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Abstract
Directed information flow between brain regions might be disrupted in children with Attention Deficit Hyperactivity

Disorder (ADHD) which is related to the behavioral characteristics of ADHD. This paper aims to investigate the different

information pathways of brain networks in children with ADHD in comparison with healthy subjects. EEG recordings were

obtained from 61 children with ADHD and 60 healthy children without neurological disorders during attentional visual

task. Effective connectivity among all scalp channels was calculated using directed phase transfer entropy (dPTE) for delta,

theta, alpha, beta, and lower-gamma frequency bands. Group differences were evaluated using permutation tests in

connectivity between regions. Significant posterior to anterior patterns of information flow in theta frequency bands were

found in healthy subjects (p-value\ 0.05), while disrupted pattern flow, in an opposite way, was found in ADHD children.

In the beta band, information flow in pathways between anterior regions was significantly higher in healthy individuals than

in the ADHD group. These differences are more indicated in connectivity that leads from frontal and central regions to the

right frontal regions of the brain (F8 electrode). Furthermore, connections from central and lateral parietal areas to Pz

electrode areas are statistically significant and higher in healthy children in this band. In the delta band, internal con-

nections in the anterior region show a significant difference between the two groups, as this amount is higher in the ADHD

group. Our analysis may provide new insights into information flow in brain regions of ADHD children in comparison with

healthy children.

Keywords Electroencephalogram (EEG) � Effective Connectivity � Attention Deficit Hyperactivity Disorder (ADHD) �
Directed Phase Transfer Entropy (dPTE)

Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a

common childhood developmental disorder characterized

by symptoms of inappropriate behavior, inattention, and/or

hyperactivity and impulsivity. The prevalence of ADHD

has been estimated at approximately 12.1% among boys

and 3.9% among girls (Kessler et al., 2014). Since ADHD

is considered a neurodevelopmental disorder beginning in

childhood, early detection of this disorder is of great value

(Kooij et al., 2010; Pub, 2013).

ADHD’s behavior can be caused by differences in brain

function. A method to elucidate these differences is to

examine brain function with excellent temporal resolution,

low-cost of data recording, and in a range of frequency

bands, using electroencephalography (EEG) (González

et al., 2017). Hitherto, much research has been conducted

to distinguish differences between healthy and ADHD

children using EEG signals. More basic research has shown

ADHD patients have increased absolute and/or relative

delta and theta power and decreased absolute and/or
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relative beta and gamma power as compared to age-mat-

ched healthy controls, ordinarily recorded over fronto-focal

electrodes, which are evaluated by the theta/beta ratio

(TBR) (Barry and Clarke, 2013; Barry et al., 2003;

Lenartowicz and Loo, 2014; Monastra, 2008). Based on the

non-linear characteristics of EEG signals, several studies

have used chaotic features to differentiate the patients from

normal subjects (Allahverdy et al., 2016; Mohammadi

et al., 2016).

EEG has been shown to be a reliable method for

studying functional and effective connectivity of the brain

in psychiatric disorders (Başar and Güntekin, 2013; van

den Heuvel and Sporns, 2013). Previous studies of EEG

connectivity in ADHD often calculated linear correlations

between separate signals recorded on the scalp. These

studies indicate ADHD subjects, compared to healthy

controls, present higher intrahemispheric coherence in

short/medium distances in delta, theta and beta frequency

bands, reduced laterality in the theta band and increased

frontal interhemispheric values in the delta and theta bands

(Barry and Clarke, 2013; Barry et al., 2003; Clarke et al.,

2007). Other studies have shown a specific deficit as a

functional disconnection between frontal and occipital

cortex in children with ADHD in a cross-model attention

task (Mazaheri et al., 2010).

Both correlation and coherence are linear connectivity

measures that are insensitive to nonlinear correlations

(Vinck et al., 2011). Two measures, synchronization like-

lihood (SL), and fuzzy synchronization likelihood (FSL),

were used to study the EEG connectivity of ADHD patients

(Ahmadlou and Adeli, 2011a; b). The results demonstrated

that the SL of the ADHD group was lower than that of the

control group in posterior cortical areas at certain EEG

bands. Moreover, ADHD subjects had a lower functional

connectivity than the control group on the centerline of the

brain, which could affect the communication between

anterior and posterior lobes. van Diessen et al. (2015)

proposed phase-based criteria (instead of amplitude) to

eliminate the effect of volume conduction on the functional

connectivity. Recently, Kiiski et al. (2020) reported func-

tional EEG connectivity as a neuromarker for adult ADHD

symptoms by calculating the weighted phase lag Index

(WPLI) for each frequency band.

All previous studies used symmetric measures and did

not consider the direction of information flows. Thus,

effective connectivity, which deals with causal interactions

of the brain regions, might provide more comprehensive

information about the brain. A well-known effective con-

nectivity measure that characterizes the information

transfer between time series is transfer entropy (TE)

(Schreiber, 2000). TE is a model-free connectivity measure

that shows the direction of interactions and contains linear

and nonlinear interaction based on information theory. TE

is also extended on instantaneous phase data as phase

transfer entropy (PTE). Therefore, this measure has two

features, model-free and using phase, which may further

overcome linear mixing and volume conduction respec-

tively (Lobier et al., 2014). This criterion has also been

used recently in the study of other signals such as mag-

netoencephalography (MEG) and in other diseases (Boon

et al., 2017; Dauwan et al., 2016; Engels et al., 2017;

Hasanzadeh et al., 2020; Hillebrand et al., 2016; Wang

et al., 2019).

By using functional magnetic resonance imaging

(fMRI), Rubia et al. (2010); (2009b) reported a reduced

activation in the ADHD group in mesial and lateral pre-

frontal areas in the right hemisphere and in the cingulate

gyrus. Booth et al. (2005) found that the ADHD group

showed a decreased activation in a widespread network of

frontal regions, predominantly in the right hemisphere.

Furthermore, some studies provide evidence for reduced

frontostriatal and frontoparietal functional connectivity in

children with ADHD in the resting state (Kelly et al.,

2007).

In the current study, it was hypothesized that the

information flow in the brains of children with ADHD

differs from that of healthy participants. Based on our

knowledge, this study aimed to investigate the directed

information and effective connectivity in ADHD patients

with EEG by using dPTE in each frequency band during

attentional task instead of resting state.

The rest of the paper has been categorized into four

sections: within the’’ Methods’’ section, we describe the

subjects of the study, EEG data recording and prepro-

cessing, followed by the procedure of direction of infor-

mation and statistical analysis between the two groups. In

the ‘‘Results’’ section, obtained statistical differences are

shown using the introduced criteria. The results are dis-

cussed and are compared to other research outcomes in the

‘‘Discussion’’ section. Finally, this paper is concluded in

the ‘‘Conclusion’’ section.

Methods

Subjects

Participants were 61 children with ADHD (48 boys and 13

girls with a mean age of 9.62 ± 1.75 years old) and 60

healthy children (50 boys and 10 girls with a mean age of

9.85 ± 1.77 years old). Children with ADHD were diag-

nosed by an experienced child and adolescent psychiatrist

according to the DSM-IV criteria. The patients were

referred for ADHD evaluation to the psychiatric clinic of

Roozbeh Hospital in Tehran, Iran. The healthy group

(control group) was selected from two settings: the first and
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major setting was a primary school from which 50 boys

were selected; and the 10 girls were selected from an all-

girl’s primary school. Based on the evaluation of a child

and adolescent psychiatrist, none of the children in the

control group had psychiatric problems. Exclusion criteria

for children with ADHD and the healthy group were a

history of major neurological disorders, brain injury (in-

cluding epilepsy), a major medical illness, learning or

verbal disability, other psychiatric disorders and the use of

benzodiazepine and barbiturate drugs. All subjects were

school-aged and right-handed. All procedures performed in

this research were approved by the Institutional Review

Board (IRB) and Ethical Committee of Tehran University

of Medical Sciences (TUMS). All subjects participated in

the experiment voluntarily and parents of all subjects

provided informed written consent for participation in the

test. The database is now available: (Ali Moti Nasrabadi,

2020).

Electroencephalogram signals were recorded by a digital

device (SD-C24, Sholeh Danesh Co., Tehran, Iran) in the

Psychology and Psychiatry Research Center at Roozbeh

Hospital (Tehran, Iran). The EEG recording protocol was

designed based on the visual attention task. Within the task,

20 images with some characters were shown to the children

and they were asked to enumerate the characters. Figure 1

shows an example of a set of pictures. The sizes of the

pictures were considered large enough to be easily visible

and the number of the characters in each picture were

chosen between 5 and 16 on a random basis. Each image

was displayed immediately after the child’s response in

order to have continuous stimulus during the EEG

recording. Thus, the child’s performance defines the

duration of EEG recording. Correct and incorrect answers

of the participants were not considered and the task was

designed without rewards. During this task, 19 electrodes

(Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3,

P4, T5, T6, O1, O2) with A1 and A2 electrodes as refer-

ences on earlobes were placed on the scalp based on the

10–20 system with 128 Hz sampling frequency and 16 bits

EEG resolution. Electrode impedances were below 5 k

Ohms.

Data pre-processing

EEG signals contain multiple artifacts and noise sources

that must be removed before being use in analyses. The

signal pre-processing method used in this work was a

customized version of Makoto’s pre-processing pipeline,

adapted for EEGLab functions (version 14.1.1; Delorme &

Makeig, 2004) running on MATLAB 2018a.

Initially, artifacts caused by eye movements and muscle

activity were removed manually with visual examination.

Channels that show erroneous or incorrectly acquired

information were eliminated and interpolated using the

signals of the adjacent channels. A band-pass FIR filter of

0.5 Hz to 48 Hz was applied to continuous EEG data in

order to eliminate artifacts and was later filtered with the

CleanLine plugin to remove line noise. For more artifact

rejection, the EEG data was decomposed using the inde-

pendent component analysis (ICA). Eye blinks and muscle

artifacts were identified by brain-related independent

components (ICs) and were manually removed based on

their spectra, scalp maps, and time courses. After cleaning,

time series were filtered in classical EEG frequency bands

[delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and lower gamma (30–45 Hz)] using FIR filter

with zero phase shift that does not distort the phases. At all

stages of filtering, a zero-phase Hamming-windowed filter

was also provided by the firfilt-plugin distributed with

EEGLab with - 6 dB cutoff frequencies. For each subject,

the time series were divided into 1024 sample (8-s) seg-

ments. The number of segments varied due to different

timing task for every subject. The minimum task duration

was 50 s for one of the control group and the maximum

task duration was 285 s for one subject with ADHD. The

mean number of segments was 13.18 (std = 3.15) segments

for the control group and 16.14 segments (std = 6.42) for

the ADHD group.

Fig. 1 The picture shown to the children as an example
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Direction of information

PTE was used as a measure of strength and direction of

information flow between EEG channels. PTE was pre-

sented by Paluš and Stefanovska (2003) and evaluated by

Lobier et al. (2014). PTE is based on the same Wiener -

Granger’s causality principle, namely that a source signal

has a causal influence on a target signal if knowing the past

of both signals improves the ability to predict the target’s

future compared with knowing only the target’s past

(Granger, 1969; Wiener, 1956).

For PTE, the time series of the instantaneous phase are

used as inputs of the TE function. The Hilbert transform

was used to estimate the instantaneous phase time series

(Rosenblum et al., 1996). Basically, TE is a specific ver-

sion of the Kullback and Leibler (1951) entropy or a

conditional mutual information (Hlaváčková-Schindler

et al., 2007; Paluš and Stefanovska, 2003). TE can be

explained in terms of the concept of uncertainty: ‘‘a source

signal has a causal influence on a target signal if the

uncertainty of the target signal conditioned on both its own

past and that of the source signals is smaller than the

uncertainty of the target signal conditioned only on its own

past’’ (Schreiber, 2000). TE from source signal to target

signal can be written as the sum of several Shannon

entropies when the uncertainty or information between the

source signal and the target signal at a delay d is defined as

Shannon entropy (Shannon, 1948). The TE value from

source signal (X) to target signal (Y) can be expressed as

TEXY ¼
X

pðYtþ d;Yt;XtÞ log pðYtþ jYt;XtÞ
pðYtþ jYtÞ

� �
ð1Þ

where the definition for Shannon entropy,

HðYÞ ¼ �
X

pðYÞ log pðYÞ ð2Þ

was used, and the sum runs over all time steps t.

The estimation of the probabilities in Eq. (1) is time-

consuming and requires fine-tuning of parameters (Wibral

et al., 2011). Time series can be described in terms of their

amplitudes and instantaneous phases(Rosenblum et al.,

2001), following which TE can be estimated from the time

series of the instantaneous phases, at low computational

cost (Lobier et al., 2014; Paluš and Stefanovska, 2003).

Dropping the subscript t for clarity, and to accelerate the

calculations, the PTE was computed as:

PTEXY ¼
X

pðYÞpðYÞpðXÞ log pðYjY ;XÞ
pðYjYÞ

� �
ð3Þ

In Eq. (3), the probabilities are obtained by building

histograms of occurrences of single, pairs, or triplets of

phase estimates in an epoch (Lobier et al., 2014). Assuming

that the probability distribution of source signal X is

independent from that of target signal Y, Eq. (2) can be

rewritten as: p(Yd, Y, X) = p(Yd) p(Y) p(X). This

assumption had no effect on the information flow patterns

and could accelerate the calculation time (Prokopenko and

Lizier, 2014). The number of bins in the histograms was set

as e0.626?0.4 ln(Ns-d-1) (Rosenblum et al., 2001).

The Hillbrand implementation was used to determine

the prediction delay (d) which is equal to (Ns 9 Nch)/N±,

with Ns and Nch the number of samples and channels,

respectively(Hillebrand et al., 2016). The N ± indicates

the number of times the phase changes sign across time and

channels. Previous results have shown that the choice of

delay does not impact the results (Lobier et al., 2014).

Finally, due to the lack of a meaningful upper bound for the

PTE (Lobier et al., 2014) and in order to reduce biases

(Hillebrand et al., 2016), normalized PTE was used:

dPTExy ¼
PTExy

PTExyþ PTEyx
ð4Þ

dPTExy range is between 0 and 1. When information

flows preferentially from X to Y, 0.5\ dPTExy B 1. When

information flows preferentially towards X from Y,

0 B dPTExy\ 0.5. The dPTE value was computed for all

pairwise channels, forming a dPTE matrix for every seg-

ment in each frequency band for all the subjects. Subse-

quently, for each frequency band, the computed dPTE

values for all segments were averaged over segments to

compute one average dPTE value per subject. Thus, there

is one square dPTE matrix, defined as mean dPTE, for each

subject with rows and columns by the number of EEG

channels. The regional dPTE values were computed by

averaging all pairwise mean dPTE values from one channel

to all the other channels, and one regional dPTE value was

obtained for every of 19 channels in each frequency band.

The regional dPTE values indicate that a brain area is a

driver (0.5\ regional dPTE B 1) or a receiver (0 B re-

gional dPTE\ 0.5), relative to other areas.

To establish whether there are consistent patterns of

information flow, usually a posterior-anterior index (PAx)

(Engels et al., 2017; Hillebrand et al., 2016) was calculated

for each frequency band. In addition to PAx, IAx, IPx and

LRx indices are introduced as follows:

IAx ¼ dPTEf ganterior
IPx ¼ dPTEf gposterior
PAx ¼ dPTEf gposterior� dPTEf ganterior
LRx ¼ dPTEf gleft� dPTEf gright

ð5Þ

where the dPTE was averaged over a set of anterior, pos-

terior, left, and right regions, respectively. Table 1 indi-

cates the channels for each region. To investigate whether

there are different information flows in anterior or posterior

brain regions between ADHD and control subjects, the
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internal-anterior (IAx) and internal-posterior (IPx) indices

were computed, respectively. To calculate each of those

indices for every individual, only the dPTE values asso-

ciated with the connections that existed in that region were

averaged. A positive and a negative PAx indicates posterior

to anterior and anterior to posterior information flow

respectively. In the same way, a positive LRx indicates

left-to-right information flow, and a negative LRx indicates

right-to-left information flow.

Statistical analysis

For each frequency band separately, non-parametric per-

mutation tests were used to compare group-level 19

regional dPTE values in each channel between the two

groups. Statistical testing was performed according to the

following steps:

1. Averaging the regional dPTE values for ADHD and

control groups overall subjects of every group;

2. Computing the observed absolute difference between

the group-level regional dPTEs of ADHD, and control

group;

3. Permuting the group assignments of the individuals’

regional dPTE values for ADHD and control groups;

4. Repeating steps 1 to 3 to obtain 5,000 permutations of

absolute differences for ADHD and control groups.

To obtain a p-value, the observed absolute difference

was tested against the sampled distribution. The false dis-

covery rate (FDR) correction was used to correct p-values

of pairwise comparisons (Benjamini and Hochberg, 1995)

and to control the proportion of type I errors. The FDR-

corrected p-values were considered to be significant

at\ 0.05.

These analyses were repeated for the individual mean

dPTE values between all pairs of EEG channels (i.e. the

individual mean dPTE values, instead of the regional dPTE

values). Afterward, directed differential connectivity

graphs (dDCGs) were constructed to characterize the sig-

nificant changes in dPTE between the two groups. The

observed value of each index was computed for the aver-

aged dPTE values in each subject. Each index in each

frequency band was normalized by the absolute maximum

value that could have been obtained with the dPTE values

for these individual channels. The significance of group

differences in each index was assessed using randomization

testing (with the same parameters as before), where the

average dPTE values were permuted across the channels,

after which the index was computed.

Results

Information flow between regions

First, the regional dPTE per EEG channel was examined in

each frequency band in two groups. Figure 2 displays the

average information flow between a single region and all

other regions to estimate the preferred direction of infor-

mation flow (outgoing or incoming) for each region in the

ADHD and control groups.

According to Fig. 2, in the delta band, occipital channels

in ADHDs were more driving compared to occipital

channels in the control group relatively. In both groups,

while the frontal lobe acts as the receiver of information,

the left temporal lobes of the control subjects shows more

outgoing information flow than the ADHD subjects. In the

theta band, occipital channels in the control subjects were

more driving and are supposed to be a path of information

from the posterior region to the parietal and anterior parts

of the brain, while in ADHD subjects, this direction is from

anterior to posterior regions. In the beta band, more areas in

the front and center of the brain in the control group act as

transmitters of information compared to the ADHD sub-

jects. Figure 3 represents channels that demonstrated a

significant between-group difference in mean regional

dPTE in each frequency band by group-level permutation

tests with a FDR correction (p-value\ 0.05). Red and blue

dots indicate whether the mean regional dPTE was sig-

nificantly higher or lower in controls than in ADHD

patients, respectively. Below each image, the value of the

regional dPTE is written for channels with significant dif-

ferences for the two groups.

The calculations for the introduced indices show that the

theta band was the only frequency band showing differ-

ences in PAx between patients and controls. As shown in

Fig. 2, in the theta band there is a dominant pattern of

posterior-to-anterior information flow for the healthy con-

trols. In ADHD patients, the posterior-to-anterior pattern

was disrupted. It was also quantified by the significantly

lower (p-value = 0.037) PAx in ADHD patients (PAx =

-0.0801) compared to healthy controls (PAx = 0.0610).

In the delta frequency band, IAx shows that controls

(IAx = 0.9905) have a less internal anterior information

flow (P-value = 0.002) in comparison with ADHD patients

Table 1 Specify channels to relevant regions

Region Channel

Anterior Fp1, Fp2, F7, F3, Fz, F4, F8

Posterior T5, P3, Pz, P4, T6, O1, O2

Left Fp1, F3, F7, C3, T3, T5, P3, O1

Right Fp2, F4, F8, C4, T4, T6, P4, O2
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(IAx = 0.9931). In the beta frequency band, however,

controls (IAx = 0.9980) have a more internal anterior

information flow (p-value = 0.002) in comparison with

ADHD patients (IAx = 0.9945). IPx in the theta band

indicates (p-value = 0.002) less local patterns of internal

information flow in the controls (IPx = 0.9926) as com-

pared with the ADHD subjects (IPx = 0.9950) in the pos-

terior region. The results of the LRx in all frequency bands

and IAx and IPx in the alpha and lower gamma bands did

not show a significant difference between the two groups.

Information flow between channels

Figure 4 shows the mean dPTE matrices in the beta band

for the controls and ADHD subjects. These figures clearly

display that the mean dPTE values for the ADHD patients

show less variation and are more centered on the equilib-

rium value of 0.5, i.e. no preferred direction of information

flow, compared to the controls.

The significant differences (p\ 0.05) in directed con-

nections (mean dPTE) between pairwise channels in con-

trols and ADHD subjects are shown in Fig. 5a for the theta

and Fig. 5b for the beta bands. In this figure, the red and

blue colors indicate whether the strength of information

flow between pairs of brain channels was significantly

higher or lower in the controls than in the ADHD patients,

respectively. Green cells are connections that demonstrate

no difference in statistical testing.

For visualization, dDCGs between two groups in the

theta and beta frequency band are shown in Fig. 6. Similar

to other figures, red and blue lines indicate whether the

strength of dPTE values between pairs of brain channels is

Control ADHD     Control ADHD
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A
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B
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a

Fig. 2 Mean dPTE for each regional (Regional dPTE) displayed as a

color-coded map. Red and Blue color indicate information outflow

and inflow respectively. The differences in posterior region in Delta

and Theta frequency band and in anterior region in Beta frequency

band between Control and ADHD subjects are noticeable
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significantly higher or lower in the controls than in the

ADHD subjects, respectively.

Figure 6a shows that the information flow between

posterior regions and frontal regions was decreased in

ADHD subjects in the theta band. Furthermore, there are

information flows from anterior to posterior region in

patients. Interestingly, the largest number of different

pathways between the two groups in the theta band are in

the left hemisphere of the brain. In the beta band (Fig. 6b),

significant connections with higher dPTE values in the

control group were located mostly in frontal regions and

related to internal anterior connection. In particular, the

connections between the electrodes of the frontal region for

the F8 electrode are among the information paths in which

there are significant differences between the two groups. A

similar pattern is evident in the Pz electrode area in the

posterior region of the brain.

Discussion

In this study, it was hypothesized that the flow of infor-

mation in the brains of children with ADHD is different

from that in healthy children. Using the EEG data collected

during the visual attention task for the two groups of

subjects, this hypothesis was studied utilizing the dPTE as

a measure of the direction of information flow and effective

connectivity. The hypothesis was confirmed for the delta,

theta, and beta bands with specific indices. The main

finding of this study is the higher information flow in the

theta band from the posterior to the anterior and in the

internal anterior region in the beta band in the control

group than in the ADHD subjects.

According to Wibral (Wibral et al., 2011, 2014), the TE-

based measures represent the amount of predictive infor-

mation transfer between two processes and increasing the

Delta Theta Alpha

F7
Control: 0.5012
ADHD: 0.4995

T3
Control: 0.5023
ADHD: 0.5001

Fz
Control: 0.5007
ADHD: 0.5023

T5
Control: 0.5013
ADHD: 0.4995

O1
Control: 0.5019
ADHD: 0.4991

T5
Control: 0.4941
ADHD: 0.4975

Beta Lower Gamma

F8
Control: 0.4993
ADHD: 0.5015

T3
Control: 0.4993
ADHD: 0.4975

Pz
Control: 0.4999
ADHD: 0.5016

F4
Control: 0.4966
ADHD0.5033

A B C

D E

Fig. 3 a-e Cortical surface representation channels that demonstrate

significant between-group difference in Regional dPTE in each

frequency band; Red and Blue color indicate whether the mean

regional dPTE was significantly higher or lower in control than

ADHD patients, respectively. Regional dPTE for channels in grey

were not significantly different between two groups
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strength of interaction may lead to identical copies of the

dynamics, it also reduces the possibility of information

transfer between them. In this case, the TE-based measures

show a smaller value than the cases with a smaller coupling

strength and incomplete synchronization. Simply, there is

indeed no information transfer without a causal interaction,

but the reverse does not hold. In fact, not all causal inter-

actions serve the purpose of information transfer. In a

complete synchronization interaction, there is a causal

interaction between the two systems, but no information

transfer (TE = 0). Thus, the interpretation of causality must

be proceeded carefully and we insist on using information

direction phrase instead of causal effect size in analyzing

dPTE results. Since dPTE does not require a model for

interactions and is inherently nonlinear, and uses the

instantaneous phases of signals to determine connectivity,

it can overcome the limitation of linear mixing and volume

conduction. Low computational cost is another feature of

the dPTE measure, while dPTE (or TE) like any other

bivariate measure it may be affected by indirect

Fig. 4 Direction of information flow patterns in the beta band. Mean dPTE matrices for Controls a and ADHDs b

Fig. 5 P-value (p\ 0.05) matrices for each channel showing between

-group differences in directed connection between pairwise channel;

Permutation test with FDR correction. Red and blue colors indicate

whether the strength of dPTE values between pairs of brain channels

significantly higher or lower in control than ADHD, respectively. a is

p-value matrix for theta and b is for beta band
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connectivity (Ursino et al., 2020). In general, dPTE (and

TE) can be a proper measure for determining the direction

of information transfer in brain regions (Lobier et al., 2014;

Wibral et al., 2011).

This study used the PAx index to determine the con-

sistent patterns of information flow from the posterior to

the anterior areas in each frequency band. The statistical

test in the theta band showed a significant difference in the

information flow from the posterior to the anterior region

between the two groups. The negative value of the average

PAx in patients indicates the information flow from the

anterior to the posterior regions, while the positive value of

the average PAx in the control group shows the flow of

information from the posterior to the anterior regions. Our

results using the PAx complement the results of a previous

study on functional disconnection between the frontal and

occipital regions of the brain in ADHD subjects (Mazaheri

et al., 2010). Thus, this disconnection in our research

showed itself in the theta frequency band in ADHD group.

Figure 3 shows that the significant difference between the

two groups in the regional dPTE values is related to T5 and

O1 electrodes, and was not only higher in the control

group, but also greater than 0.5 (outward information flow).

In the ADHD group, however, it was less than 0.5 (inward

information flow). Thus, it can be concluded that the

temporal and occipital lobes in the left hemisphere of the

brain in the control group play a greater role in sending

information to other areas of the brain compared to the

ADHD group in the theta frequency band. The Fz electrode

plays the role of outward information flow in both groups.

Moreover, it is more dPTE in the ADHD subjects. The

results of pairwise channels dPTE values (Fig. 6a) indicates

higher connections reaching this channel from the posterior

region with a lower amount of regional dPTE for healthy

children. These values confirm the results of the PAx in the

theta band. The PAx index in the other frequency bands did

not report a significant difference between the two groups.

This study introduces two indices, IAx and IPx to

determine the strength of internal communications in the

anterior and posterior regions, respectively. The results of

the statistical test with the IAx index in the delta band show

a significantly higher strength of interactions in the anterior

region of the ADHD subjects than in the healthy individ-

uals. Figures 2 and 3 show that the temporal-frontal region

of healthy individuals in the delta band in the left hemi-

sphere of the brain has more strength to transmit infor-

mation. This result, together with the IAx results in the

delta band, showed that the F7 and T3 electrode regions in

the control group send stronger information to the central

regions of the brain (not the anterior regions) than in the

ADHD group. This result was confirmed in dDCG analysis

between the two groups. The IPx results in the theta band

are in line with the PAx results. IPx showed that the

strength of intra-regional communication is higher in

ADHD group in the posterior of the brain, and thus the

connectivity from posterior to anterior of the brain in this

Fig. 6 dDCG between ADHD patients and controls in theta band a and beta band b are shown by using BrainNet Viewer
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group is less than that in the control group in the theta

band. The results of other studies on functional connec-

tivity (Ahmadlou and Adeli, 2010; 2011a) show a signifi-

cant difference between the two groups in the T5 and O2

electrodes in the delta and theta bands respectively. As

mentioned in our study, the between-group differences in

the regional dPTE values occur in the T3 (in delta band)

and in T5 and O1 (in the theta band). It can be claimed that

these two results are related to each other due to the

electrode’s location and the frequency bands which are

close to each other.

The results of statistical tests on the IAx index in the

beta band showed that intra-regional connectivity in the

anterior regions of the brain is significantly higher in the

control group than in the ADHD group. Previous studies by

fMRI found abnormalities in the lateral inferior prefrontal

cortex on the right hemisphere (Booth et al., 2005; Rubia

et al., 2010, 2009b) and indicate evidence for a reduced

frontoparietal functional connectivity in children with

ADHD (Kelly et al., 2007). Studies have shown a reduced

inter-connectivity between the key areas of attention that

are also the key regions of dysfunction in the ADHD

children, between the right inferior prefrontal cortex, basal

ganglia, the parietal lobes, and the cerebellum. Although

they demonstrate that the dysfunctions in children with

ADHD are not restricted to the isolated brain regions, they

compromise the functional inter-regional connectivity

between these areas (Rubia et al., 2009a). Additionally, the

orbitofrontal cortex (involved in salience attribution) in the

ADHD children had lower connectivity with the superior

parietal cortex (involved in attention processing) (Tomasi

and Volkow, 2012). Our findings are consistent with pre-

vious reports and also provide new implications for

understanding the information flow that reduces the con-

nectivity in the prefrontal cortex in ADHD children with

the results of IAx. In addition, the reduced connectivity

from the frontal region to another region occurred in the

beta frequency band, specifically related to the right side of

the frontal region through the F8 electrode (Fig. 6b). In this

figure, it is clear that most of the connections that are made

from the front electrodes to the F8 electrode are statisti-

cally different in terms of information transfer between the

two groups. In all of these connectivities, the average

amount of dPTE in the healthy group is higher. Therefore,

the lower amount of regional dPTE in the F8 electrode in

the control group indicates that it has a more receptive role

in transmitting information in comparison with the ADHD

group. This result is evident in the study of dPTE values

between pairwise channels in both groups. Our results

using the IAx confirm the basic research with EEGs stating

that ADHD subjects have a decreased absolute and/or

relative beta power in frontal regions in comparison with

the age-matched healthy subjects (Barry and Clarke, 2013;

Barry et al., 2003; Lenartowicz and Loo, 2014; Monastra,

2008). The connections that reach the Pz-electrode from

the lateral parietal regions (P3 and P4) and the central

regions (C3, Cz and C4) are significantly stronger in the

healthy individuals in the beta band. Compared to the theta

band, where different connections between the two groups

occurred long-distance, in the beta band, these statistical

differences occur in electrodes with a short distance from

each other. The alpha and lower gamma frequency bands,

although there are channels (T5 and F4) reporting signifi-

cant differences in regional dPTE values between the two

groups, were not examined, as they did not show a statis-

tical difference with the indices.

Conclusion

In conclusion, this study shows that the posterior to anterior

pattern of connectivity commonly seen in the control group

is disturbed in the ADHD patients in the theta band during

visual task. Also in the beta band, the information flow in

the pathways between the anterior regions was significantly

higher in the control group with the statistical permutation

test. This difference is highlighted in the area related to the

right frontal brain regions (particularly F8 electrode) that

play important roles in the attention process. In this fre-

quency band, the connections that reach Pz from the lateral

parietal and central regions are significantly stronger in the

healthy individuals in comparison with the ADHD sub-

jects. The results of statistical testing on the internal con-

nections in the delta band in the anterior region show that

the strength of these connections in ADHD subjects is

significantly higher. The obtained results provide an

understanding of differences in the information flow of the

brain in the ADHD children in comparison with the healthy

children.
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