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Abstract
Autism spectrum disorder (ASD) is a neuro-developmental disorder that affects the social abilities of patients. Studies have

shown that a small number of abnormal functional connections (FCs) exist in the cerebral hemisphere of ASD patients. The

identification of these abnormal FCs provides a biological ground for the diagnosis of ASD. In this paper, we propose a

combined deep feature selection (DFS) and graph convolutional network method to classify ASD. Firstly, in the DFS

process, a sparse one-to-one layer is added between the input and the first hidden layer of a multilayer perceptron, thus each

functional connection (FC) feature can be weighted and a subset of FC features can be selected accordingly. Then based on

the selected FCs and the phenotypic information of subjects, a graph convolutional network is constructed to classify ASD

and typically developed controls. Finally, we test our proposed method on the ABIDE database and compare it with some

other methods in the literature. Experimental results indicate that the DFS can effectively select critical FC features for

classification according to the weights of input FC features. With DFS, the performance of GCN classifier can be improved

dramatically. The proposed method achieves state-of-the-art performance with an accuracy of 79.5% and an area under the

receiver operating characteristic curve (AUC) of 0.85 on the preprocessed ABIDE dataset; it is superior to the other

methods. Further studies on the top-ranked thirty FCs obtained by DFS show that these FCs are widespread over the

cerebral hemisphere, and the ASD group appears a significantly higher number of weak connections compared to the

typically developed group.

Keywords ASD � Deep feature selection � Classification

Introduction

Autism spectrum disorder (ASD) is a severe neurological

condition that affects social behavior and communication

abilities of patients (Association 2013). The understanding

of the disease mechanisms is still incomplete due to the

complexity and heterogeneity of ASD. Functional mag-

netic resonance imaging (fMRI) is a powerful technique

that has provided a more in-depth insight into the patho-

physiology of ASD (Kennedy and Courchesne 2008; Bis-

wal et al. 1995). Large-scale collaborative initiatives, such

as Autism Brain Imaging Data Exchange (ABIDE) (Di

Martino et al. 2014), share terabytes of brain fMRI data

aggregated from laboratories around the world facilitating

the understanding of disease mechanisms. Thousands of

subject samples provide comprehensive materials for

understanding the disease yet increase the difficulty of

analysis.

Many researchers have reported that some specific

abnormal functional connections (FCs) exist in the brains

of ASD patients. For example, Monk et al. (2009) found

that ASD subjects had altered intrinsic connectivity within

the default mode network, and connectivity between these

regions was associated with specific ASD symptoms. Using

independent component analysis, Assaf et al. (2010) found
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that ASD patients showed some decreased FCs in default

mode sub-networks compared to typically developed (TD)

controls. The magnitude of FC in these regions relates to

the severity of social and communication deficits. Keown

et al. (2013) investigated the local connectivity in ASD and

reported local brain connectivity was atypically increased

in autism in the posterior brain. Supekar et al. (2013)

concluded that children with ASD had shown functional

hyper-connectivity across multiple brain regions. Even

fathers of children with autism show abnormal activity and

connectivity in the brain network for the processing of

emotional faces (Mehdizadehfar et al. 2020).

Furthermore, Jamal et al. (2014) extracted brain con-

nectivity features of 24 children who were handling par-

ticular cognitive tasks and used a support vector machine

(SVM) to classify autism. Based on whole-brain FCs,

Abraham et al. (2017) used L2-regularized classifiers to

classify a large cohort of individuals of ASD from TD

controls, and achieved a classification accuracy of 66.8%.

Yahata et al. (2016) developed a novel machine-learning

algorithm which identified a small number of FCs for

separating ASD versus TD controls on a self-collected

dataset. They also studied the generalization of the iden-

tified FCs to other datasets. The above findings indicate

that a small proportion of FCs is critical for the cause of

ASD and it is necessary to develop methods to explore

ASD-related FCs from the whole-brain.

With the availability of fast computing devices and big

data sharing, deep learning has become a powerful tech-

nique for pattern recognition and classification tasks among

massive data (Litjens et al. 2017). It shows remarkable

performance in medical data analysis. Chen et al. (2019)

proposed an intuitive form of electroencephalography data,

and adopted convolutional neural network technique for

discriminating children with attention-deficit/hyperactivity

disorder from controls. Plis et al. (2014) used restricted

Boltzmann machine to learn physiologically important

representations and detect latent relations in neuroimaging

data. Shi et al. (2017) proposed multimodal stacked deep

polynomial networks to fuse and learn feature representa-

tions from multimodal neuroimaging data for the diagnosis

of Alzheimer’s disease. As an efficient unsupervised

method, autoencoder has also been used for feature learn-

ing and dimensionality reduction in disease classification

tasks. Kim et al. (2016) adopted a deep neural network

based on whole-brain resting-state FCs to classify schizo-

phrenic patients. The weights of the network were initial-

ized via stacked autoencoder in the pre-training process to

improve the classification performance. In the work of

Kong et al. (2019), multiple sparse autoencoders are

stacked to classify ASD on a one-site dataset from the

ABIDE database. Guo et al. (2017) applied a fisher score

method to measure the discrimination of the features

learned by autoencoders. A bunch of sparse autoencoders

was trained to compose a feature pool based on input data,

and then the learned features were selected for building a

classifier to classify ASD. Hazlett et al. (2017) studied 106

infants at high familial risk of ASD and 42 low-risk infants;

based on the brain magnetic resonance imaging of 6–12-

month-old individuals, they used a deep-learning algorithm

to predict the diagnosis of autism in individual high-risk

children at 24 months. Heinsfeld et al. (2018) used two

stacked denoising autoencoders to extract lower-dimen-

sional data from the ABIDE database. Then they applied

the encoder weights to a multilayer perceptron (MLP) to

achieve an accuracy of 70%. The above studies reflect the

effectiveness of deep learning methods in medical data

classification tasks to a large extent.

Recently, there is an increasing interest in extending

deep learning approaches for graph data. Graphs are widely

used as a natural framework that captures interactions

between individual elements represented as nodes in a

graph. Bruna (2014) introduced convolutional neural net-

works on graphs. Since then, the use of graph-based models

has gained a lot of attention in medical imaging applica-

tions. Kipf and Welling (2017) presented a scalable

approach for semi-supervised learning on graph-structured

data with graph convolutionary network (GCN). They

demonstrated that their approach outperformed related

methods by a significant margin. Furthermore, Parisot et al.

(2018) proposed using a GCN method to classify ASD.

They combined the imaging and non-imaging data in a

single framework and achieved a significant improvement

in classification accuracy with an accurate graph structure.

However, ASD-related FC features were not explored in

the above mentioned deep learning methods.

In fact, in biomedical applications many studies used or

developed deep learning methods for feature selection or

feature extraction. For example, for further understanding

the mechanisms of complex systems, Li et al. (2016) have

proposed a deep feature selection (DFS) model which can

take advantage of neural network structures to handle

nonlinearity and conveniently select a subset of features

right at the input level. Nezhad et al. (2016) proposed a

new feature selection method based on deep architecture.

The method used stacked auto-encoders for feature

abstraction at higher levels, and it was applied to a specific

precision medicine problem. The above works show that

DFS can not only reduce the dimensionality of data with

many features but also improve the performance of clas-

sification tasks.

In this paper, we investigate deep learning methods for

feature selection and classification of ASD. We propose a

combined deep feature selection (DFS) and graph convo-

lutional network (GCN) method to aid the diagnosis of

ASD. Firstly, based on the whole-brain FCs of subjects, a
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neural-network-based DFS method has been developed for

identifying critical FCs related to ASD. Then using the

identified key FCs and demographical information of

patients, a GCN is built to classify ASD and TD controls.

The proposed method is tested on the ABIDE database, and

it is compared with MLP and four classical machine

learning (ML) methods. The main contributions of our

work are as follows.

– Key FCs related to ASD on the multi-site ABIDE

database have been identified by the DFS network.

– Experimental results show that classification accuracies

have been improved remarkably through the DFS

process.

– Compared to the other methods in the literature, our

proposed method has superior performance.

The rest of the paper is organized as follows. In ‘‘Materials

and methods’’ section, first, the procedure of data prepro-

cessing and the method for computing functional connec-

tions based on resting-state fMRI are introduced. Then we

present our proposed combined DFS and GCN method. In

‘‘Results’’ section, we show some experimental results and

compare our method with several reported methods in the

literature. In ‘‘Discussion’’ section, we discuss the limita-

tions of the method and the challenging nature of ASD

classification. In ‘‘Conclusions’’ section, we draw the

conclusion.

Materials and methods

Data and preprocessing

The present study was carried out using resting-state fMRI

(rs-fMRI) data obtained from the ABIDE database (Di

Martino et al. 2014). The ABIDE database aggregates data

from 20 acquisition sites and openly shares neuroimaging

(rs-fMRI) and phenotypic data of 1112 subjects. In order to

easily replicate and extend our work as well as to make a

fair comparison with the work of Parisot et al. (2018), we

use the preprocessed version of the dataset provided by the

Preprocessed Connectome Project (publicly available at

http://preprocessed-connectomes-project.org/) (Craddock

et al. 2013). Through quality visual inspection (mainly for

largely incomplete brain coverage, high movement peaks,

ghosting and other scanner artifacts), the rs-fMRI data were

actually evaluated and selected by three experts. This

yielded 871 subjects out of the initial 1112. Among them,

403 individuals are with ASD and 468 are TD individuals.

The demographic information of the 871 subjects is sum-

marized in Table 1.

The Configurable Pipeline for the Analysis of Connec-

tomes (C-PAC) (Craddock et al. 2013) was used for the

preprocessing. Preprocessing includes slice time correc-

tion, motion correction, global mean intensity normaliza-

tion, nuisance signal regression to remove signal

fluctuations induced by head motion, respiration, cardiac

pulsation, and scanner drift (Lund et al. 2005; Fox et al.

2005), band-pass filtering (0.01–0.1 Hz), functional image

registration and standard space registration. In particular,

the component based noise correction method (CompCor)

of Behzadi et al. (2007) was used for physiological noise

correction. Physiological noise was modeled using 5 prin-

cipal components with highest variance from a decompo-

sition of white matter and CSF voxel time series. Head

motion was modeled using 24 regressors derived from the

parameters estimated during motion realignment (Friston

et al. 1994) whereas scanner drift was modeled using a

quadratic and linear term. As for image registration, a

transform from original to template (MNI152) space was

calculated for each dataset from a combination of func-

tional-to-anatomical with FSL BBreg and anatomical-to-

template transforms with the non-linear registration from

Advanced Normalization Tools (ANTS).

Subsequently, to reduce the dimensionality of features,

the mean time series for a set of regions extracted from the

Harvard Oxford (HO) atlas (Desikan et al. 2006) were

computed and normalised to zero mean and unit variance.

The HO atlas distributed with the FSL (FMRIB Software

Library) (Jenkinson et al. 2012) was split into cortical and

subcortical probabilistic atlases (Desikan et al. 2006),

which were bisected into left and right hemispheres.

Regions of interest (ROIs) representing left/right white

matter, left/right gray matter, left/right cerebrospinal fluid

and brainstem were removed from the subcortical atlas,

which leaded to 111 ROIs being obtained. Hence, the

preprocessed data we downloaded from the ABIDE Pre-

processed repository is actually 111 rs-fMRI ROI mean

time series. Then we computed the functional connection

between each pair of rs-fMRI ROI time-series by a corre-

lation distance metric. Therefore, there are 6105 FCs in

total for each subject. The selected subjects and the pre-

processing process is exactly the same as the ones used in

Parisot et al. (2018).

Combined deep feature selection and graph
convolutional network method

We propose a combined deep feature selection and graph

convolutional network method to classify ASD. Figure 1

shows the whole workflow of the proposed classification

method. First, the functional connection feature vectors

extracted in ‘‘Data and preprocessing’’ section are fed into

a deep feature selection network with a spare one to one

feature selection layer. Thus, after training, the weights of

the features at the feature selection layer are ranked and the
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top ranked features can be selected. Then the ABIDE

dataset is divided into training set and testing set. A GCN

model which integrates the selected FC features and non-

imaging features as inputs is trained on the training set.

Finally, the GCN model is evaluated on the testing set.

Deep feature selection network

In this section, we apply the DFS method of Li et al. (2016)

for identifying a subset of relevant input FC features of

ASD. The advantages of the DFS network are as follows.

Firstly, given the hyper-parameter setting, it efficiently

selects a subset of features in different sparseness for

classification tasks. It overcomes the limitation of linear

methods, which makes feature selection more

straightforward. Secondly, the feature selection procedure

is intuitive and easy, without involving complex feature

fusion and decomposition. Finally, by using a deep non-

linear structure, it can automatically extract nonlinear

features for the classification task, which is superior to low-

level linear methods.

Compared with the popular framework MLP, the DFS

network has a new layer for deep neural networks. It

straightforwardly adds a sparse one-to-one linear layer

between the input layer and the first hidden layer of an

MLP. This layer is different from a fully connected layer.

In the fully connected layer, every neuron has connections

to every input, whereas neurons in the new layer have only

one connection to one particular input feature, thus it can

help to identify a subset of relevant input features (vari-

ables) in a dataset.

Consider a DFS network with L layers, its model

parameter can be denoted by c ¼ fw;W ð1Þ; � � � ;W ðL�1Þg,
where w is the weight vector of one-to-one feature selec-

tion layer and W ðkÞ (k ¼ 1; . . .; L� 1) is the weight matrix

connecting to the ðk þ 1Þth layer. Suppose there is an input

feature vector x 2 Rn, its ith feature xi only connects to the

ith node of the first hidden layer with an activation function

r wð Þ (w 2 Rn and r could be taken as ReLUð�Þ). The

output of the feature selection layer becomes x� r wð Þ,

Table 1 Demographic

information of the participants

(mean ± standard deviation)

Site ASD TD

Age (year) FIQ* Sex (M/F) Age (year) FIQ* Sex (M/F)

CALTECH 24.0 ± 7.6 99.5 ± 2.6 4/1 28.2 ± 12.2 111.0 ± 9.2 6/4

CMU 26.0 ± 5.4 109.5 ± 12.1 4/2 27.8 ± 4.4 116.4 ± 10.2 3/2

KKI 10.7 ± 1.3 97.7 ± 20.6 9/3 10.1 ± 1.2 112.3 ± 9.8 15/6

LEUVEN_1 21.9 ± 4.1 109.4 ± 13.1 14/0 23.0 ± 2.8 115.4 ± 13.1 14/0

LEUVEN_2 13.9 ± 1.5 N/A 9/3 14.4 ± 1.5 N/A 12/4

MAX_MUN 28.4 ± 13.2 108.5 ± 15.0 16/3 25.2 ± 8.4 111.7 ± 9.5 26/1

NYU 14.8 ± 7.1 107.4 ± 16.4 64/10 15.8 ± 6.2 113.4 ± 13.1 72/26

OHSU 11.4 ± 2.2 106.0 ± 22.0 12/0 10.2 ± 1.0 114.1 ± 11.1 13/0

OLIN 17.1 ± 3.3 110.2 ± 20.1 11/3 16.9 ± 3.6 116.4 ± 13.9 12/2

PITT 18.3 ± 7.0 111.1 ± 14.8 21/3 18.7 ± 6.7 109.5 ± 8.9 22/4

SBL 34.0 ± 6.6 106.5 ± 14.1 12/0 33.6 ± 6.8 N/A 14/0

SDSU 15.3 ± 1.8 123.1 ± 11.6 8/0 14.0 ± 1.9 107.3 ± 10.5 13/6

STANFORD 10.2 ± 1.6 115.1 ± 15.6 9/3 9.8 ± 1.7 112.9 ± 15.2 9/4

TRINITY 17.0 ± 3.2 108.2 ± 16.5 19/0 17.1 ± 3.8 110.9 ± 12.2 25/0

UCLA_1 13.3 ± 2.6 103.2 ± 12.1 31/6 13.4 ± 2.1 105.3 ± 9.1 24/3

UCLA_2 12.8 ± 2.0 93.5 ± 12.0 11/0 12.1 ± 1.2 113.2 ± 10.1 8/2

UM_1 13.3 ± 2.5 107.3 ± 17.3 26/8 14.1 ± 3.2 107.2 ± 9.7 35/17

UM_2 14.9 ± 1.6 114.1 ± 12.9 12/1 16.7 ± 4.0 111.1 ± 9.5 20/1

USM 23.6 ± 8.4 99.6 ± 17.0 43/0 20.9 ± 8.3 115.5 ± 15.4 24/0

YALE 13.1 ± 3.0 94.2 ± 22.8 14/8 13.6 ± 2.1 103.2 ± 15.9 11/8

Total 17.1 ± 8.0 105.8 ± 17.1 349/54 16.8 ± 7.2 111.1 ± 12.1 378/90

FIQ Full Scale Intelligence Quotient

Fig. 1 The workflow of the ASD classification
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where � is element-wise multiplication. In order to select

input features, w has to be sparse. Figure 2 shows the

structure of a DFS network with two hidden layers. An

elastic-net-style sparse regularization term is used to

penalize the loss for the feature selection layer:

leðwÞ ¼ b1
1� b2

2
kwk22 þ b2kwk1

� �
ð1Þ

where b1 and b2 are the hyper-parameter used to leverage

the smoothness and sparseness of w.

As the other hidden layers of DFS are fully connected

layers with nonlinear activation function and the output

layer is a softmax layer, the overall cost function of DFS is

as below:

JðcÞ ¼ lðcÞ þ leðwÞ þ a
XL�1

k¼1

kWðkÞk22 ð2Þ

where lðcÞ is a mean softmax cross-entropy loss and the

third term is an L2 regularization, which is used to reduce

the model complexity and prevent overfitting during net-

work training.

To train the DFS network, suitable values for parameters

b1, b2, a need to be specified. In our experiment, we use a

grid search strategy to select these parameters. Then the

overall cost function of DFS needs to be minimized to learn

the model parameter c. It should be noted that a random

weight initialization is not expected for the feature selec-

tion layer, since it may give an advantage for one subset of

features over another. Therefore, feature weights are ini-

tialized with the same positive value. Considering Adam

optimizer (see Kingma and Ba 2015) can learn model

parameter c and it performs reasonably well in network

parameter learning, we use Adam optimizer to learn the

model parameter c. Moreover, as the main objective of the

training is tuning the sparse feature weights in the feature

selection layer, the network needs to be moderately

shallow.

Feature ranking

To identify the related FCs of ASD, the DFS network needs

to be trained. Input features (FCs) with higher weights

impact the final classification result to a large extent while

input features with lower weights (e.g., zero) do not affect

the classification results that much. During the training

process, we adopt the cross-validation (CV) procedure.

Due to different random splits on the dataset, each CV

iteration has different training and validation datasets, thus

the weights of the same feature from different training and

validation sets may vary. To measure the overall contri-

bution of a certain feature, we define cumulative absolute

weight criteria for each feature k as follows:

ck ¼
XN
i¼1

wk
i

�� �� ð3Þ

where N is the number of CV folds, and wk
i is the weight

corresponding to the kth feature in the ith CV fold. The

greater magnitude of ck indicates a more significant con-

tribution by the kth feature to the classification throughout

the CV procedure, whereas ck close to zero indicates the

kth feature does not contribute much for the classification.

We rank features according to the value of ck and only

features with nonzero ck value can be selected. To explore

the impact of feature number to classification results, in our

experiment, we use different top-ranked feature subsets to

train classifiers.

Graph convolutional network

In this work, to predict the label from the identified FCs of

ASD, we employed the GCN model of Kipf and Welling

(2017) for the classification task. GCN formulates the

subject classification task as a graph labeling problem, it

requires a pre-defined weighted graph on which graph

convolution operations are performed. In the GCN model,

a node represents an individual feature data while the edge

weights are used to capture the similarities between each

pair of nodes. The edges can integrate the feature data and

phenotypic data.

Suppose a weighted graph is represented by

G ¼ fV; E;Wg, where V; E and W are the vertices, edges,

and edge weight matrix of the graph, respectively. The

normalized Laplacian matrix of the graph is defined as

L ¼ IN � D�1
2WD�1

2, where IN is an identity matrix with

size N � N and D is the diagonal node degree matrix,

respectively. L is real symmetric positive semidefinite, it

Fig. 2 A DFS network example with a feature selection layer (where

w is the weight vector) on the left and two hidden fully connected

layers (whereW ð1Þ,Wð2Þ are the two weight matrices) on the right, the

input is a feature vector with 4 dimensions, the output is a vector with

2 dimensions
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can be factored as L ¼ UKUT , where U ¼
u0; u1; . . .; un�1½ � 2 RN�N is the matrix of eigenvectors

ordered by eigenvalues, K is the diagonal matrix of

eigenvalues k, i.e., Kii ¼ ki.
GCN generalizes the operation of convolution from grid

data to graph data via graph fourier transform. Suppose

ghðKÞ 2 RN�N is a filter function matrix of the eigenvalues

K with parameter h, the graph convolution of the input

signal x 2 RN (every node has one element) is defined as

ghHx ¼ UghðKÞU>x ð4Þ

Due to the computational complexity of eigen-decompo-

sition, ghðKÞ uses a truncated expansion of Chebyshev

polynomials TkðxÞ up to Kth order, i.e gh ¼
PK

i¼0 hiTið ~KÞ
where ~K ¼ 2K=kmax � IN and hiði ¼ 1; . . .; kÞ is Cheby-

shev coefficient. The Chebyshev polynomials are defined

recursively by TiðxÞ ¼ 2xTi�1ðxÞ � Ti�2ðxÞ with T0ðxÞ ¼ 1

and T1ðxÞ ¼ x, see Hammond et al. (2011). Let

~L ¼ U ~KUT , then Tið ~LÞ ¼ UTið ~KÞUT , the convolution of a

graph signal x can be simplified as

ghHx ¼U
XK
i¼0

hiTið ~KÞ
 !

UTx ð5Þ

¼
XK
i¼0

hiTið ~LÞx ð6Þ

To allow multi-channels (dimensions) of inputs and out-

puts, GCN modifies (5) into a compositional layer. As a

result, GCN uses the following layer-wise propagation

rule:

Hðlþ1Þ ¼ r
XK
i¼0

Tið ~LÞHðlÞHðlÞ

 !
ð7Þ

where HðlÞðl� 1Þ 2 RN�C is the matrix of activations in the

lth layer of C channels , and Hð0Þ equals to the matrix of

node feature data X (Hð0Þ ¼ X). HðlÞ is a layer-specific

trainable weight matrix.

A neural network model based on graph convolutions

can, therefore, be built by stacking multiple convolutional

layers of the form of Eq. (7), see Fig. 3. For ASD classi-

fication, each node of GCN presents individual functional

connectivity (ASD or TD) and the weight of an edge

encodes the relationship between two individuals. Three

phenotypic characteristics (including sex, imaging site and

handedness), and one similarity measure defined in Parisot

et al. (2018) are used to construct the weight matrix W of

the graph. The similarity is measured by the distance cor-

relation, it reflects the similarity between two individuals’

brain FCs. If two individuals have the same phenotypic

characteristics, the edge between them on the graph has

larger weight.

Specifically, suppose there are H non-imaging pheno-

typic features for each sample, and the weight matrix W of

the graph is defined as follows:

Wij ¼ simðAi;AjÞ �
XH
h¼1

/ðMhðiÞ;MhðjÞÞ ð8Þ

where Wij is the weight of the edge between node i and

node j,MhðiÞ andMhðjÞ are the hth phenotypic data of node
i and node j, respectively. /ð�Þ is a measure function of

distance using non-imaging phenotypic features. For non-

imaging data, sex, imaging site and handedness, /ð�Þ is

Kronecker delta function. That is, if and only if the phe-

notypic data values of the two nodes are the same, the

function return 1, otherwise return 0. simðAi;AjÞ is a

measure function of similarity between nodes, it is defined

as follows:

simðAi;AjÞ ¼ exp � jdCorðxi; xjÞj2

2t2

 !
ð9Þ

where dCor is the distance correlation, xi and xj are

selected feature vectors of node i and node j, and t deter-

mines the width of the kernel.

For a detailed description of the GCN model, the reader

is referred to Parisot et al. (2018).

Results

In this section, we show some experimental results. First,

we explore the impact of FC feature numbers on the per-

formance of ASD classifiers. Then we compare different

feature selection and classification methods. At last, we

report the top-ranked thirty FC features obtained by the

DFS network.
Fig. 3 The structure of GCN model. Each node in the input graph

represents a sample with a feature vector with N dimensions, and each

edge in the input graph represents the similarity of the two samples.

Each node in the output graph represents a sample with a vector with

2 dimensions
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Impact of feature numbers to classification
results

To investigate the impact of feature numbers, we have

selected different numbers of features according to the

value of cumulative absolute weight ck obtained from the

DFS network, then input them into GCN classifier to dis-

tinguish ASD from TD.

For comparison, we also implemented MLP method and

several other classic ML algorithms. We use scikit-learn

(Pedregosa et al. 2011) library implementation for classic

ML algorithms. We tested different numbers of features

with all possible ML algorithms (more than 8 different

ones), but report only the four best performing ones. The

reported algorithms are logistic regression, Gaussian pro-

cess (GP), Adaboost, and SVM. The parameters in the four

ML algorithms are tuned by grid search. For SVM, linear

kernel is used, the regularization parameter is set to be 1.0;

for logistic regression, L2 norm penalization is used, reg-

ularization parameter is set to be 1.0, and tolerance for

stopping criteria is 1� 10�4; for Adaboost, the base clas-

sifier is decision-tree, maximum number of estimators is

100, and the learning rate is set to be 1.0; for GP, the length

scale radial-basis function kernel is 1.0, maximum number

of iterations is set to be 100. We have evaluated each

classifier using the 10-fold CV procedure. Since it is hard

to determine the optimal number of selected FCs, we

investigate the influence of the different number of top-

ranked FCs on the classification performance.

For the MLP model, we searched the parameters, i.e, the

number of hidden layers H and the number of hidden

neurons N, using a grid search strategy. Hence H is set to

be 3, N is set to be 16, dropout rate is 0.2 and L2 regu-

larization parameter is set to be 5� 10�4. For GCN, we

used the well-explored parameter settings in Parisot et al.

(2018). The edge weights of the graph encode the pairwise

similarities obtained from phenotypic data, i.e., sex,

imaging site, handedness, and similarity metric. Other

parameters are: the number of hidden layers 1, dropout rate

0.3, L2 regularization parameter 5� 10�4 and the learning

rate of Adam optimizer 0.005. We trained both the GCN

and MLP models with a patience value of 30 epochs, which

means if the loss does not get improved on the validation

set for 30 epochs, the training process is stopped to avoid

overfitting.

For GCN and MLP classifiers, we use 9 different top-

ranked feature subsets and show the related mean accuracy

and area under the curve (AUC) values in Fig. 4. From the

accuracy and AUC curves, we can see that in general GCN

obtains better mean accuracy values than MLP. The GCN

classifier achieves the best accuracy of 79.5±3.3% (mean

± standard deviation) with the top 800 FCs. Its

corresponding AUC is 0.848±0.027, indicating high dis-

criminatory ability. While with the same 800 FCs, MLP

achieves an accuracy of 78.1±4.6%, slightly worse than

GCN, but it achieves the best AUC of 0.851±0.031. When

using less than 200 features, the performance of MLP is

better, with higher accuracy and smaller standard deviation

than GCN. However, when using more than 200 features,

the result is the opposite. Both the MLP and GCN have

similar AUC scores, and the GCN classifier outperforms

MLP in classification accuracy.

For the four classical ML algorithms, we show their

performance with using the same nine top-ranked feature

subsets as the ones used for the GCN and MLP classifiers

in Fig. 4. From the figure we can see that when feature

numbers are less than 200, SVM, MLP and GP behave

similarly. We can see that the best performance of GP,

SVM and Logistic regression is quite competitive to the

two deep learning models (GCN and MLP). Nevertheless,

we found it is highly unstable with the increase of selected

features. When feature numbers exceed 200, as the number

of features increases, the performances of the four classical

ML classifiers decrease, and the Adaboost algorithm has

inferior performance.

Throughout the experiment, we found that in general

deep learning models are more compatible with large

numbers of features than the ML models. The performance

of classical ML algorithms are suitable for a small number

of features, whereas deep learning models can extract

higher-order features from a large number of features. The

results further verify that the FC features obtained from the

DFS network have contributed to the prediction.

Comparison with other feature selection
methods

We study the impact of three different feature selection

methods to the performance of classifiers on the ABIDE

database. In addition to DFS, recursive feature elimination

(RFE) (Guyon et al. 2002) and fisher score (Duda et al.

2001), two of the most widely used supervised feature

selection methods, were adopted to extract informative

subsets from all the FC features. Since RFE is an iterative

process, we use the ridge classifier (regularization strength

is 1.0) with a fixed number of features and eliminate the

last 100 features in each iteration. Fisher score measures

the discrimination of each feature to classification and

ranks the features according to the measurement. We use

the grid search strategy for an optimal number of FCs for

fisher score. All the classifiers use the same parameters as

well as are trained and evaluated in the same setting as

described in ‘‘Impact of feature numbers to classification

results’’ section as well. Again, for each classifier, 10 fold

CV is used. We only report the best mean accuracy, AUC,
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sensitivity and specificity with standard deviation. It needs

to be noted that the results in Table 2 obtained by different

methods have different optimal numbers of FCs (see

Table 3).

The DFS method leads a significant accuracy improve-

ment in classification compared to RFE, fisher score and

without feature selection. It improves the classification

accuracy of the classifiers by a minimum of 8% and a

maximum of 15% compared to the RFE method. Compared

to the other methods, the standard deviation of the accuracy

obtained by DFS has also been reduced to some extent.

Among the three feature selection methods, the fisher score

with GCN and logistic regression classifiers do not improve

the classification accuracy compared to without feature

selection. In other words, it fails to find contributing fea-

tures. From Table 2, we can also see that, for every clas-

sifier, its specificity value is always higher than its

sensitivity value. This may be due to the slight imbalance

between the ASD and TD samples in the dataset.

Characteristics of critical functional connections

We used Adam optimizer for training DFS network in

order to learn the feature weights w. The challenge in

training comes from high-dimensional data. The existence

of irrelevant and redundant features affects the optimiza-

tion process. In the experiment, b1 is set to 0.5, b2 is set to
2� 10�6 and L2 regularization parameter a is 5� 10�4.

The Adam optimizer had a learning rate of 0.005.

The DFS network was trained by 10-fold CV procedure.

After each CV split training, feature weights can be

obtained from the feature selection layer. A greater mag-

nitude of weight represents a more considerable degree of

contribution by that FC to the classifiers. We rank these

FCs using the cumulative absolute weights metric descri-

bed in ‘‘Feature ranking’’ section.

Figure 5 shows the ranked cumulative absolute weights.

From the figure, we can see that about 3215

(6105� 2850 ¼ 3215) weights are zero, their correspond-

ing FCs are not picked for classification. We further study

the top 30 FCs since they are the top 30 informative ones.

We plot the spatial distribution of the top 30 FCs in Fig. 6

Fig. 4 Performances of GCN,

MLP and ML classifiers with

different number of top-ranked

FCs as input features
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via BrainNet Viewer (Xia et al. 2013) and calculated the

mean magnitude for each of them in the ASD/TD group

and denoted it as rASD/rTD. A detailed list of the properties

of the 30 FCs is provided in Table 4.

As can be seen from Fig. 6 and Table 4, of the top 30

key FCs hemispheric distributions, 9 FCs are in the left

hemisphere, 10 FCs are in the right hemisphere, and 11

FCs are in the inter hemisphere, with abnormal FCs being

universally distributed throughout the brain, which also

further illustrates the complexity of ASD pathogenic

mechanisms. It can be seen that ASD exhibits under-con-

nectivity (rASD\rTD) in 25 FCs and over-connectivity

(rASD [ rTD) in merely 5 FCs compared with TD. It may

account for the prevalence of low resting state brain

activity in patients with ASD. The results showed that ASD

and control brains had obvious differences in FC charac-

teristics, and the FC of brain could provide a biological

Table 2 Different criteria of

classifiers with different feature

selection methods

Criterion Model DFS RFE Fisher Nonea

ACC SVM 76.9 ± 4.3% 66.1 ± 6.7% 65.6 ± 5.9% 66.1 ± 6.8%

GP 78.1 ± 2.3% 63.7 ± 5.5% 63.5 ± 5.0% 55.5 ± 5.4%

Logistic 76.7 ± 2.2% 68.9 ± 6.4% 67.4 ± 5.3% 67.7 ± 5.2%

Adaboost 71.7 ± 2.9% 61.9 ± 3.1% 63.4 ± 4.3% 59.1 ± 3.7%

GCN 79.5 ± 3.3% 71.1 ± 4.2% 69.6 ± 3.8% 69.8 ± 4.3%

MLP 78.1 ± 4.7% 69.5 ± 5.6% 68.3 ± 4.8% 66.4 ± 5.3%

AUC SVM 0.830 ± 0.048 0.700 ± 0.072 0.688 ± 0.084 0.673 ± 0.072

GP 0.852 ± 0.036 0.697 ± 0.063 0.674 ± 0.051 0.653 ± 0.065

Logistic 0.842 ± 0.039 0.725 ± 0.072 0.716 ± 0.076 0.687 ± 0.076

Adaboost 0.761 ± 0.045 0.641 ± 0.037 0.672 ± 0.039 0.654 ± 0.064

GCN 0.848 ± 0.027 0.733 ± 0.035 0.718 ± 0.030 0.724 ± 0.078

MLP 0.851 ± 0.031 0.728 ± 0.042 0.702 ± 0.029 0.667 ± 0.076

SEN SVM 74.0 ± 8.3% 59.9 ± 12.6% 57.4 ± 14.4% 59.1 ± 12.8%

GP 75.7 ± 7.7% 57.3 ± 10.2% 53.8 ± 7.2% 53.2 ± 8.5%

Logistic 74.0 ± 7.1% 62.1 ± 10.7% 60.6 ± 11.5% 60.1 ± 11.8%

Adaboost 67.0 ± 7.7% 56.1 ± 10.1% 56.3 ± 9.1% 56.8 ± 8.7%

GCN 78.3 ± 3.5% 68.8 ± 5.3% 65.7 ± 4.5% 66.8 ± 7.8%

MLP 77.2 ± 4.9% 66.3 ± 5.8% 64.3 ± 6.7% 63.2 ± 8.2%

SPE SVM 78.5 ± 6.3% 70.6 ± 8.1% 71.2 ± 11.1% 70.5 ± 9.3%

GP 79.0 ± 7.2% 68.7 ± 7.7% 73.2 ± 3.7% 57.9 ± 9.2%

Logistic 79.2 ± 7.5% 72.6 ± 8.2% 72.7 ± 8.3% 72.4 ± 8.8%

Adaboost 73.3 ± 6.8% 63.0 ± 7.8% 63.3 ± 6.1% 66.9 ± 6.8%

GCN 81.2 ± 3.6% 73.5 ± 4.9% 69.9 ± 4.3% 71.8 ± 4.8%

MLP 79.8 ± 4.8% 71.5 ± 6.3% 69.2 ± 6.4% 68.2 ± 7.2%

aNo feature selection adopted

Table 3 The optimal numbers of FCs for different feature selection

methods

Model DFS RFE Fisher Nonea

SVM 80 700 3000 6105

GP 160 40 250 6105

Logistic 160 800 6000 6105

Adaboost 80 300 900 6105

GCN 800 2000 2500 6105

MLP 600 2000 3000 6105

aNo feature selection adopted

Fig. 5 Contribution of each FC to the classification, the top ranked 30

FCs are colored in red
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basis for ASD diagnosis to some extent. Similar results can

be found in Yahata et al. (2016).

We emphasize that these 30 FCs were automatically

identified from the multi-site data for reliable classification

of ASD and TD by the DFS network. These 30 FCs are

much more trustworthy in revealing neural substrates of

ASD than the FCs that were selected in many previous

studies by traditional statistic analysis of ASD/TD differ-

ences within a limited dataset, this has been verified by our

comparison results.

Discussion

In the present study, we adopted an efficient deep learning

technique, DFS, for identifying key FCs of ASD. We tested

the method on the dataset with 403 ASD samples and 468

TD controls from the ABIDE database. The samples are

collected from multiple imaging sites and they have dif-

ferent demographic distributions. After training the DFS

network, the weight of each feature is acquired, which

reflects the contribution to the classification. We have

ranked these features according to the magnitude of

cumulative absolute weights and selected different

numbers of top-ranked features as the input features of the

tested classifiers (GCN, MLP, logistic regression, GP,

Adaboost and SVM). Our experiments show that GCN

classifier with 800 FCs (13% of the entire FCs) as input

features achieves the best mean accuracy of 79.5% and an

AUC of 0.85, improving the current stats-of-the-art clas-

sification performance (70.4% obtained in Parisot et al.

(2018) by GCN method on the very same dataset with

using the same FC features) by 9.1%. The MLP, SVM, and

GP classifiers also perform well, all of them approximately

achieve a mean accuracy of 77%. The results not only

confirm that the FCs obtained are contributing to the ASD/

TD prediction, but also illustrate the effectiveness of the

combined DFS and GCN method.

Compared with other feature selection methods which

are based on ML models, the DFS network straightfor-

wardly identifies the critical features for classification,

dramatically improves the accuracy of ASD prediction, and

reduces the model variance. Nevertheless, the DFS has a

limitation that it is only suitable for feature selection of big

data. The difficulty of training on small datasets is also a

common limitation in deep structure. Another limitation

comes from using the GCN model for ASD prediction. The

GCN can only be applied to data with graphs of a fixed

Fig. 6 The spatial distribution

of the identified top 30 FCs.

Thicker connections indicate

FCs have larger cumulative

absolute weights, and vice versa
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Table 4 Properties of the top 30 FCs

ID Gyral region Laterality Mean magnitude of FCs

rASD rTD

1 (8) Cuneal Cortex R 0.17 0.22

(25) Parietal Operculum Cortex R

2 (33) Temporal Fusiform Cortex; anterior division R 0.14 0.17

(18) Heschl’s Gyrus (includes H1 and H2) L

3 (19) Insular Cortex L 0.17 0.23

(34) Inferior Temporal Gyrus; temporooccipital part R

4 (4) Cingulate Gyrus; anterior division L 0.18 0.23

(22) Parahippocampal Gyrus; anterior division L

5 (19) Insular Cortex L 0.25 0.30

(1) Angular Gyrus R

6 (12) Inferior Frontal Gyrus; pars triangularis L 0.16 0.20

(16) Frontal Operculum Cortex R

7 (12) Inferior Frontal Gyrus; pars triangularis L 0.25 0.29

(28) Supramarginal Gyrus; anterior division L

8 (35) Temporal Pole L 0.27 0.33

(13) Frontal Medial Cortex L

9 (11) Caudate R 0.07 0.10

(3) Intracalcarine Cortex L

10 (29) Superior Temporal Gyrus; posterior division L 0.21 0.26

(30) Superior Parietal Lobule L

11 (16) Frontal Orbital Cortex R 0.30 0.35

(26) Planum Polare R

12 (22) Parahippocampal Gyrus; anterior division L 0.19 0.17

(15) Frontal Operculum Cortex L

13 (36) Temporal Pole R 0.25 0.30

(13) Frontal Medial Cortex L

14 (17) Frontal Pole L 0.31 0.35

(14) Frontal Medial Cortex R

15 (20) Lateral Occipital Cortex; inferior division R 0.20 0.16

(27) Subcallosal Cortex R

16 (23) Parahippocampal Gyrus; anterior division R 0.04 0.07

(16) Frontal Operculum Cortex R

17 (37) Thalamus L 0.23 0.20

(32) Inferior Temporal Gyrus; anterior division R

18 (2) Accumbens L 0.22 0.25

(24) Parahippocampal Gyrus; posterior division R

19 (2) Accumbens L 0.27 0.32

(5) Cingulate Gyrus; anterior division R

20 (31) Middle Temporal Gyrus; anterior division R 0.24 0.31

(8) Cuneal Cortex R

21 (10) Caudate L 0.35 0.40

(11) Caudate R

22 (38) Thalamus R 0.23 0.19

(32) Inferior Temporal Gyrus; anterior division R

23 (28) Superior Temporal Gyrus; anterior division L 0.35 0.40

(18) Heschl’s Gyrus (includes H1 and H2) L

24 (4) Cingulate Gyrus; anterior division L 0.09 0.12

Cognitive Neurodynamics (2021) 15:961–974 971

123



structure. If new subjects need to be predicted, it is nec-

essary to reconstruct the graph using the phenotypic

information of all the subjects (including both the original

samples and the new samples). Then the GCN network

uses the trained model parameters and the whole popula-

tion (including the new subjects) graph as input with the

original subjects labeled and new subjects unlabeled. Then,

the GCN performs a forward propagation to output pre-

diction results (see Fig. 3), i.e., through L hidden layers and

the output layer, finally the softmax activations are com-

puted for the new subjects (unlabeled set), and thus the new

subjects (unlabelled nodes) are assigned the labels maxi-

mizing the softmax output.

We have also investigated the FC pattern of ASD con-

cerning feature contribution to classification obtained from

the feature selection layer. The hemispheric distribution of

the top 30 FCs shows that there is no significant difference

between the right and left intra-hemispheric, but intra-

hemispheric FCs are slightly higher than the anatomically

expected number. This phenomenon may indicate the

complexity of the disease-causing mechanisms of ASD,

involving FCs throughout the cerebral hemisphere. An

interesting finding is that, of the 30 FCs with high contri-

butions, 25 FCs exhibit under-connectivity in the ASD

samples, and only 5 FCs showed over-connectivity. It

worth noting that these patterns are generally derived from

a large amount of imaging data with different demographic

characteristics, compared to many previous studies with

limited data.

In addition to the heterogeneity of the ASD, the ABIDE

database is particularly challenging due to the fact that

images were acquired at different sites with different pro-

tocols. Classification across multiple sites has to

accommodate additional sources of variance in subjects,

scanning procedures, and equipment protocols in compar-

ison to single-site databases (see Nielsen et al. 2013;

Patriat et al. 2013; Birn et al. 2013). This brings challenges

for drawing biomarkers from the brain activation to clas-

sify disease states. To the best of our knowledge, our work

presents the first achievement of high classification accu-

racy (79.5%) and the analysis of crucial FCs related to

ASD in large multi-sites ABIDE database (with 871 sam-

ples). Despite the variation generated from different pro-

tocols and demographics, the achievement of the

classification accuracy shows promise for deep learning in

the application of clinical datasets.

Conclusions

In this work, we have proposed a combined DFS and GCN

method to classify ASD and typical developed controls.

We established an efficient neural-network-based feature

selection method for identifying key FCs related to ASD.

The top 30 identified FCs were investigated. GCN, MLP,

logistic regression, GP, Adaboost and SVM classifiers

based on the different numbers of selected FCs are studied.

The results have shown that our proposed method achieves

the state-of-the-art prediction accuracy of 79.5% with high

discriminating AUC of 0.85, it is superior to other tested

methods. The high accuracy of the classifier also indicates

the effectiveness of identified FCs for ASD classification.

Our proposed method can not only be used for aiding the

diagnosis of ASD, but it can also be applied to other mental

disorder prediction. In the future, it is worth investigating

the application of deep learning methods in the diagnosis of

Table 4 (continued)

ID Gyral region Laterality Mean magnitude of FCs

rASD rTD

(23) Parahippocampal Gyrus; anterior division R

25 (24) Parahippocampal Gyrus; posterior division R 0.11 0.07

(15) Frontal Operculum Cortex L

26 (7) Cuneal Cortex L 0.20 0.25

(25) Parietal Operculum Cortex R

27 (34) Inferior Temporal Gyrus; temporooccipital part R 0.23 0.29

(7) Cuneal Cortex L

28 (16) Frontal Orbital Cortex R 0.15 0.19

(9) Central Opercular Cortex R

29 (2) Accumbens L 0.27 0.30

(21) Paracingulate Gyrus L

30 (6) Cingulate Gyrus; posterior division L 0.22 0.26

(24) Cuneal Cortex R
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attention-deficit/hyperactivity disorder, schizophrenia and

Alzheimer’s disease etc.
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