and τLM3 = −.14). 

Both, females and males, showed a negative correlation among τLk2 and τLk3 (r = −.36) 

suggesting that larger lag effects are associated with smaller effects from partner’s PA the 

same day (and vice versa).

The lower right quadrant (4 × 4 matrix) includes the scale effects. Given that we introduced 

a variance model for the four diagonal random effect variances (see Equation (3)), 

these values represent the average random effects for participants who had been in their 

relationship for one year. The two correlations among τSk1 and τSk2 indicated that increasing 

the partner’s NA the same day correlated negatively with the variance of average PA ratings. 

In other words, those participants with larger than average PA variance estimates were 

less reactive to their partners’ NA ratings. And, alternatively, those with generally low PA 

variability reacted more strongly to their partners’ increase in NA with an increase in PA 

variability (for a similar result with stress reactivity, see Rast et al., 2012).

The lower left quadrant (4 × 6 matrix) captures the correlations of the random effects across 

the location and the scale components. The negative correlations indicate that higher average 

PA ratings were associated with smaller within-person variances, whereas larger PALag1 

effects were associated with smaller changes in the within-person variance due to increased 

partner NA. The positive correlation among the random intercept of the location and the 

partner NA (τLk1 with τSk2) indicates that those who reported higher overall PA values also 

showed larger effects from daily fluctuations in their partners’ NA.

Between-person variance prediction

In Equation (8), we specified a submodel for between-person differences in the scale 

component. This model predicts differences in the random effects of the scale due to 

relationship duration (RelDur). Note that this variable RelDur was transformed via the 

natural logarithm to account for very long partnership lengths. Hence, the intercept 

represents a relationship length of one year (since ln(1) = 0). Results from these analyses are 

reported in Table 4. The reported SD ιk30 and ιk40 parameters reproduced the corresponding 

variances in the diagonal of Table 3. Relationship duration only had a perceptible effect for 

the males in the sample. That is, on average, males who had been in their relationship for 

longer were more heterogeneous (i.e., showed larger random effects in their intercept). In 

other words, all participants showed individual differences in their PA variability and in the 

change in such variability as a response to their partner’s NA. However, relative to females, 

only males were more heterogeneous in their variability estimates as their relationship length 

increased, and vice versa.

Discussion

In this paper, we expanded the standard actor-partner and multilevel models onto a mixed­

effects location scale model (MELSM) for dyadic interactions. This model was built to 
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identify and account for IIV in each of the dyad members as well as their interrelations, 

as their interaction unfolds over time. Modeling and explaining dyadic interactions at both 

the mean and variance level requires repeated measurement data and flexible methods that 

are able to capture changes within and differences between individuals over time as well as 

the partner effects. The MELSM is one such model. This approach introduces predictors for 

both the mean structure, in the location component, and the variance structure, in the scale 

part, in a single modeling step. Moreover, partner interactions can be added at either the 

location or the scale submodel, or both, and they may include predictors that operate at the 

location and/or scale part. This approach also results in the estimation of random effects for 

both the location and the scale parts. This is done, for one, controlling for effects of mean 

and variance dependency (resulting in heteroscedasticity) but also obtaining correlations 

across these two parts and across both partners in the dyad (or more units in higher-order 

systems such as triads).

The information extracted from the covariance across the location and the scale is a unique 

feature of the MELSM. In our empirical illustration, we found that partners’ average 

and same day NA resulted in larger within-person variability. At the same time, not all 

participants conformed to this relation. The negative correlation between the intercept of the 

within-person SD and the within-person NA partner slope (females: r of τSF2 with τSF1 = 

−.41; males: r of τSF2 with τSF1 = −.38) indicated that those who were generally stable in 

their PA ratings (small PA SD) were reactive to their partners’ NA. However, those who 

were, on average, inconsistent in their PA ratings (large overall PA SD) did not react with an 

increase of within-person variability. This association was depicted in Figure 2, where some 

individuals showed a decrease in within-person variability. Again, these types of findings, 

with a fine-grained level of detail about IIV, are unique to the MELSM and would be hard to 

obtain with other standard models.

Another unique feature of the MELSM is the possibility of including between-person factors 

that could moderate the person-level variables at both the location and the scale components. 

In our example, we used time in the relationship as such factor. This variable affected the 

magnitude of individual differences in the within-person intercept variance. In our analyses, 

males who were at earlier stages in their relationship were more similar to each other than 

those who had been in their relationship for a longer time. This effect, however, was not 

evident for females.

Whenever variances are the focus of a model, one needs to take into account that their 

magnitude is also defined by the location of the average response. That is, in variables that 

are bounded (either at one or both ends), the variance will be a function of the person’s mean 

(Baird, Le, & Lucas, 2006; Eid & Diener, 1999; Kalmijn & Veenhoven, 2005) and, thus, 

covariances among the random location and scale intercepts merely reflect this constraint. 

This problem persists in the MELSM (but see Mestdagh et al., n.d., for a solution in multi­

stage approaches). In the current application this correlation was medium (r ≈ −.30 among 

τLk1 and τSk1), and negative, as one would expect for PA. In general, participants reported 

PA that was closer to the ceiling than the floor. While the magnitude of the correlation was 

rather moderate, it could be substantial in other applications involving NA ratings (Rast 

et al., 2012) or reaction time data (Rast & MacDonald, 2014). This does not necessarily 
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reflect a problem for the MELSM but it should be taken into account when interpreting the 

random effects correlations – some of these effects are dictated by the design and might not 

necessarily reflect the actual relation in a setting with unbounded variables.

One of the key strengths of the MELSM is its flexibility, as it allows researchers to include 

person- and time-varying predictors at both the location and scale components. However, 

it is important to keep in mind that the relation among the random effects of the location 

and scale are modeled as covariances, and they do not imply any sense of directionality or 

hierarchy. One alternative parameterization to counter this issue partially is to include the 

estimated individual mean as a predictor of the variance in the scale part of the model. Rast 

and Zimprich (2011) used this approach to predict within-person variability in a reaction 

time task to account for the heteroscedasticity arising from slower reaction times being 

related to larger variances (see also chapters 7.2.2 and 10.3 in Gałecki & Burzykowski, 

2013, for a general description of variance functions in the context of linear mixed effect 

models). However, for researchers who are interested in modeling within-person variability, 

dynamics, and lead-lagged relations, one limitation is that IIV itself cannot serve as a 

predictor. To circumvent this issue, approaches such as multi-stage studies first extract IIV 

and then use it as a predictor in a subsequent regression-type analysis (cf. MacDonald, 

Hultsch, & Dixon, 2008).

Another point worth mentioning is that, in the current form, the MELSM does not 

differentiate between within-person variability due to actual fluctuations in the individuals’ 

behavior from fluctuations that arise from measurement error. Here, these two sources of 

variability are confounded. Although, if we are willing to assume that the measurement 

error variance is constant over time and situations, the intercept term will likely absorb 

a larger portion of the error variance than the slope term. With other designs, and other 

variables, however, one might include an additional term in the variance model that captures 

measurement error (for an application with EMA data. see Vansteelandt & Verbeke, 2016).

The models discussed here, especially the final model, comprise a large number of 

parameters. This raises questions regarding data requirements for obtaining accurate 

parameter estimates. Most studies examining data requirements for estimating IIV made 

use of two-stage approaches and are not directly transferable to the MELSM, as the latter 

models all variances jointly from a constrained covariance matrix. Hence, the MELSM 

should benefit from regularization in the sense that the random effects (co)-variances can 

only vary within a certain limit. In fact, the few simulations using a MELSM suggest that, 

in simple cases with only one random location and scale intercept, the MELSM parameters 

can be recovered with relatively few within-group or subject data points. For example, 

Leckie et al. (2014) recovered the variance parameters in a simulation with N = 250 and 

10 repeated measurements. Similarly, Leckie (2014) was able to recover all parameters 

in another simulation study with 50 schools and 25 students per school. Given that our 

model was much more complex, we ran a small scale simulation with 200 replications using 

the parameters from the males in our final model. Due to convergence time, we limited 

ourselves to two random effects, an intercept and slope, for the location and the scale 

resulting in a 4 × 4 covariance matrix and no between-person predictors. The simulation 

was based on posteriors from the estimated population model (see Kruschke, 2015, Chapter 
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13) and suggested that large correlations (r ≈ .40) were recoverable with approximately 

75 participants and 75 repeated measurements while medium sized correlations (r ≈ .20) 

required up to 180 participants and 100 repeated measurement. The parameters that defined 

the minimal requirements for N and number of repeated measurements were the covariances 

among the location and the scale random effects. This fits the findings in Table 3 where 

the smallest detectable correlation between location and scale was r = 0.16 with a credible 

interval of [0.01, 0.27]. It is very likely that the design and sample size requirements needed 

to obtain accurate estimates in demanding settings, such as the one presented here with 

10 random effects, will increase. However, from the small simulation, it seems that the 

requirements for sample size grows faster than that for the repeated measurements. As such, 

our data example with N > 500 and up to 90 repeated measurements probably covered the 

requirements for our full model. These are speculations and future simulation work needs to 

formally address the data and design requirements in a broader context.

Likewise, the extent to which missing data affects the quality of the estimates or whether 

the location and scale parameters are similarly impacted is currently unknown. In our 

application we assumed a missing at random process (Rubin, 1976), but this assumption 

is not necessarily reasonable or tenable. In cases where data are missing not at random 

one could implement an imputation mechanism into the model that estimates all missing 

and nonmissing parameters simultaneously (Molenberghs, Fitzmaurice, Kenward, Tsiatis, & 

Verbeke, 2014).

The model presented in this paper serves as an illustration of a linear MELSM for 

dyads. This model can be modified easily in either the location or the scale functions to 

accommodate different structures (Goldstein, Leckie, Charlton, Tilling, & Browne, 2017). 

Some possible modifications include, for example, adding inherently nonlinear mean or 

variance structures, or altering the random-effects covariance matrix Σ to follow prespecified 

covariance structures. It is important to note, however, that each addition to the random 

effects increases the computational demand dramatically. Thus, our recommendation would 

be to start with a basic model and add terms at basic and manageable steps.

The purpose of this paper was to present the MELSM as a flexible model for longitudinal 

research on dyads. Our proposed MELSM is suited to model dyadic interactions in 

processes that show fluctuations, and where such ups and downs can have structure that 

is predictive of individual and dyadic behaviors. In principle, such a model could be 

applied to any dyadic interaction where the interdependence between the dyadic members 

is of key interest, given certain data conditions. Consider, for example, the interrelations 

between a therapist and a client, either over time, or in the course of a therapy session. 

Or, alternatively, the interaction between a mother and her infant child, during play time 

or through the development of the child. In either case, there will most likely be ups and 

downs in the individuals’ emotions, bonding, or adherence to therapy that can be modeled 

with the MELSM to detect aspects of the interactions that would otherwise go unnoticed (for 

additional examples, see Estrada, Sbarra, & Ferrer, n.d.). By focusing on the within-person 

variance, this approach opened up possibilities for modeling a component that is often 

disregarded as unexplained residuals. We hope that we illustrated such possibilities and 
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the fact that such residuals may show systematic patterns that are important to understand 

psychological processes.
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Appendix

Stan code for models 2 and 3. Model 2 was the best fitting model and served to provide 

priors for model 3. Parameter names are chosen to reflect the multilevel model specifications 

in the manuscript. The code and example data for the full sequence can be obtained from 

https://github.com/phrast/MELSM

model_2 <- ′

data {

int < lower =0> nobs; //num of observations

int < lower =1> J; //number of groups or subjects

int < lower =1, upper = J> group[nobs]; //vector with group ID

matrix[nobs,6] x; //design matrix w. time-varying wp predictors for location

matrix[nobs,4] w; //design matrix w. time-varying wp predictors for scale

matrix[J,3] z; //between person predictors at level 2 for location

matrix[J,3] m; //between person predictors at level 2 for scale

vector < lower =1, upper =5 > [nobs] y; //column vector with outcomes

}

parameters { //Parameters to be estimated

cholesky_factor_corr[10] L_Omega; //Cholesky decomposition of Omega

matrix[6,3] gamma; //Location fixed effects

matrix[4,3] xi; //Scale fixed effects

matrix[10,J] stdnorm; //Standard normal, multiply w. cholesky factor to

//obtain multivariate normal beta

vector < lower =0 > [10] tau; //Vector of random effect SDs

}

transformed parameters {

matrix[J,6] z_gamma;

matrix[J,4] m_xi;

matrix[J,10] mu;
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matrix[J,10] beta;

//Level 2

z_gamma = z * transpose(gamma);

m_xi = m * transpose(xi);

mu = append_col(z_gamma, m_xi);

beta = mu+transpose(diag_pre_multiply(tau, L_Omega)*stdnorm);

}

model {

//Priors

tau~cauchy(0, 2);

to_vector(stdnorm) ~normal(0,1);

L_Omega~lkj_corr_cholesky(1);

to_vector(xi)  ~normal(0, 100);

to_vector(gamma) ~normal(0, 100);

//likelihood

y~normal(rows_dot_product(beta[group, 1:6], x),

exp(rows_dot_product(beta[group, 7:10], w)));}

generated quantities { //This section is not necessary, but contains useful

//transformations and generates data for posterior checks.

corr_matrix[10] Omega;//Obtain Omega from Cholesky factor to print in output

Omega = L_Omega*transpose(L_Omega);//Correlation matrix for output

}′

Model 3: Note that the priors were kept informative for the γ and 

ξ parameters in order alleviate model complexity. This model takes 

considerably more time to converge compared to the MELSM 2 as we also need 

to estimate parameters in the submodel for the scale random effects.

model_3<-’

data {

int < lower =0> nobs; //number of observations

int < lower =1> J; //number of groups or subjects

int < lower =1, upper = J> group[nobs]; //vector with group ID

matrix[nobs,6] x; //design matrix w. time-varying wp predictors for location

matrix[nobs,4] w; //design matrix w. time-varying wp predictors for scale

matrix[J,3] z; //between person predictors at level 2 for location

matrix[J,3] m; //between person predictors at level 2 for scale

matrix[J,1] g; //between person predictors for location ranefvar (intercept 

only)

matrix[J,2] a; //between person predictors for scale ranefvar (intercept and 

slope)

vector < lower =1, upper =5 > [nobs] y; //column vector with outcomes

}

parameters {

cholesky_factor_corr[10] L_Omega; //Cholesky decomposition of Omega

matrix[6,3] gamma; //Location Fixed effects
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matrix[4,3] xi; //Scale fixed effects

matrix[6,1] iota_l; //iota, SD, for location random effects

matrix[4,2] iota_s; //iota, SD, for scale random effects

//(modeled with predictors in a)

matrix[10,J] stdnorm; //Standard normal, used to multiply w. cholesky

//factor to obtain multivariate normal beta

}

transformed parameters {

matrix[J, 6] z_gamma;

matrix[J, 4] m_xi;

matrix[J,10] mu;

matrix[J, 6] g_iota_l;

matrix[J, 4] a_iota_s;

matrix[J,10] tau;

matrix[J,10] beta;

z_gamma = z * transpose(gamma);

m_xi = m * transpose(xi);

mu = append_col(z_gamma, m_xi);

g_iota_l = exp(g*transpose(iota_l)); //submodel for location random effect 

SDs

//(intercept only)

a_iota_s = exp(a*transpose(iota_s)); //submodel for scale random effect SDs

//(intercept and slope)

tau = append_col(g_iota_l, a_iota_s);

for(j in 1:J){

beta[j,] = mu[j, ]+transpose(diag_pre_multiply(tau[j, ], 

L_Omega)*stdnorm[ ,j]);

}

}

model {

//priors

to_vector(stdnorm) ~n;ormal(0,1);

L_Omega~lkj_corr_cholesky(1.5);

to_vector(gamma) ~normal(0.1, 0.5);

gamma[1,1]~normal(3.45, 0.5);//intercepts obtain mean from MELSM 2

gamma[4,1]~normal(3.60, 0.5);

to_vector(xi)~normal(−0.5, 0.5);

to_vector(iota_l) ~normal(−1.5, 3);

to_vector(iota_s) ~normal(−1.5, 3);

//likelihood

y ~normal(rows_dot_product(beta[group, 1:6], x),

exp(rows_dot_product(beta[group, 7:10], w)));

}

generated quantities {//Obtain Omega from Cholesky factor.
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corr_matrix[10] Omega;

Omega = L_Omega transpose(L_Omega);

}′
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Figure 1. 
Predicted slopes of positive affect versus PA Lag 1 (PA partner) holding the PA partner (PA 

Lag 1) effects constant at the person-level. Each line represents the predicted line for an 

individual.
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Figure 2. 
Predicted within-person SD’s for each individual with respect to different Partner NA 

ratings. Overall, increasing Partner NA ratings result in higher within-person variability. 

The individual lines indicate large heterogeneity among individuals in terms of reactivity to 

NA ratings of the partner.
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Table 1.

Sequence of estimated models and fit statistics.

Model Deviance PSIS-LOO (S.E.) Difference in PSIS-LOO (S.E)

Mixed Model 36205.3 −18102.7 (169.3) –

MELSM 1 33544.8 −16772.4 (165.5) 1330.3 (116.3)

MELSM 2 30416.9 −15208.5 (157.8) 1563.9 (81.8)

MELSM 3 30436.3 −15218.1 (158.0) −9.7 (3.2)

Note. The difference in the PSIS-LOO is always with respect to the previous model reported in the row above. The first reference model (Mixed 
Model) is a standard linear mixed effects model with all predictors in the location part and different error variances for females and males. MELSM 
1 extends the mixed model with random intercepts in the scale part for females and males. MELSM 2 introduces the partners same-day NA rating 
in the scale. MELSM 3 is the final model with the additional between-person submodel.
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Table 2.

Fixed effects from a mixed effects location scale model for positive affect.

Female Male

Parameters Mean 2.5% 97.5% Mean 2.5% 97.5%

Fixed location

 Intercept (γk00) 3.45 3.39 3.51 3.55 3.50 3.61

 Rel.sat. (γk01) 0.30 0.21 0.38 0.24 0.15 0.33

 PAPartner* γk02 0.55 0.46 0.64 0.48 0.39 0.57

 PALag1 (γk10) 0.24 0.21 0.26 0.26 0.23 0.28

 PALag1 × Rel.sat. (γk11) −0.03 −0.07 0.01 −0.01 −0.05 0.03

 PALag1 × PAPartner* γk12 −0.03 −0.07 0.02 −0.03 −0.08 0.01

 PAPartner.pc (γk20) 0.36 0.32 0.39 0.30 0.26 0.33

 PAPartner.pc × Rel.sat. (γk21) 0.04 −0.01 0.09 0.05 −0.00 0.10

 PAPartner.pc × PAPartner* γk22 0.06 0.00 0.12 0.06 0.00 0.11

Fixed scale

 Intercept (ξk00) −0.83 −0.87 −0.78 −0.91 −0.95 −0.87

 Rel.sat. (ξk01) −0.08 −0.14 −0.02 −0.06 −0.12 −0.00

 NAPartner* ξk02 0.18 0.07 0.29 0.28 0.16 0.39

 NAPartner.pc (ξk10) 0.20 0.15 0.26 0.19 0.15 0.24

 NAPartner.pc × Rel.sat. (ξk11) 0.10 0.04 0.16 0.08 0.02 0.14

 NAPartner.pc × NAPartner* ξk12 −0.27 −0.39 −0.15 −0.16 −0.27 −0.05

Note. All estimates are posterior means. The 2.5 and 97.5% represent the boundary of the lower and upper credible intervals (CI). Bolded 
estimates represent means where the according CI’s exclude 0. Fixed Scale estimates are the SD’s of the random effects on the log scale. 

Rel.sat. is relationship satisfaction, PA NA Partner*  is the time-invariant partner’s person-mean PA (NA), PA(NA)Partner.pc is the partner’s daily 

person-mean-centered PA (NA), and PALag1 is the person-mean-centered previous day PA.
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Table 4.

Between-person estimates for scale effects.

Female Male

Parameters Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Random scale

 SD int. (ιk30) 0.33 0.30 0.37 0.33 0.30 0.37

 RelDur (ιk31) 1.05 .96 1.14 1.10 1.01 1.19

 NAPartner.pc (ιk40) 0.26 0.20 0.32 0.21 0.16 0.27

 NApartner.pc × RelDur (ιk41) 0.95 0.77 1.15 1.05 0.87 1.28

Note. All estimates are posterior means. The 2.5% and 97.5% represent the boundary of the lower and upper credible intervals (CI). Bolded 
estimates represent means where the according CI’s on the log scale exclude 0.
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