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Abstract
Color perception is a major guiding factor in the evolutionary process of human civilization, but most of the neurological

background of the same are yet unknown. This work attempts to address this area with an EEG based neuro-cognitive study

on response of brain to different color stimuli. With respect to a Grey baseline seven colors of the VIBGYOR were shown

to 16 participants with normal color vision and corresponding EEG signals from different lobes (Frontal, Occipital &

Parietal) were recorded. In an attempt to quantify the brain response while watching these colors, the corresponding EEG

signals were analysed using two of the latest state of the art non-linear techniques (MFDFA and MFDXA) of dealing

complex time series. MFDFA revealed that for all the participants the spectral width, and hence the complexity of the EEG

signals, reaches a maximum while viewing color Blue, followed by colors Red and Green in all the brain lobes. MFDXA,

on the other hand, suggests a lower degree of inter and intra lobe correlation while watching the VIBGYOR colors

compared to baseline Grey, hinting towards a post processing of visual information. We hope that along with the novelty of

methodologies, the unique outcomes of this study may leave a long term impact in the domain of color perception research.
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Introduction

From the advent of human civilization, color and percep-

tion of color has been intimately involved with it. For

survival or evolutionary purposes such as choosing safe

foods, finding safe routes to navigate or perception of time

during the day, for aesthetic purposes such as variations in

artistic expressions of different era, for changing range of

emotional experiences to various stimuli, even in the

modern world for corporate branding—color reshapes the

richness of complex visual information (Hanson 2012).

And that is precisely what both helps and hinders research

on the effect of color on humans: the sheer volume of

research done on visual than any other sensory modality is

due to the fact that our interaction with the world has

historically depended more on the vision and processing

visual information (Hutmacher 2019; Pike et al. 2012).

And the hindrance stems from the fact that the experience

of color is very subjective and to some extent, context

dependent (Lotto and Purves 2002; Elliot and Maier 2012).

Nevertheless, the study of color perception and its effects

in human brain is fascinating as well as important because

it entertains both practical and theoretical concerns.

The existing literature on this component of visual

perception highlights two main aspects: psychological and

physiological.

Color and psychological functioning

The theory that colors can cause psychological arousal

dates back to Nineteenth century when Goethe (Goethe
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1810) first mentioned the connection between colors and

emotional responses. Since then, with the advancement of

science and gradual understanding of the underlying

mechanism of light and vision, the focus shifted towards

the change in behavioral or psychological manifestation

with changing color wavelengths (Nakshian 1964). But

after half a century of research on this domain, no concrete

conclusion could be drawn as of yet. For example, a study

(Hill and Barton 2005) suggests that the color red can be

associated with dominance and aggression in both human

and non-humans. Another one associates similar responses

in human with black (Frank and Gilovich 1988). A number

of empirical works on association of color with different

psychological attributes indicated that colors with longer

wavelengths (like red) have enhanced the arousal level of

the component in consideration (see (Elliot 2015) for a

more detailed review): From showing attentional advan-

tage in studies regarding color and selective attention

(Buechner et al. 2014) to being a performance enhancing

factor in sports (Hill and Barton 2005; Greenlees et al.

2013; Caldwell and Burger 2011). Again, despite showing

a restricting effect in intellectual performance (Elliot et al.

2007; Shi et al. 2015), Red has been found to enhance

attraction when worn by the opposite sex (Elliot and Niesta

2008; Stephen and McKeegan 2010). On the other hand,

shorter wavelength colors such as Blue increase alertness

(Lockley et al. 2006; Vandewalle et al. 2007) and per-

ception of quality and trustworthiness, found in marketing

evaluation studies (Lee and Rao 2010; Labrecque and

Milne 2012). In some studies (Mehta and Zhu 2009; Elliot

et al. 2009), conducted on the effect of color on cognitive

task performances, shows that Red activates avoidance

motivation and enhances performance in detail oriented

analytic tasks. Whereas, color Blue (activates approach

motivation) is ideal for creative task performances. Con-

trary to this, experiments done in (Olsen (2010); Bakker

et al. 2013) or (Castell et al. 2018) could not replicate such

results. It seems that most of the studies use mainly two or

three colors (Red, Blue, Green in few) as the experimental

setup. Although, very few studies associated Green to

calmness (Suk and Irtel 2010; Hanada 2018) and orange/

yellow to excitement (Ridgway and Myers 2014; AL-

Ayash et al. 2016) but a number of other studies didn’t

agree (Briki and Hue 2016; Wilms and Oberfeld 2018;

Costa et al. 2018). The general trend in the literatures

available shows that the association between Red and

excitement is the most reported scenario. The association

of calmness/relaxation has been divided majorly between

colors Blue and Green. In addition to that, some studies

like (Labrecque and Milne 2012; AL-Ayash et al. 2016)

and (Wilms and Oberfeld 2018) reported correlation

between high saturation and excitement as well.

Color and physiological responses

Physiological responses to color stimulus is another

direction that has been investigated in color perception

research. Studies done in this area are mostly motivated by

the hypothesis that long-wavelength colors (red/yellow) are

more arousing than short-wavelength colors (blue/green)

(Valdez and Mehrabian 1994). Although the fundamental

question that remains unanswered in this field is whether

the response is direct (i.e., stimulus evokes the response

directly without cognitive intermediation) or indirect

(cognition acts as an intermediary) (Kaiser 1984). Some of

the studies used different means like GSR (Galvanic Skin

Response), EEG, Heart rate and Respiration, Oxiometry,

Blood pressure etc. to measure physiological signals

against color stimulus. Among these experimental tech-

niques, EEG or electroencephalograms remain the most

used one. Various forms of EEG driven cortical activations

have been used so far. In 1958, probably the earliest work

describing EEG effects of color (Gerard 1958), lower

prominence of alpha waves under red was reported, indi-

cating higher cortical arousal. Since then, analyzing the

changes in alpha waves under different experimental con-

ditions has been the usual form of investigation (Elliot

2019). Though few of those studies supported the driving

hypothesis of red color associating with arousal (Ali 1972;

Shen et al. 1999), majority either disagreed or remained

inconclusive (Erwin et al. 1961; Caldwell and Jones 1985;

Mikellides 1990; Yoto et al. 2007). Apart from red, the

color that has been experimented with the most is blue,

because of its shorter wavelength. Higher arousal and brain

activity during cognitive tasks is found in the presence of

blue light as well (Klimesch 1999; Cabeza and Nyberg

2000; Baek and Min 2015). As for the other colors, Orange

and yellow had been reported to cause enhanced physio-

logical arousal in some of the studies mentioned (AL-

Ayash et al. 2016; Erwin et al. 1961). Also, shorter

wavelength color like violet has induced more pronounced

arousal than higher wavelength color like green in atleast

one study (Nourse and Welch 1971).

To sum up, research on the physiological response is

relatively less and relatively sparse than that on psycho-

logical effects of it. And in both cases, finding any con-

clusive pattern is rather difficult (although in psychological

studies the agreement between different results seem a bit

more consistent). Also, most of the existing work has

focused on the applied part of the problem, as in they have

sought to establish relationships between a specific color

and a psychological attribute or a behavioral pattern, for

practical purposes. Hardly had they cared to explain the

underlying reasons behind it (Elliot et al. 2007). Detailed

studies on the physiological manifestations (especially that
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on the brain) will undoubtedly help address the issue. It is

more than evident that the number of studies in the field of

color induced EEG is inadequate. In view of this, in the

present study, we have made an attempt to assess in depth

the effect of color stimulus on EEG pattern in humans

quantitatively using chaos based novel non-linear

methodology.

EEG, fractality and multifractality

The brain constantly carries out information transfer and

processing via the neural system, making it extremely

complex. It works through the interactions between large

assemblies of neurons in the central nervous system (CNS)

and the peripheral neural system. Neurons transfer and

process the information via the action potentials and neural

firing (also known as spikes). When this kind of electrical

activity transfers to the surface of the cortex and to the

surface of the scalp, we can record it as the EEG. The

properties of the EEG signal are very complex and display

qualities such as (Paluš 1996; Thakor and Tong 2004):

(a) Noisy and stochastic with high degree of randomness

(b) Time-varying and non-stationary (for any signal

more than * 3.5 s duration)

(c) High nonlinearity

Quantifying such a system using linear methods like

FFT or power spectral density leads to coarse approxima-

tion and overlooking of underlying intricacies. As numer-

ous studies suggest (Pritchard and Duke 1992,1995; França

et al. 2018), the highly nonlinear and chaotic dynamics of

human brain need to be addressed via tools which are

useful for quantifying such a system, namely, Fractals.

Fractals are said to be the visual identity of Chaos.

Chaotic systems appear seemingly random and patternless

on the surface. But when investigated using ‘mathematical

microscopes’ i.e., fractals, shows a hidden order among

them. Fractal is a rough or fragmented geometrical object

that can be subdivided in parts, each of which is (at least

approximately) a reduced-size copy of the whole. They

possess some unique properties such as fractional dimen-

sion (called fractal dimensions or FD) and scale invariance,

indicating that their nature remains same at many different

scales. Also, in other words, this is called self-similarity:

consisting of parts that are similar to the whole (Mandel-

brot 1983). These distinctive properties of fractals make

them ideal to analyse complex systems with greater pre-

cision. Fractals are found throughout nature—in coastlines,

seashells, rivers, clouds, snowflakes, musical compositions

and even in biological systems—heart rhythms, lungs,

blood vessels etc. Fractal geometry has been applied to

human brain dynamics for various measures, healthy and

non-healthy (Pereda et al. 1998; Eke et al. 2002; Linken-

kaer-Hansen et al. 2001; Gong et al. 2003; Esteller et al.

1999). In recent past, the fractal based analysis method that

had been instrumental in addressing the fractal scaling

properties and long-range correlations in EEG related

studies is Detrended Fluctuation Analysis or DFA. With

the help of a scaling exponent, DFA quantifies correlation

properties of a signal, indicative of its self-similar nature.

Using this method, existence of scale invariance and the

investigation on the long range correlations present in EEG

signals was studied successfully, during various cognitive

(visual and auditory) tasks (Bhattacharya 2009; Karkare

et al. 2009; Banerjee et al. 2016).

Now, one major shortcoming of DFA is that it only uses

single scaling ratio to examine the whole system under

observation. Usually, in nature, complex systems feature

different scaling patterns in different parts of the system,

that is to say, the measure of self-similarity can be of

multiple nature. Hence, more often than not, fractal tech-

nique with single scaling ratio (also known as

‘Monofractals’) is not adequate. To study such systems

more accurately, one needs to use a more robust technique

having multiple scaling ratios. These are ‘Multifractals’

(Stanley et al. 1999). Analogous to a string made of beads,

Multifractals are made up of parts which have their own

distinct FDs and hence, it is often expressed in a multi-

fractal spectrum with a unique Spectral Width. To analyse

complex natural systems, multifractal DFA or MFDFA has

been developed by Kantelhardt et al. (Kantelhardt et al.

2002). Interestingly, it has been found that along with

various natural phenomenon (explained later), human

physiological signatures are also multifractal: from heart-

beat dynamics (Ivanov et al. 1999) to actigraphy (França

et al. 2019). Also, considerable amount of literature exists

that indicate the human brain dynamics exhibits multi-

fractal nature (Suckling et al. 2008; Ihlen and Vereijken

2010; Zorick and Mandelkern 2013). In the past few years,

we have also found evidence that support the idea of

multifractality in human brain and have used the spectral

width parameter in the quantification of wide range of

cognitive properties to a good success (Maity et al. 2015a,

2015b; Roy et al. 2016; Ghosh et al. 2018; Sanyal et al.

2019).

Another important part of this work is the cross-corre-

lation analysis of the EEG data. In signal processing, cross-

correlation is used broadly to provide the quantitative

measure of similarity between two time series. This method

has been applied in EEG signals as well. But unlike the

assumptions in cross-correlation studies until the recent

past, the time series in consideration here are non-station-

ary. To counter the problem, Podobnik and Stanley

(Podobnik and Stanley 2008) proposed Detrended Cross-

Correlation Analysis (DCCA) to investigate power-law
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cross-correlations between two non-stationary time series.

Zhou (Zhou 2008) took a step further and developed the

method of Multifractal Detrended Cross-Correlation

Analysis or MFDXA, which is a technique that originates

from MFDFA and investigates the multifractal features of

two cross-correlated signals. It uses a cross correlation

coefficient (cx) which gives the degree of correlation

between two categories of signals. For uncorrelated data, cx
has a value 1; the lower the value of cx the more correlated

is the data. Negative value of cx signifies very high degree

of correlation between the signals, i.e., a large increment in

one would more likely to follow a large increment of the

other. In recent times, there are multiple cross-correlation

studies on EEG signals using DCCA or MFDXA which

have argued the existence of power law cross-correlation

(Jun and Da-Qing 2012) and have been instrumental in

revealing underlying dynamics in the brain (Ghosh et al.

2018, 2014; Chen et al. 2018).

Overview of the work

The principal aim of this work is to study, with state-of-

the-art robust chaos-based non-linear methodologies, the

different levels of neuronal complexities that arise in the

brain when it receives various colors as a visual stimulus.

We took the EEG data of 16 participants while they were

exposed to seven colors of VIBGYOR (Violet, Indigo,

Blue, Green, Yellow, Orange, Red) in that order; each

separated from the next by a neutral color (grey), to set a

baseline for comparison. Unlike previous works which

have studied mostly two or three colours and their com-

parisons, our experiment consisted of the whole spectrum

of natural colours. For the analysis of the collected EEG

data, we have applied two fractal based non-linear tech-

niques MFDFA and MFDXA. These high precision tools

have been proven to work on non-stationary EEG data very

accurately to reveal the underlying self-similar patterns and

complexity measures by quantifying them via different

parameters. MFDFA assesses the degree of complexity

present in the signal using multifractal width as a param-

eter. Higher the width, higher the long range cross-corre-

lations present in the series, implying higher complexity.

MFDXA, on the other hand, measures the degree of how

much correlation is present between various inter and intra

lobe electrodes in the EEG signals using a cross correlation

co-efficient (cx). Five Frontal electrodes (F3, F4, F7, F8,

Fz), two Parietal (P3, P4) and two Occipital (O1, O2)

electrodes were analysed since these areas are mostly

reported to be associated with cognition and perceptions of

visual stimulus (Ganis et al. 2004; Siok et al. 2009; Spill-

mann et al. 2012). The degrees of complexity corre-

sponding to each color and their respective changes from

the baseline are studied. This work, along with fulfilling its

primary goal of reporting the changes in brain activity

during color perception, also hopes to establish a novel

investigatory paradigm in EEG based visual perception

studies that will include advanced physical tools to mag-

nify underlying mechanisms beyond the realm of conven-

tional methods.

Materials and methods

Participant summary

16 participants, age ranging from 20 to 59 (7 females;

mean age = 27.51, Standard Deviation = ± 5.92), volun-

tarily took part in the experiment. None of the participants

reported any history of neurological or psychiatric diseases

(e.g.: epilepsy, anxiety etc.) or colour blindness, confirmed

by Ishihara test (https://www.color-blindness.com/ishihara-

38-plates-cvd-test) and they all had normal/corrected to

normal vision. Informed consent about the testing proce-

dure was obtained from each participant according to the

ethical guidelines of the Ethical Committee of Jadavpur

University. The participants were uninformed about the

experimental hypotheses. The experiment was conducted at

the Sir C.V. Raman Centre for Physics and Music, Jadav-

pur University, Kolkata.

Experimental details

Participants were seated in a comfortable chair with back

and elbow rests in a dark room with normal temperature of

25�C. The visual stimulus was displayed in a 21 inch LCD

monitor (screen resolution 1920 9 1080, 24-bit color

depth, 75 Hz refresh rate), kept 1.2 m above ground. The

distance between the monitor and the participant’s eyes

was 91 cm. The luminosity of each color and the grey in

between was kept constant to factor out brightness issues.

The participants were asked to focus on a point marked

‘ ? ’ at the centre of the screen (subtended at 2� visual

angle).

The colorimetric values of the colors used as stimuli are

shown in Table 1. Here, X, Y, and Z display the CIE XYZ

tristimulus values according to the 2� CIE 1931 standard

observer (Cie 1932) and columns L*, C* and h* display the

lightness, chroma and hue values according to the CIE LCh

1976 system (Commission Internationale de l’Éclairage.

Vol. CIES 014–4/E:2007 (ISO 11664–4:2008)(2007).

The EEG experiments were conducted in the afternoon

in a normal temperature room with the participants sitting

in a comfortable chair in a normal diet condition. EEG data
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was acquired with an EEG recording cap with 19 elec-

trodes (Ag/AgCl sintered ring electrodes) placed in the

international 10/20 system. Figure 1: depicts the positions

of the electrodes (Sanyal et al. 2019). Impedances were

kept below 5 k Ohms. The EEG recording system

(Recorders and Medicare Systems) was operated at 256

samples/sec recording on customized software of RMS.

Same reference electrodes, ear electrodes A1 and A2, are

used for all the channels. The ear electrodes were linked,

and the average of A1 and A2 was used as reference. The

forehead electrode, FPz has been used as the ground.

Experimental protocol

The visual stimulus consisted of seven VIBGYOR colors in

that order (Violet, Indigo, Blue, Green, Yellow, Orange,

Red), each separated from the next by a uniform grey

background. The VIBGYOR colors featured for 10 s

durations each and the neutral grey persisted for 60 s,

intended to neutralise the effect of one color on the others.

Before and after the whole experiment protocol,

participants were asked to keep their eyes closed for a

period of 2 min. Order of the protocol has been illustrated

in Fig. 2:

EEG was recorded during the whole protocol, all

13 min. 10 s. The obtained EEG data, after cleaning out

the noise portions, have been analysed using two non-linear

techniques- MFDFA and MFDXA. The detailed method-

ologies are discussed in the following section.

Methodologies

Pre-processing of EEG signals

Raw EEG signals were filtered using a low and high pass

filter with cut-off frequencies of 0.5 to 70 Hz. The elec-

trical interference noise (50 Hz) was eliminated using

notch filter. High frequency muscle artifacts were removed

in the pre-processing stage by selecting the inbuilt EMG

filter, which is a second order low pass filter with cut off

frequency 35 Hz (35 Hz double-pole). Before proceeding

to the analysis stage, the EEG data need to be further

cleaned of the low frequency artifacts such as minuscule

muscular movements and eye blinks. For this, a method

called Empirical Mode Decomposition (EMD) was

applied. EMD decomposes the signal into various artifact

free components preserving its non-linear and non-sta-

tionary features. This processing technique has been

detailed in Maity et al. (2015) (see Appendix). The noise-

free EEG data, hereafter, will be the main component of

further analysis. Signals corresponding to nine electrodes

from different lobes of the brain [five Frontal (F3, F4, F7,

F8, Fz), two Parietal (P3, P4) and two Occipital (O1, O2)]

are obtained and analysed.

Decomposing EEG waveform: frequency bands
vs. broadband EEG signal

The traditional approach in EEG analysis consists of

decomposing the original signal into different frequency

bands alpha, beta, theta and the likes. The necessity and

Table 1 Colorimetric values of

color stimuli used
Color Hex triplet sRGB [r,g,b] X Y Z L* C* h*

Violet #7F00FF (127, 0, 255) 26.79 11.73 95.44 40.79 127.09 311.63

Indigo #3F00FF (63, 0, 255) 20.09 08.28 95.13 34.55 131.23 307.55

Blue #0000FF (0, 0, 255) 18.04 7.22 95.03 32.30 133.81 306.29

Green #00FF00 (0, 255, 0) 35.76 71.52 11.92 87.74 119.78 136.02

Yellow #FFFF00 (255, 255, 0) 77.00 92.78 13.85 97.14 96.91 102.85

Orange #FF7F00 (255, 127, 0) 48.84 36.45 4.46 66.86 85.66 59.62

Red #FF0000 (255, 0, 0) 41.25 21.27 1.93 53.24 104.55 39.99

Grey #808080 (128, 128, 128) 20.52 21.59 23.50 53.59 0.00 270.00

Fig. 1 The position of electrodes according to the 10–20 international

system. Ear electrodes A1 and A2 are used as references
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methodological approach that went into such divisions

were constrained by mechanical and computational limi-

tations of 1930s and 40 s (see (Bladin 2006) for the his-

torical development). Since Fourier Transform, a technique

to decompose the signal into its composite frequencies, was

available and used successfully in fields of engineering and

communications, the practice found its application in EEG

analysis as well. This tradition has continued in modern

day EEG researches, despite the concern forwarded by one

of its inventors in the early days itself (Walter 1938).

Should the EEG signal be a superposition of only the

combining waves such analysis would be sensible. But in

reality, the signal contains high level of complexity beyond

simple associative and distributive intuitions. In fact, the

power spectrum scaling of EEG shows 1/f like relations

(Pritchard 1992), which is indicative of a complex chaotic

system. Various ‘bumps’ in this frequency structure is used

to segregate the delta, theta, alpha, beta and gamma parts of

the wave, from lower to higher frequency respectively.

Now, as some recent researches suggest (Newson and

Thiagarajan 2019), the definition of such bands varies in

different studies. Considerable inconsistency in marking

the start and the end of the bands are prevalent, making the

results harder to compare. Moreover, the nature of the 1/f

noise displays change with factors such as age (Voytek

et al. 2015). So, the bands and related frequencies have a

huge degree of variability to begin with—which again,

resorts to approximation and makes them unreliable neural

markers (although a lot of literature and clinical method-

ologies continue to use the traditional divisions).

Returning to the complexity argument, the oscillatory

archetype tends to miss one of the most important factors

which needs addressing—the amount of information loss.

While breaking the whole signal down into several ‘wave’

parts, one tends to gross out the complex non-stationary

nature of the series neglecting important complexity fea-

tures. Such information deficit, in turn, could end up por-

traying an incomplete illustration of the system in question.

As put eloquently by Thiagarajan (2018), spectral decom-

position of a complex EEG signal is analogous to

describing an artwork by reducing it to its basic color

components and discussing how much red, green or blue it

has, while throwing away the data on the pixel’s relative

positioning. Though this might churn out occasional

accuracy (like higher green and blue is more likely to be a

landscape), but to identify the scene more appropriately,

one should approach the complex structure as a whole

instead of in parts.

Considering these arguments, the entire artifact-free

EEG signal was used for complexity analysis in this study.

Multifractal detrended fluctuation analysis
(MFDFA)

Originated from Chaos theory, fractal techniques are

essential to underline the complex details hidden in an

otherwise random or chaotic process. In many natural

processes which are chaotic in nature, fractals help to scale

the nature of chaos to an accessible level. From the

structure of viruses to the distribution of earthquakes,

fractal patterns are inherent in nature. These techniques

determine the scaling exponent of the signal or structure in

question to indicate the presence or absence of fractal

properties (self-similarity). The essence of the technique

hides into finding the Fractal Dimension (FD) which proves

to be a powerful tool to detect self-similarity. Multifractals,

a step further, are sets of intertwined fractals. The real-life

fractal patterns that we see hardly scale according to a

single scaling exponent, rather there should be multiple

scaling laws to capture their growth or variation over time.

These spatial and temporal scale variations indicate a

multifractal structure of a particular signal. For these more

practical cases, Kantelhardt et al. (Kantelhardt et al. 2002)

formulated the MFDFA algorithm. Since its inception, it

has been applied in diverse fields starting from turbulence

analysis (Telesca and Lovallo 2011), traffic movements

Fig. 2 Flow chart of experimental protocol
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(Shang et al. 2008), blood flow oscillations (Liao and Jan

2011) to stock exchange (Yuan et al. 2009), and prognosis

of diseases (Dutta et al. 2013). Also, in a recent work,

which involves human participation, using the multifractal

nature of acoustic signal we have shown a correlation

between preferred emotional states, signal complexity and

RGB values of self-reported colors (Roy et al. 2020).

The analysis of the EEG signals is done using MATLAB

in this paper, as described in Ihlen (2012) and for each step

an equivalent mathematical representation is given which

is taken from the prescription of Kantelhardt et al. (Kan-

telhardt et al. 2002).

The complete procedure is divided into the following steps:

Step 1: Converting the noise like structure of the signal

into a random walk like signal. It can be represented as:

Y ið Þ ¼
Xi

k¼1

xk � �xð Þ ð1Þ

where �x is the mean value of the signal.

Step 2: The whole length of the signal is divided into Ns

number of segments consisting of certain no. of samples.

For s as sample size and N the total length of the signal

the segments are

Ns ¼ int
N

s

� �
ð2Þ

Step 3: The local RMS variation for any sample size s is

the function F(s,v). This function can be written as

follows (detrending of the time series is done by

subtracting polynomial fits from profile Y):

F2ðs; vÞ ¼ 1

s

Xs

i¼1

fY ½ðv� 1Þsþ i� � yvðiÞg2 ð3Þ

Here, ym(i) is the form of the fitting polynomial in seg-

ment m (where m = 1,..., Ns) (Kantelhardt et al. 2002).

The polynomial fitted is of order m = 1 (linear

detrending).

Step 4: The q-order overall RMS variation for various

scale sizes can be obtained by the use of following

equation

FqðsÞ ¼
1

Ns

XNs

v¼1

½F2ðs; vÞ�
q
2

( ) 1
qð Þ

ð4Þ

Step 5: The scaling behaviour of the fluctuation function

is obtained by drawing the log–log plot of Fq(s) vs. s for

each value of q.

Fq sð Þ� sh qð Þ ð5Þ

The h(q) is called the generalized Hurst exponent. The

Hurst exponent is measure of self-similarity and correlation

properties of time series produced by fractal. The presence

or absence of long range correlation can be determined

using Hurst exponent. A monofractal time series is char-

acterized by unique h(q) for all values of q.

The generalized Hurst exponent h(q) of MFDFA is

related to the classical scaling exponent s(q) by the

relation:

sðqÞ ¼ qhðqÞ � 1 ð6Þ

A monofractal series with long range correlation is

characterized by linearly dependent q order exponent

s(q) with a single Hurst exponent H. Multifractal signal on

the other hand, possess multiple Hurst exponent and in this

case, s(q) depends non-linearly on q (Ashkenazy et al.

2003).

The singularity spectrum f(a) is related to h(q) by

a ¼ hðqÞ þ qh0ðqÞ ð7Þ
f að Þ ¼ q½a� h qð Þ� þ 1 ð8Þ

where a denoting the singularity strength and f(a), the

dimension of subset series that is characterized by a. The
width of the multifractal spectrum essentially denotes the

range of exponents. The spectra can be characterized

quantitatively by fitting a quadratic function with the help

of least square method (Figliola et al. 2007) in the neigh-

bourhood of maximum a0,

f ðaÞ ¼ Aða� a0Þ2 þ Bða� a0Þ þ C ð9Þ

Here C is an additive constant C = f(a0) = 1 and B is a

measure of asymmetry of the spectrum. So obviously it is

zero for a perfectly symmetric spectrum. We can obtain the

width of the spectrum very easily by extrapolating the fitted

quadratic curve to zero.

Width W is defined as,

W ¼ a1 � a2

With.

f ða1Þ ¼ f ða2Þ ¼ 0 ð10Þ

The width of the spectrum gives a measure of the

multifractality of the spectrum. Greater is the value of the

width W, greater will be the multifractality of the spec-

trum. For a monofractal time series, the width will be zero

as h(q) is independent of q.
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The origin of multifractality in an EEG time series can

be verified by randomly shuffling the phases in the original

data and producing a randomised shuffled series. Most of

the long-range correlations that existed in the original data

are removed by this random shuffling and what remains is a

completely uncorrelated sequence. Hence, if the multi-

fractality of the original data was due to long range cor-

relation, the shuffled data will show non-fractal scaling. To

corroborate the findings by comparison, besides phase

randomised shuffling a set of surrogate series produced

from the original using iAAFT (Iterative Amplitude

Adjusted Fourier Transform) (Schreiber and Schmitz 1996)

method is also used.

Multifractal detrended cross-correlation analysis
(MFDXA)

MFDXA method was first used by Zhou (Zhou 2008). It is

an offshoot of the generalized MFDFA method and is used

to study the degree of correlation between two non-sta-

tionary time series having multifractal features. Here, we

compute the profiles of the underlying data series X(i) and

Y(i) as

XðiÞ � ½
Xi

ðk¼1Þ
xðkÞ � Xavg� for i ¼ 1:::N

YðiÞ � ½
Xi

ðk¼1Þ
xðkÞ � Xavg� for i ¼ 1:::N ð11Þ

The next steps proceed in the same way as the MFDFA

method, with the only difference being we have to take 2Ns

bins here. The qth order detrended covariance Fq(s) is

obtained after averaging over 2Ns bins.

FqðsÞ ¼ f1=2NsR2Ns
ðv¼1Þ½Fðs; vÞ�

q=2g1=q ð12Þ

where q is an index which can take all possible values

except zero because in that case the factor 1/q blows up.

The procedure can be repeated by varying the value of s.

Fq(s) increases with increase in value of s. If the series is

long range power correlated, then Fq(s) will show power

law behavior

FqðsÞ� skðqÞ ð13Þ

If such a scaling exists ln Fq will depend linearly on ln s,

with k(q) as the slope. Scaling exponent k(q) represents the
degree of the cross-correlation between the two time series.

In general the exponent k(q) depends on q. We cannot

obtain the value of k(0) directly because Fq blows up at

q = 0. Fq cannot be obtained by the normal averaging

procedure; instead a logarithmic averaging procedure is

applied

F0ðsÞ ¼ f1=4Ns R
2Ns
ðv¼1Þ½Fðs; vÞ�g� skð0Þ ð14Þ

For q = 2 the method reduces to standard DCCA. If

scaling exponent k(q) is independent of q, the cross-cor-

relations between two time series are monofractal. If

scaling exponent k(q) is dependent on q, the cross-corre-

lations between two time series are multifractal. Further-

more, for positive q, k(q) describes the scaling behavior of

the segments with large fluctuations and for negative q,

k(q) describes the scaling behavior of the segments with

small fluctuations. Scaling exponent k(q) represents the

degree of the cross-correlation between the two time series

X(i) and Y(i). The value k(q) = 0.5 denotes the absence of

cross-correlation. k(q)[ 0.5 indicates persistent long-

range cross-correlations where a large value in one variable

is likely to be followed by a large value in another variable,

while the value k(q)\ 0.5 indicates anti-persistent cross-

correlations where a large value in one variable is likely to

be followed by a small value in another variable, and vice

versa (Movahed and Hermanis 2008).

Zhou found that for two time series constructed by

binomial measure from p-model, there exists the following

relationship:

k q ¼ 2ð Þ � hx q ¼ 2ð Þ þ hy q ¼ 2ð Þ
� �

=2 ð15Þ

Podobnik and Stanley (Podobnik and Stanley 2008)

have studied this relation when q = 2 for monofractal

Autoregressive Fractional Moving Average (ARFIMA)

signals and EEG time series.

In case of two time series generated by using two

uncoupled ARFIMA processes, each of both is autocorre-

lated, but there is no power-law cross correlation with a

specific exponent (Movahed and Hermanis 2008).

According to auto-correlation function given by:

C sð Þ ¼ X iþ sð Þ � Xh i½ � XðiÞ � Xh i½ �h i� s�c ð16Þ

The cross-correlation function can be written as

Cx sð Þ ¼ X iþ sð Þ � Xh id e Y ið Þ � Yh i½ �h i� s�c
x ð17Þ

where c and cx are the auto-correlation and cross-correla-

tion exponents, respectively. Due to the non-stationarities

and trends superimposed on the collected data, direct cal-

culation of these exponents are usually not recommended;

rather the reliable method to calculate auto-correlation

exponent is the DFA method, namely (Movahed and Her-

manis 2008),

c ¼ 2�2h q ¼ 2ð Þ ð18Þ

Podobnik et al. (Podobnik et al. 2011), have demon-

strated the relation between cross-correlation exponent, cx
and scaling exponent k(q). Using Eq. (15) & (18),

cx ¼ 2� 2k q ¼ 2ð Þ ð19Þ
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For uncorrelated data, cx has a value 1 and the lower the

value of c and cx more correlated is the data. In general,

k(q) depends on q, indicating the presence of multifrac-

tality. Using cross-correlation co-efficient cx, we want to

point out how two non-linear signals are cross-correlated in

various time scales.

Methodological approaches

Using the methodologies discussed above, this paper

attempts to explore the neural responses of the participants

from two different comparative approaches. To study the

brain response change corresponding to each individual

color of the VIBGYOR, a comparative analysis of the

multifractal spectral width as well as multifractal cross

correlation coefficient was done for different pairs of

experimental conditions, where each pair consists of a

color from VIBGYOR and the adjacent gray just appear-

ing before that particular color (for example, Violet—

Grey1 or Green—Grey4). Similarly, to identify the changes

among the response from different electrodes correspond-

ing to a particular color, a comparative study of spectral

widths and cross-correlation was done for different elec-

trode pairs. Among all the electrode pair combinations

some were from the homologous brain regions which in

turn reflected the hemispheric differences in the neuronal

responses for a particular experimental condition, while the

other electrode combinations indicated the nature of con-

nectivity or correlations between different lobes of human

brain during viewing a color.

Result and discussions

For the analysis of the EEG data, we studied 9 electrodes,

namely: F3, F4, F7, F8, Fz (Frontal), O1, O2 (Occipital)

and P3, P4 (Parietal). Although the areas in the brain that

are traditionally related to visual perception are Frontal and

Occipital lobes, but researches in the recent past have

indicated that Parietal lobe too plays key role in visual

information processing (Avillac et al. 2005).

With the noise cleaned EEG signal using EMD process,

as described in Maity et al. (2015), first we performed the

MFDFA methodology mentioned in the previous sec-

tion. To emphasize on the unique properties pertaining to

such a nonstationary nonlinear time series, features of the

original time series is compared with a shuffled series

constructed by reorganising the phases in the original data

in a randomised fashion, in every step of the process (also

in case of MFDXA). The qth order fluctuation function

Fq(s) (from Eq. (5)) for 10 values of q in between -5

and ? 5 was obtained in the first step. The time series

values of the EEG waves have been randomly shuffled to

destroy all the long range correlations present in the data,

and what remained is a completely uncorrelated sequence.

The regression plot of ln(Fq(s)) vs. ln(s) averaged for dif-

ferent values of q (q = -5 to q = ?5), i.e., the q-order

RMS fluctuations, for a sample electrode F4 is given in

Fig. 3 a, b (in the graph, q = -4 to q = ?5 is shown):

The scaling range is 16 to 1024 (scales used are: 16, 32,

64, 128, 256, 512 and 1024). Again from Eq. (5), we see

that Hurst exponent h(q) is obtained from the slope of the

best fit line in the ln(Fq(s)) vs. ln(s) plot. It can be seen

Fig. 3 a, b Plot of ln(Fq(s)) vs. ln(s) showing different h(q) corre-
sponding to each q; the scaling range being 16 to 1024. For the

original series (a), the scaling function Fq and regression slope h(q) is

dependent on q, unlike the shuffled series (b) which has a fixed slope

H, indicating monofractality
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from Fig. 3a that for the original data, the slopes change

(the points gradually converge) with changing q’s. But they

remain same with different values of q, for the shuffled

data (Fig. 3b). Thus, they have a fixed slope h(q) = H (*2,

generally), which is the conventional Hurst exponent for

monofractal time series.

The next step is to calculate the statistical fit of the

different values of h(q) corresponding to different values of

q for the nine electrodes in all the experimental conditions.

Now, for positive values of q, h(q) describes the scaling

behaviour of the segments with large fluctuations. Usually,

the large fluctuations are characterized by a smaller scaling

exponent h(q) for multifractal series. On the contrary, for

negative values of q, the segments v with small variance

F2(s,v) will dominate the average Fq(s). Hence, for nega-

tive values of q, h(q) describes the scaling behaviour of the

segments with small fluctuations, which are usually char-

acterized by larger scaling exponents. For all the EEG data

in our experiment, considerable variation of h(q) with the

change of q from -5 to ? 5 were observed, indicating the

presence of strong multifractality in the EEG waves. The

randomly shuffled series, bereft of the long-range correla-

tions present in the original, exhibits a non-multifractal

scaling, hshuf(q) * 0.5, in most cases. This value remains

almost constant with the change of q values. This confirms

the monofractal nature of the shuffled series. On the other

hand, for the original data, h(q) changes with changing q

(higher values for negative q, lower values for positive).

This variance of h(q) indicates that long range correlations,

and by extension multifractality, are present in the original

EEG data in different scales.

Figure 4a, b contains two representative figures of

h(q) vs q plots from two randomly chosen electrodes F3

and P4. It is evident from the figures that for original series

(in red), h(q) decreases with increasing q, showing multi-

fractal scaling in both the electrodes. The shuffled series (in

blue), very similar to a monofractal signal, has almost

constant values of h(q) for different q’s.

The EEG time series corresponding to each experi-

mental condition was shuffled and the hurst values were

calculated and compared with the same for the original

series. The results suggest that in the original time ser-

ies, the presence of multifractality can be observed. Next,

to reassure the same findings, we calculated 6 phase ran-

domized surrogates for each EEG time series segments

(corresponding to each electrode during each experimental

condition) following the iAAFT method (Schreiber and

Schmitz 1996) and calculated the hurst values for all the

surrogate series to compare them with the original series.

The results clearly demonstrate that hurst values of the

surrogate series were much lower than that of the original

ones (B 0.5). This indicates that the multifractality present

in the original signal gets destroyed when the surrogates

are generated through phase randomization. Two such

sample plots are given in Fig. 5 (F3, Blue) and Fig. 6 (O2,

Yellow) for two random participants.

Now, after confirming the presence, next step is the

quantitative analysis of multifractality. The amount of

multifractality can be determined for each of the experi-

mental window for every signal from the width of the

multifractal spectrum (w) from the f(a) vs. a curve as per

Eq. (9). Two representative figures of such curves for two

electrodes along with their shuffled series are shown in

Fig. 4 The variations of h(q) vs. q for (a) P4 and (b) F3 electrodes.

For the original series (red dots) h(q) changes with q (higher for -ve

q, lower for ? ve). The shuffled series (blue dots) has almost a

constant h(q) * 0.5. Variance of h(q) shows the presence of long-

range correlations in the original series
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Fig. 7. As seen from the equation, the nature of the curve is

parabolic. Also, the shuffled width is found to be smaller

than the width of the original signal; which tells us that the

long range correlations are present in the signal which

gives rise to the multifractality. Ideally, for a sufficiently

long series, the shuffled data exhibit monofractal properties

(no mulifractal scaling) and f(a) would be of constant

value, independent of a. Thus, as discussed previously,

Hurst exponent remains independent of q and in the f(a) vs.
a curve, the shuffled width has a constant f(a) peaked

around a0 * 0.5.

The values of the spectral width of EEG data corre-

sponding to each electrode for all the experimental con-

ditions were computed. Spectral width values and their

standard deviations are averaged for 16 participants. The

data are presented both electrode-wise and color-wise in

Tables 2 and 3, for better interpretation purposes.

The graphical representation of the Tables 2 and 3 is

given in Figs. 8 and 9, respectively.

Figure 8 describes the electrode-wise changes due to

various color stimuli. It is clearly evident from the fig-

ure that the change of multifractality is present in all the

electrodes under consideration. The usual participation of

Frontal and Occipital lobes in visual perception is con-

firmed, with the addition that Parietal lobes, too exhibit

appreciable changes in arousal level. All electrodes,

interestingly, exhibit similar pattern, too—multifractal

width increases with the exposure to VIBGYOR colors and

decrease with Grey baseline. This behavior is consistent

throughout the electrodes, during the whole experimental

procedure. Another major trend which is similar across all

16 participants is the nature of variation in spectral width in

presence of some specific colors. The value of spectral

width is maximum in case of Blue, followed by Red and

then Green. This trend has also been exhibited by all of the

Fig. 5 Six surrogates generated for F3 electrode under Blue color exposure for a random participant using iAAFT. The H stands for respective

Hurst values which are far lower than 0.5, pointing at loss of multifractal properties when the data is shuffled randomly

Fig. 6 Six surrogates generated for O2 electrode under Yellow color exposure for a random participant using iAAFT. H stands for respective

Hurst values which are far lower than 0.5, pointing at the loss of multifractal properties when the data is shuffled randomly
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electrodes in general, which is a unique and important

observation. In fact, the shorter wavelength part of the

spectrum has higher width than the longer wavelength end,

indicating that changes in signal complexity are more

pronounced in former than the latter (to demonstrate this,

the difference between the width during colors and the

width during baseline Grey is necessary, which has been

done later). This observation is novel since previous studies

Fig. 7 a, b The variation of f(a) vs. a for two randomly chosen

electrodes (a) F4 and (b) F8, along with shuffled data. This parabolic

curve represents the multifractal spectrum where a is q-order

singularity exponent and f(a) are its dimensions. Da (= amax –

amin) is the spectral width, which, for original series (red) is higher

than its shuffled form (blue)—indicates multifractal nature

Table 2 Multifractal Spectral width for different colors (Electrode-wise); averaged over n = 16

Multifractal width (w) corresponding to the colors with SD

Electrode Grey1 Violet Grey2 Indigo Grey3 Blue Grey4

F3 0.364 ± 0.038 0.516 ± 0.048 0.393 ± 0.046 0.501 ± 0.050 0.351 ± 0.049 0.648 ± 0.049 0.371 ± 0.017

F4 0.350 ± 0.032 0.508 ± 0.038 0.347 ± 0.044 0.492 ± 0.036 0.371 ± 0.048 0.654 ± 0.044 0.380 ± 0.026

F7 0.360 ± 0.046 0.511 ± 0.048 0.397 ± 0.041 0.494 ± 0.015 0.359 ± 0.026 0.651 ± 0.038 0.391 ± 0.028

F8 0.360 ± 0.048 0.505 ± 0.029 0.363 ± 0.050 0.501 ± 0.051 0.340 ± 0.047 0.669 ± 0.050 0.391 ± 0.037

Fz 0.378 ± 0.010 0.511 ± 0.018 0.403 ± 0.040 0.493 ± 0.024 0.375 ± 0.016 0.622 ± 0.025 0.376 ± 0.038

O1 0.387 ± 0.15 0.518 ± 0.038 0.389 ± 0.013 0.497 ± 0.006 0.381 ± 0.026 0.645 ± 0.012 0.398 ± 0.009

O2 0.385 ± 0.010 0.508 ± 0.016 0.389 ± 0.033 0.502 ± 0.006 0.384 ± 0.015 0.682 ± 0.024 0.397 ± 0.029

P3 0.374 ± 0.035 0.506 ± 0.017 0.382 ± 0.022 0.501 ± 0.018 0.360 ± 0.038 0.636 ± 0.033 0.387 ± 0.027

P4 0.404 ± 0.029 0.512 ± 0.037 0.408 ± 0.038 0.498 ± 0.020 0.403 ± 0.046 0.664 ± 0.020 0.406 ± 0.031

Multifractal width (w) corresponding to the colors with SD

Electrode Green Grey5 Yellow Grey6 Orange Grey7 Red Grey8

F3 0.559 ± 0.038 0.381 ± 0.043 0.492 ± 0.033 0.373 ± 0.037 0.542 ± 0.048 0.403 ± 0.049 0.585 ± 0.022 0.389 ± 0.028

F4 0.547 ± 0.049 0.376 ± 0.038 0.507 ± 0.014 0.402 ± 0.036 0.542 ± 0.026 0.434 ± 0.041 0.587 ± 0.026 0.406 ± 0.039

F7 0.550 ± 0.039 0.383 ± 0.057 0.504 ± 0.028 0.392 ± 0.046 0.534 ± 0.039 0.390 ± 0.018 0.580 ± 0.026 0.411 ± 0.031

F8 0.563 ± 0.031 0.381 ± 0.030 0.508 ± 0.026 0.397 ± 0.046 0.526 ± 0.019 0.412 ± 0.021 0.606 ± 0.025 0.384 ± 0.018

Fz 0.539 ± 0.015 0.385 ± 0.022 0.499 ± 0.011 0.397 ± 0.006 0.521 ± 0.033 0.415 ± 0.009 0.592 ± 0.020 0.422 ± 0.012

O1 0.547 ± 0.034 0.404 ± 0.036 0.509 ± 0.014 0.412 ± 0.004 0.544 ± 0.014 0.416 ± 0.010 0.585 ± 0.027 0.428 ± 0.007

O2 0.558 ± 0.014 0.428 ± 0.039 0.526 ± 0.034 0.408 ± 0.020 0.547 ± 0.030 0.416 ± 0.012 0.589 ± 0.026 0.433 ± 0.019

P3 0.547 ± 0.013 0.394 ± 0.021 0.499 ± 0.049 0.399 ± 0.015 0.554 ± 0.038 0.408 ± 0.030 0.583 ± 0.024 0.412 ± 0.010

P4 0.565 ± 0.021 0.415 ± 0.044 0.511 ± 0.040 0.413 ± 0.048 0.548 ± 0.028 0.434 ± 0.019 0.598 ± 0.025 0.441 ± 0.051
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involved with colors are done to correlate them with some

specific psychological attributes using task based experi-

mental setup and no study, specially not one with non-

linear techniques, has compared the colors solely on their

influence on brain activity. From this perspective, the fact

that color Blue induces the highest long range correlations

followed by Red and then Green might help explain some

of the results obtained in prior researches. That being said,

it is noteworthy that, three of the primary colors exhibit

clearer complexity changes than the other colors in the

spectrum. This supports the reasoning behind the usage of

Red, Blue and Green in most of the studies in this field.

Lastly, it can be seen that the complexity for baseline

Grey over the experiment has changed as well, although

not that prominent. This could be because of the existence

of the color exactly prior to it, since the long range cor-

relations present during that may not have perished com-

pletely, i.e., a residual effect might be present. Future

experiments, focusing on this very aspect, are needed for

detailed explanations.

Figure 9, representing the information in Table 3, shows

multifractal width variations in different electrodes, color-

wise. The observations made from the previous figure are

more evident here. Complexity changes in shorter wave-

lengths like Blue or Green is higher than Red (and Orange).

Width is lowest in case of Indigo and Yellow, whereas

Violet and Orange is comparatively close. Another note-

worthy observation is, in most cases (considering absolute

values of multifractal width) F8, O2 and P4 has the highest

complexity among the Frontal, Occipital and Parietal

electrodes, respectively. So, the even electrodes show

higher complexity than odd electrodes, which is an indi-

cator that in our experimental setup, the long range cor-

relations found during color perceptions are higher in the

right hemisphere in the brain.

To compare this result with the pattern for change in

complexity (i.e., the complexity value of the grey baseline

subtracted from the absolute complexity value corre-

sponding to the immediately next color), a graph similar to

Fig. 9h has been computed. It is given in Fig. 10.

Similar to the absolute values, the changes in multi-

fractal width are also highest in case of F8 and O2 (Violet

being the only exception). Additionally, significant

increase in F3 is noticed. For Parietal lobe, it is P3 which

shows higher change in complexity instead of P4. Now,

lateralization of color perception is a hotly debated issue in

neuroscience literatures. Evidences have credited the bias

to left (Franklin et al. 2008) as well as to right hemisphere

(Njemanze et al. 1992). Some have found a balanced

opinion that both hemispheres contribute in same extent

(Witzel and Gegenfurtner 2011). According to the lateral-

ized category effect of colors, in the color naming tasks,

left hemisphere advantage is dominant since the languageTa
bl
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lateralization also favors the left. On the other hand, the

right hemisphere bias is seen during color working memory

and discriminating properties like hue or saturation

(Davidoff 1976). In this light, aforementioned finding of

our study, of course not related to color naming but color

perception, the presence of increased complexity in mostly

the right hemisphere electrodes could be very significant.

There is one more takeaway from Figs. 9 and 10 worth

mentioning. When the absolute values of complexity are

considered, the Occipital lobe is seen to have the highest

values followed by Frontal and then Parietal. But in the

case of relative changes to baseline Grey, the complexity

measures changes to Frontal[ Occipital[ Parietal. This

indicates that during Grey viewing, Occipital and Parietal

lobes display higher complexities than the Frontal lobe.

Knowing the fact that Occipital lobes are primarily

responsible for visual perception, this result doesn’t come

as a surprise. But the interesting part is—Parietal lobe also

takes part in the visual process actively. Previous studies

have reported such involvements (Battelli et al. 2009),

though in a different context. This study, through mea-

suring brain complexity via electrical activities, renders

support to these claims.

Lastly, from both plots of Figs. 9 and 10, it is seen that

signal corresponding to the frontal midline electrode Fz has

recorded lower complexity compared to other frontal

electrodes. Frontal midline power has usually been asso-

ciated with emotional processing and positive emotional

state (Suetsugi et al. 2000; Aftanas and Golocheikine 2001;

McFarland et al. 2016). Lower complexity, and therefore,

lower activation of Fz might be an indication that in this

case, the color perception didn’t involve any emotional

arousal among the participants.

For the next part of the analysis using MFDXA, the

combinations with the electrodes that were studied are:

Left and Right hemisphere in Frontal (F3–F4, F7–F8, F3–

F8, F4–F7) Occipital (O1–O2) and Parietal (P3–P4) lobes,

Intra left (F3–F7) and right (F4–F8) hemisphere, Left

Frontal and Occipital lobes (F3–O1, F3–O2, F7–O1, F7–

O2), Right Frontal and Occipital lobes (F4–O1, F4–O2,

F8–O1, F8–O2), Left Frontal and Parietal lobes (F3–P3,

F3–P4, F7–P3, F7–P4), Right Frontal and Parietal lobes

(F4–P3, F4–P4, F8–P3, F8–P4) and finally, Occipital and

Parietal lobes (O1–P3, O1–P4, O2–P3, O2–P4). The total

28 combinations of electrodes were studied for all the

experimental conditions. First, the noise cleaned EEG data

were divided into Ns bins where Ns = int (N/s), N is the

length of the series. The q-th order detrended covariance

Fq(s) was obtained for values of q from -5 to ? 5 in steps

of 1. Power law scaling of Fq(s) with s is observed for all

values of q. As shown in Eq. (13), the slope of this scaling

k(q) is the desired scaling exponent, which depends on q. A
representative figure of the variation of k(q) with changing

q is given in Fig. 11 for F4-O2 electrodes during Violet

color stimulus.

For comparison, the variation of H(q) with q individu-

ally for the same two electrodes F4 and O2 using MFDFA

is shown in the same figure. The scaling exponent should

have a constant value for a monofractal series, otherwise it

implies multifractality. The plot indicates multifractal

behavior of the cross-correlated time series, as for q = 2 the

cross-correlation scaling exponent k(q) is greater than 0.5

which is a confirmation of persistent long-range cross-

correlation between the two electrodes. In a similar man-

ner, k(q) was evaluated for all the electrode combinations

under consideration. The q-dependence of the classical

multifractal scaling exponent s(q) is shown in Fig. 12 for

the electrodes F4 and O2. From the figure, it can be seen

that the dependence of s(q) on q is non-linear, which is

another evidence of multifractality of the series.

Now, the multifractal width of the cross correlated sig-

nals of F4 and O2 is given in Fig. 13. The presence of

spectral width in cross correlation data confirms the pres-

ence of multifractality in the correlated signal yet again.

The fact that correlated signals from two electrodes in

experimental conditions showing multifractality is an

Fig. 8 Variation in Multifractal spectral width due to different colors

in nine chosen electrodes: the complexity pattern stays similar across

electrodes. Three primary colors Blue, Green and Red exhibit highest

multifractal widths, baseline Gray stays almost the same. Shorter

wavelengths have higher width than longer ones
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important observation for colour perception studies using

nonlinear EEG analysis. The same analysis was done for

the rest of the electrode combinations as well to find out the

cross-correlation coefficient (cx) for all 16 participants.

After that, similarly as MFDFA analysis, the averaged

change in cx due to the color stimulus and the baseline

(a) (b)

(c) (d)

(e)

(g)

(f)

Fig. 9 a–h Variation in average

Multifractal Spectral width in

different electrodes, color-wise:

Blue-Green end of the spectrum

(c–d) has higher width than

Orange-Red end (f–g), Indigo
(b) and Yellow (e) being the

lowest. Even electrodes O2, F8

and P4 register highest width

(h), suggestive of right brain

arousal preference
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Grey has been computed by calculating their differences.

This gives us the change in cross-correlation co-efficient

(Dcx) which is an effective tool for spotting the increase/

decrease in cross-correlation pattern with the subsequent

changes in experimental conditions (Sanyal et al. 2019).

The data and the plots depicting the variations of Dcx
during different stages of the experiment are shown in

Table 4 and Fig. 14. Increase and decrease in the values of

Dcx corresponds to reduced and enhanced degree of cross-

correlations, respectively.

The graphical representation of Table 4 is shown below

in Fig. 14 (Standard deviations are included as error bars).

From Fig. 14, it is seen that although the degree of

cross-correlation has varied throughout the experiment, the

nature of the change is somewhat similar in electrode

combinations. One of the most remarkable features seen in

this data is the existence of high cross-correlation in the

electrodes during the baseline Grey period, in various

occasions. This is fascinating considering the fact that it

happened in almost all the inter/intra lobe combinations,

which indicates that the responses across different lobes of

the brain have stayed correlated irrespective of their spatial

distribution. Moreover, in most cases, colour exposure has

increased the Dcx, meaning that introduction of color

stimulus has reduced the cross-correlation. This observa-

tion is unique and hitherto unseen from the point of view of

color perception. The highest Dcx, and least correlations, is

observed during the introduction of Violet from Grey1. On

the other hand, shift to Grey7 from color Orange displayed

lowest Dcx and most enhanced degree of cross-correla-

tions. Interestingly, exposure to colors that exhibited

highest complexity in MFDFA—Blue, Red and Green—

resulted in reduced cross-correlation whereas the Greys

before or after them expressed enhanced effects of the

same. To study the correlations in more spatial manner, we

rearranged the plots highlighting each experimental con-

dition. They are given in Fig. 15.5

Figure 15a–g shows the changes in cross-correlation co-

efficient in specific experimental conditions in all the

electrode combinations (Standard deviations are included

as error bars). In case of Violet and related Greys, Dcx
increases in all the electrodes when stimulus is changed

from Grey1 to violet, implying lower cross-correlation.

During Violet to G2, correlation increases mainly in

Occipital and Parietal electrodes, slightly in F3 and F8

combinations. In the next colour, this pattern is reversed.

When exposed to Indigo, high correlations are seen in O2

electrode combinations and in left Frontal electrodes F3

Fig. 10 Increase in Multifractal width from baseline Grey in nine elctrodes: the relative change of multifractal width is highest in F8 and O2,

showing right hemispere bias in color perception. Also, change in width is highest in Frontal[Occipital[Parietal

Fig. 11 Variation of scaling exponent k(q) with q for F4–O2

electrode combination for Violet color exposure. The combination

(red) is plotted against h(q) versus q of the individual signals F4

(blue) and O2 (yellow). The series has monofractal properties if the

scaling exponent stays * 0.5 at q = 2. Here, k(q)[ 0.5, showing

multifractality
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and F7. Change to G3 results in reduced correlation in most

of the electrodes, except the Frontal ones. For Blue, the

pattern follows Violet once again. While G3 to Blue, cor-

relations decrease throughout with higher Dcx and Blue to

G4 sees significant increase in cross-correlation throughout

the brain. Green, too, shows the similar trend—correlation

vanishes during its presence and increases hugely after

going to next Grey, i.e., G5. Yellow, like Indigo, breaks the

norm with high correlations in general (except in F7–O1)

which gets destroyed with its removal. The next color

shows striking consistency in all the participants. Orange

follows the Blue and Green pattern, but with higher

amplitude than any other colors. The cross-correlation is as

high during the stimulus removal as the decrease while the

color is on. This trend continues for the last color stimulus,

Red, albeit in lower volumes.

To sum up, the figures indicate that except for Indigo

and Yellow (interestingly the colors with lowest com-

plexities), rest of the colors show similar patterns in the

change of degree of cross-correlation (Dcx)—during the

color viewing, Dcx increases which results in reduced

correlations. Once the stimulus is removed, the correlations

spike up. We argue that this ebb and flow of cross-corre-

lations are linked with the processing of visual informa-

tion—which might be manifested well after the removal of

the stimulus. Exposure to the color stimulus affects the bio

signals emanating from the areas directly involved in its

perception, thus providing the increase in signal com-

plexity, demonstrable via MFDFA. In the post-stimulus

period the sensory information collected during the color-

viewing window gets processed and integrated via various

inter/intra lobe exchanges until the information is suffi-

ciently segregated. These connections and exchanges

manifest themselves via the cross-correlation parameter.

Such perceptual retention of information has been studied

in neuroscience for a long time (some have called it ‘per-

ceptual hysteresis’, analogous to magnetic hysteresis).

There have been reports of hysteresis or retention of

stimulus perception in visual (Kleinschmidt et al. 2002)

and auditory stimulus (Banerjee et al. 2016). Although the

purpose or the experimental design in this work is not

intended to find out hysteresis of color perception, but the

findings could advocate for possible investigations towards

it. These findings on the neuronal activity are evidently

novel in this field of study and provide a strong argument

for the future of robust non-linear methodologies in EEG

based color perception research.

Statistical analysis

To test the statistical significance of our results 2-way

ANOVA was performed on the multifractal spectral width

values considering the colors and the channels as factors

and the detailed result of the same has been presented in

Table 5.

At the 0.05 level (i.e., 95% confidence level), the pop-

ulation means of colors are significantly different.

At the 0.05 level, the population means of Electrodes are

not significantly different.

At the 0.05 level, the interaction between color and

Electrode is not significant.

Tukey test was done only for the variables with signif-

icance. Table 6 includes the post-hoc analysis.

Fig. 12 Variation of classical multifractal scaling exponent s(q) (Kan-
telhardt et al. 2002) with q for F4-O2 electrode combination. In this

case, s(q) is a non-linear function of q, which suggests the presence of

multifractality

Fig. 13 Multifractal spectral width for cross-correlated electrodes F4

and O2. The relation of a (q-order singularity exponent) and f(a)
(dimension of the series) represents the multifractal spectrum. Da
(= amax – amin) is the spectral width. The parabolic nature and the

peak at a[ 0.5 indicate presence of multifractal properties (Ihlen

2012)
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(a)

(b)

(c)

(e)

()

(f)

(g)

Fig. 14 a–g Changes in cross-

correlation coefficient (Dcx) in
electrode combinations in both

(color—Grey) and (Grey—

color) conditions. Negative

values indicate higher cross-

correlation. Pattern of change is

consistent across different brain

areas, remarkably higher

correlation after stimulus color

removal than during exposure
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Tukey test results, calculated over the population means

of the multifractal spectral widths of the color wise EEG

responses of the 16 participants also confirm that popula-

tion mean of spectral width in response to color Blue is

significantly different from all other colors. The response to

Red and Green also show significant differences from

others. But rest of the colors (Indigo, Violet, Yellow and

Orange) does not yield such significant changes in the EEG

complexities in different lobes of the brain. For the other

factors, like electrode channels or interaction between

electrode and color, this significance may not appear to be

so significant at our predetermined 95% confidence level,

but enhancement of sample size, in future, is expected to

give further support.

bFig. 15 a–g Color-wise distribution of Dcx in specific (color—Grey)

and (Grey—color) conditions. Negative values indicate higher

correlation. Except for Indigo (b) and Yellow (e), correlation

decreases on color exposure and increases on removal; magnitude

of Dcx is highest during Orange (f)

Fig. 15 continued
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Conclusion and general discussion

The question of how colors affect human beings is a long,

much-debated one and has remained so despite years of

work. The present literatures concentrate more on the

applicative potential of colors in psychological perspective.

They report divided opinions on the effects since color

perception is often likely to be contextual and overlaps

with cultural and linguistic dependency. Moreover, com-

prehensive studies on the physiological responses are

sparse and due to the analysis technique, limited by severe

approximations. With this backdrop, our work had set out

in an exhaustive investigation of neuronal activities in

brain during color perception via its physiological mani-

festation in EEG. The uniqueness our work offered was

twofold—methodological and analysis related. Most of the

studies use two or three colors together for comparison and

to study their roles in specific psychological attributes.

Usage of the whole color spectrum is unconventional

otherwise. We have used it in our work to explore the

effects of the whole wavelength range of visible light

altogether instead of comparing some of them. This, we

believe, could demonstrate how brain responds to color in a

more extensive manner. And for the analysis part, no other

studies have used such rigorous non-linear tools like

MFDFA and MFDXA in the domain of color perception.

Over the course of the paper, we have seen that this novel

approach provides interesting new data in regard to the

color perception process which has not been reported ever

before. Findings of the MFDFA analysis may be summa-

rized in the following:

1. The presence of fractality in the color induced bio-

signals indicates towards their complex non-linear

nature. Tackling such systems with linear analysis

methods like FFT or power spectral density is not

sufficient in understanding the intricacies of color

perception. They approximate various parameters and

can lead to misleading results. Rigorous statistical tools

such as MFDFA are necessary, considering they can

identify parameters directly related to the complexities

and quantify them, in due course.

2. MFDFA analysis of the color induced EEG shows the

presence of multifractality in all the brain areas under

consideration i.e., electrodes in Frontal, Occipital and

Parietal lobes. Multifractality is quantified by multi-

fractal spectral width, which is a measure of degree of

complexity or randomness. The fact that complexity is

observed in these brain areas simultaneously suggests

that they participate actively during color perception.

Occipital and Frontal lobes, being the visual and

cognitive centers of the sensory perception, are

expected to be involved in the process. But MFDFA

analysis additionally point towards Parietal lobe acti-

vation during color perception as well.

3. The increase in complexity during color viewing and

decrease during baseline Grey—such change in the

complexity pattern is similar throughout the electrodes

for the whole experimental duration. This indicates that

the process of color perception includes the ability of

separating a color from the set baseline by means of the

change in respective degrees of long range correla-

tions; which makes the multifractal spectral width an

efficient marker in bio-signal analysis for color

perception studies in future.

4. A novel and interesting finding that must be mentioned

is the nature of spectral width with respect to color

stimulus. The values of the multifractal width are

found highest for color Blue, followed by Red and then

Green. Yellow recorded the lowest width, followed by

Indigo. Multifractal spectral width measures the long

range correlations present in the signal. So, it can be

said without doubt that such correlations are higher in

Blue than Red, indicating higher arousal. Overall,

Blue-Green part (shorter wavelengths) of the spectrum

showed higher arousal than Red/Orange part (higher

wavelength). This result is remarkable in terms of

offering support to previous ideas. Though studies have

previously reported the arousal during Blue (Lockley

et al. 2006; Vandewalle et al. 2007; Yoto et al. 2007),

Table 5 Detailed result of 2-way ANOVA on multifractal spectral width

Overall ANOVA df Sum of squares (SS) Mean square F-value p-value (significance level\ .05)

Color 6 2.63599 0.43933 23.30954 9.15E–26

Electrode 8 0.02985 0.00373 0.19795 0.99116

Interaction 48 0.06001 0.00125 0.06634 1

Model 62 2.72585 0.04397 2.33266 8.30E–08

Error 945 17.81107 0.01885 – –

Corrected total 1007 20.53692 – – –
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but any consensus is yet to be reported, much less the

how’s and why’s of the perceptual detail. Our study,

backed by robust non-linear tools, could embolden the

validity of these claims.

5. An offshoot of the previous observation is the fact that

the highest complexity is recorded for the three

primary colors. This could be due to the fact that the

photoreceptors which are directly responsible for color

vision consist of the three types—red, green and blue—

and perceives these colors more actively than others.

The manifestation of this activation is displayed via

spectral width. When the arousal due to colors other

than these three is reported, it is mostly in light of some

cognitive task based study. Hence, cognition plays a

role in those scenarios which might favor other colors.

This work, designed specifically to address the electri-

cal activity due to color vision, doesn’t factor in such

involvements. We reckon this is why the primary

colors show high activation in EEG data.

6. For the color-wise breakdown of the absolute values of

multifractal width, the electrodes that recorded the

highest complexity were F8, O2 and P4, all of which

belong to the right hemisphere. This suggests that the

long range correlations in the right part of the brain is

more prominent while color viewing than the left. Data

for the relative increase of width, i.e., increase from the

immediately prior baseline color repeats this trend for

the Occipital lobe. But P3 and F3 electrodes in Parietal

and Frontal lobe show higher relative increase. This

result is an indicator of hemispherical asymmetry in

color perception in atleast Occipital and Parietal lobes.

Frontal lobes, too, could be considered for such

lateralization (right brain bias) as the amplitude of

increase in F8 is significantly higher than F3.

7. Lastly, substantial activation of Parietal electrodes is

seen not only during color stimulus, but even for

baseline Grey too. The visual process is related directly

to Occipital area. Our results hint at Parietal partici-

pation in the process as well. Since part of the Parietal

lobe is involved in the integration of sensory informa-

tion, the complexity change seems justified. Although

targeted future investigations could help reveal specific

details of this involvement.

From the next part of the experiment, Multifractal

detrended cross-correlation analysis (MFDXA) provides

few more important conclusions regarding the cross-

Table 6 Post hoc analysis (Tukey test) for colors

Means comparisons

Tukey test colors Mean diff SEM q Value Prob Alpha Sig LCL UCL

Indigo—Violet -0.01307 0.01618 1.1421 9.84E-01 0.05 0 -0.06087 0.03474

Blue—Violet 0.14135 0.01618 12.35531 3.53E-09 0.05 1 0.09355 0.18916

Blue—Indigo 0.15442 0.01618 13.49741 2.65E-09 0.05 1 0.10661 0.20222

Green—Violet 0.04233 0.01618 3.69984 1.22E-01 0.05 0 -0.00548 0.09013

Green—Indigo 0.05539 0.01618 4.84195 0.01145 0.05 1 0.00759 0.1032

Green—Blue -0.09902 0.01618 8.65546 4.12E-08 0.05 1 -0.14683 -0.05122

Yellow—Violet -0.00461 0.01618 0.40339 0.99996 0.05 0 -0.05242 0.04319

Yellow—Indigo 0.00845 0.01618 0.73871 0.99854 0.05 0 -0.03935 0.05626

Yellow—Blue -0.14597 0.01618 12.75869 3.21E-09 0.05 1 -0.19377 -0.09816

Yellow—Green -0.04694 0.01618 4.10323 0.05812 0.05 0 -0.09475 8.63E-04

Orange—Violet 0.02963 0.01618 2.5903 0.52686 0.05 0 -0.01817 0.07744

Orange—Indigo 0.0427 0.01618 3.7324 0.11554 0.05 0 -0.00511 0.09051

Orange—Blue -0.11172 0.01618 9.76501 1.04E-08 0.05 1 -0.15952 -0.06391

Orange—Green -0.01269 0.01618 1.10954 0.98644 0.05 0 -0.0605 0.03511

Orange—Yellow 0.03425 0.01618 2.99369 0.34343 0.05 0 -0.01356 0.08206

Red—Violet 0.07896 0.01618 6.90194 2.56E-05 0.05 1 0.03116 0.12677

Red—Indigo 0.09203 0.01618 8.04404 3.62E-07 0.05 1 0.04422 0.13983

Red—Blue -0.06239 0.01618 5.45337 0.00235 0.05 1 -0.1102 -0.01458

Red—Green 0.03663 0.01618 3.2021 0.26267 0.05 0 -0.01117 0.08444

Red—Yellow 0.08358 0.01618 7.30533 6.07E-06 0.05 1 0.03577 0.13138

Red—Orange 0.04933 0.01618 4.31164 0.038 0.05 1 0.00152 0.09713
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correlation pattern in different parts of the brain during

color perception. Those are given below:

1. The cross-correlated series between all the electrode

combinations shows the presence of multifractality

implying long range correlations between not only in

the signals themselves, but in the cross-correlated data

as well. Hence, MFDXA analysis definitely has the

potential to offer necessary parameters for quantifying

cross-correlation process between different areas of the

human brain.

2. Considering lobe-wise cross-correlation pattern, it is

seen that the electrodes in general share very similar

trends barring few exceptions. That is to say, during

each experimental condition, the change in cx for most

of the inter/intra lobe combinations was by and large

similar. This advocates for the cross-correlation pattern

to be very consistent throughout, irrespective of their

spatial distribution. It is a definitive illustration of the

inter/ intra lobe dependency of color vision.

3. The most significant observation in this segment of the

experiment is the overall trend of reduced cross-

correlation among electrodes with the introduction of

color stimulus and its increase when the color is

removed. Most of the colors—Blue, Green, Red,

Orange and Violet—resulted in cross-correlation

reduction when applied (Violet being the highest).

On the other hand, enhanced cross-correlations were

observed when they were changed to the next baseline

Grey (Orange to G7 showing the highest magnitude).

We argue that this pattern emerges due to the

processing of visual data well after the stimulus

bFig. 16 Empirical Mode decomposition of a 10 s EEG signal of F3

electrode

Fig. 16 continued
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retrieval. The cross-correlation coefficient cx is the

manifestation of the enhanced connection between

various parts of the brain during this phase. The two

colors that fall outside this norm are Indigo and

Yellow, interestingly both had low complexity com-

pared to others. This fuels the argument further; since

in these two cases, the arousal levels were far lower

which points at having to process less sensory infor-

mation content. Hence, the need for the correlation

during and after being exposed to Indigo and Yellow

appears to be far limited (apart from Right Frontal-

Occipital combinations like F4–O2 and F8–O2, the

magnitude of cross-correlation is quite small, too).

4. Destruction of cross-correlation was highest in case of

G1 to Violet and lowest during Orange to G7. In both

of the cases, Inter-frontal or Fronto-Parietal combina-

tions have registered optimum changes.

From these vital and newfound results emerging from

both the MFDFA and MFDXA analysis, it can be said with

certainty that the principal aim of this study has been met

successfully. We have studied the changes in several brain

activities in detail and were able to challenge or consoli-

date the existing ideas from the stout platform set by the

aforementioned methods. Also, the correlation study of the

brainwaves indicates that the correlation between various

lobes is significantly higher during specific color stimulus

exposure and more importantly, even after the stimulus

retrieval. The obtained data may be of immense importance

when it comes to studying the neuro-cognitive basis of

color perception. Previous researches on color perception

have presented an array of psychological and physiological

aspects of it, as discussed before. The points below

encapsulate how this study could contribute to the growing

literature:

Firstly, we would like to refer to the necessary

methodological treatment. Studies in this field of research

have shown some methodological shortcomings that has

been eloquently summarised in Elliot (2019). Based on

those weaknesses, some of the points are recommended to

increase reliability and reproducibility of the work. They

include confirming participant naiveté and confidentiality,

checking color vision deficiency among them, adequate

sample size of the trial, reporting color specification and

controls during experiment, monitoring ambient illumina-

tion etc. In this work, we tried to comply with these to the

best of our efforts. The participants were ensured of their

anonymity and kept uniformed about anything but the

procedure required for them to follow. They were asked to

take an online variation (https://www.color-blindness.

com/ishihara-38-plates-cvd-test/) of the Ishihara test (Ishi-

hara 1987) to ensure they don’t have color-blindness or

color vision deficiency. Consulting other EEG studies on

sensory perceptions (Ghosh et al. 2018), adequate sample

size was also ensured. Specifications of the experimental

instruments and the color notations are given as per the

recommendations. One important point which needs to be

emphasised here is that the investigation was focused to

study the complexity patterns of cortical electrical activity

and to analyse it quantitatively. Hence the color control

was not set to compare the effect of one/two specific colors

Fig. 17 Raw EEG signal and artifact free EEG signal of 10 s
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or their colorimetric properties like hue or chroma.

Although we found the change in complexity of color-

induced EEG patterns, more effect-specific experimental

design are necessary to comment on which properties of

the colors cause said changes in a more definitive manner.

Going back to the experimental process, another suggestion

of keeping the ambient illumination to a minimum was also

met as the participants were kept in a dark room during the

procedure. This way, we have followed the recommenda-

tions to have the quality of the overall methodological

arrangement be of higher standards.

Secondly, as mentioned in the above point, analysis of

color-induced bio-signals was the idea of the work. Hence,

the whole gamut of visual spectrum was displayed instead

of few colors (as is done in majority studies). The com-

plexity changes due to various wavelengths could be

examined this way and with the emerging pattern, further

explorations can be pinpointed.

Thirdly, the most important novelty that this study offers

is the usage of non-linear tools for analyzing the EEG

signals. Previous literatures were limited in this area since

they haven’t factored in the chaotic aspect of the biological

manifestations. Complexity and long range correlations are

inherent properties of such series. Hence, without consid-

ering these properties, complete scrutiny of them couldn’t

be carried out. Establishing this fact is an important point

that this study hopes to achieve; something which might be

the next step in future investigations of color perception.

Fourth and finally, the parameters this study has resulted

(multifractal width w, cross-correlation coefficient cx) are
unprecedented in this field of research and of high signif-

icance. These parameters emerge from the non-linear

dynamics of brain signals under color stimuli and quanti-

fying them is a step towards understanding the signatures

of such dynamics more elaborately and with more rigour.

Another byproduct of this analysis is obtaining such

quantifiable parameters which are reproducible under dif-

ferent experimental circumstances. Hence, even with

altered aims, the dynamics in the brain can be well

understood.

Having said the abovementioned contributions, our

study eventually is a stepping stone to a larger horizon of

color perception and cognition research that can be tra-

versed by extending the work further. This study was

conducted with 16 participants, which may limit us from

global interpretation of the findings presented for now. To

attain the same, we plan to further extend this study with a

larger pool of participants. In future, for pinpointing the

most relevant parameters/leads that contribute to the major

findings of this work, machine learning techniques can be

used during analysis. This will, in turn, improve the overall

interpretability of the parameters. This paper aimed to

explore the changes in the broadband EEG signal with

exposure to different colors of the VIBGYOR. For further

validation study, the results of this work can be compared

to the results of frequency dependent analysis of the same

EEG data corresponding to specific experimental condi-

tions (to investigate if any particular EEG frequency band

gets more pronounced while viewing any particular color).

Also, further classifications of the participants based on

their age, sex, color preference can be made before inter-

preting the findings of this study to reach a more general-

ized conclusion in the global scenario. One more

interesting extension of our report could be in the direction

of non-random order presentation of the visual stimulus

and its subsequent influences on the results found. To best

of our knowledge, reported studies on order effects in

visual or color perception tasks are very scarce. Yet it

wouldn’t be entirely accurate, theoretically at the least, to

dismiss the possibility of its presence in this case. For

example: interference effect of one experimental color on

the perception of the next, given the short exposure time

(although the visual perception of color takes only

*150–200 ms, reported in Amano et al. (Amano et al.

2006)). It, therefore, remains another avenue which could

be delved into in future.

Before concluding the paper, it is worth calling out that

human color perception is a domain vast enough to induce

interest from a plethora of disciplines like physics, neuro-

science, cognitive science, psychology, psychophysics,

marketing industry and even visual arts and linguistics.

Needless to say that to advance our knowledge on how we

perceive and process colors the requirement of rigorous

scientific tools is absolutely crucial. This work takes such a

step to tackle the electrophysiological aspect of the prob-

lem. The novel approach described attempts to study the

color perception by analyzing its physiological signatures

meticulously using state-of-the-art non-linear tools. We

demonstrate that quantifying parameters like degree of

complexity and degree of cross-correlation can categori-

cally reveal exclusive information about neuronal dynam-

ics and nature of their interdependency. Our work,

therefore, argues heavily in favor of using such advanced

tools in color perception studies and hopes to initiate a

modern paradigm of research in this field.

Appendix

Empirical Mode Decomposition (EMD)

EMD is a decomposition method for non-stationary and

nonlinear signals (Huang et.al. 1998). The EMD technique

decomposes a signal into a number of intrinsic mode

functions (IMFs) that represent fast to slow oscillations. An

IMF is a function that satisfies two conditions:
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(1) the number of extrema and the number of zero

crossings must either be equal or differ by at most one; and

(2) at any point, the mean value of the envelope defined by

the local maxima and the envelope defined by the local

minima is zero. To obtain an IMF from the original signal

x, a sifting process is performed (Huang et.al. 1998) as

follows:

First, all extrema of the original signal x need to be

identified. All local maximum points are connected by a

cubic spline line to form the upper envelope eu. All local

minima points are connected likewise to form the lower

envelope el. The mean of eu and el, a1, is calculated as:

a1 ¼
eu þ elð Þ

2
ð20Þ

The difference between the original signal and the mean

is defined as the first component h1:

h1 ¼ x� a1 ð21Þ

In the next sifting process, h1 is treated as the signal, and

the mean a11 of its local maxima and local minima is

found. Thus, we have:

h11 ¼ h1 � a11 ð22Þ

Subsequently, we can repeat this sifting procedure k

times until h1k is an IMF, with:

h1k ¼ h1ðk�1Þ � a1k ð23Þ

Therefore, the first IMF component derived from the

original signal is designated as:

c1 ¼ h1k ð24Þ

The sifting process has been stopped when an IMF has

been established by limiting the size of the standard devi-

ation (SD), calculated from the two consecutive sifting

sequences as below:

SD ¼
XT

t¼0

½h1ðk�1ÞðtÞ � h1kðtÞ�2

h2
1ðk�1ÞðtÞ

ð25Þ

A typical value for SD can be set between 0.2 and 0.3

(Huang et.al., 1998). In our case the value was set to 0.25.

To extract the 2nd IMF component, we remove c1 from the

original signal x:

r1 ¼ x� c1 ð26Þ

The residual r1 is treated as a new signal, and the same

sifting process is applied to obtain the 2nd IMF component

c2 and the residual:

r2 ¼ r1 � c2 ð27Þ

This procedure is repeated on the subsequent residuals

rj’s, until the final residual rJ no longer contains any

oscillation information,

rj ¼ rj�1 � cj ð28Þ

By summing up Eqs. (7)–(9), we can obtain:

x ¼
XJ

j¼0

cj þ rj ð29Þ

Thus, original signal x is decomposed into J empirical

modes cj’s and a residue rJ.

Since, the artifacts lie in the low frequency regions

(\ 3.5 Hz) (Bizopoulos et al. 2013; Jung & Saikiran 2016),

the IMFs that appear in this band are rejected. Thus, the

filtered signal is the sum of the remaining IMFs and more

specifically, only the first few IMFs including the residue

were kept (Bizopoulos et al. 2013). We have obtained noise

free EEG data for all the electrodes using the EMD tech-

nique and used this data for further analysis and classifi-

cation of EEG features.

Fig. 16a–k shows a representative figure of the F3

electrode in 10 s duration which was subjected to EMD

technique to obtain noise-free EEG data. The sifting pro-

cess was continued until the final residue is a constant, a

monotonic function, i.e., a function with only one maxima

or minima from which no more IMF’s can be derived. We

have set the value of SD to be 0.25 after which the sifting

process has been stopped.

The EMD process was followed for all the experimental

conditions for all the subjects.Thenoise-free signal thusobtained

after the removal of muscular and blink artifacts has been used

for the subsequent MFDFA and MFDXA analysis (Fig. 17).

See Figs. 16 and 17
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