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Abstract: Background: Schizophrenia is a serious mental illness that affects more than 21 million
people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis.
Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One ma-
jor approach to identify and understand these diverse symptoms in humans has been to study be-
havioral phenotypes in a range of animal models of schizophrenia.

Objective: We aimed to provide a comprehensive review of the behavioral tasks commonly used
for measuring schizophrenia-like behaviors in rodents together with an update of the recent study
findings.

Methods: Articles describing phenotypes of schizophrenia-like behaviors in various animal models
were collected through a literature search in Google Scholar, PubMed, Web of Science, and Sco-
pus, with a focus on advances over the last 10 years.

Results: Numerous studies have used a range of animal models and behavioral paradigms of schi-
zophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models
of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using sever-
al behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symp-
toms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues
for drug testing and mechanistic studies.

Conclusion: Based on the most recent advances in the field, it is apparent that a myriad of be-
havior tests are needed to confirm and evaluate the congruency of animal models with the numer-
ous behaviors and clinical signs exhibited by patients with schizophrenia.
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1. INTRODUCTION

Schizophrenia, a serious mental illness with a lifetime
worldwide prevalence of 0.4% [1], affects more than 21 mil-
lion people [2]. Schizophrenia is a complex neuropsychiatric
disorder whose etiology and pathogenesis have been attribut-
ed to both genetics and the environment [3]. Symptoms ordi-
narily begin between the late teens and early thirties [1].
Symptoms of schizophrenia have been typically categorized
into three clusters: positive, negative, and cognitive [4, 5].
Positive symptoms involve hallucinations (false perception-
s), delusions (abnormal beliefs), disorganized thinking, and
experiences that are not characteristic of a normal mental
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state [5-9]. Negative symptoms comprise social withdrawal,
lack of motivation, impoverished speech, emotional blunt-
ing, and abnormalities in social interaction, which are all
signs representing deficits in normal social functions [7-10].
Lastly, cognitive symptoms include impairments in working
memory, attention, and executive function [5, 7-13]. Current-
ly, antipsychotic drugs are mainly effective against positive
symptoms, showing little therapeutic success in mitigating
negative and cognitive symptoms [9, 10, 13, 14]. Even then,
existing antipsychotics against positive symptoms have limit-
ed efficacy and have harmful side-effects [15].

To date, the etiology of schizophrenia remains unclear.
Furthermore, there are no biological markers for the diagno-
sis of schizophrenia, and patient diagnosis is only based on
an established set of clinical symptoms [16, 17]. In addition,
medication selection and assessment of treatment, progno-
sis, and life functioning of people with schizophrenia are pri-
marily focused on clinical signs [18, 19]. Hence, the confir-
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mation of these clinical symptoms in human patients is of
the utmost importance. Various animal models are needed to
aid in the identification of these diverse symptoms, which
may be achieved through more rapid monitoring of disease
progression than is feasible in humans [4]. Nonetheless, it is
difficult to fully reproduce symptoms of schizophrenia in ex-
perimental animals [8]. Although there are individual
variances in the overall brain anatomy, the gross anatomy of
the brain, including long-range neural projections as well as
many of the neuronal and molecular pathways underlying
brain function, is evolutionarily conserved among rodents
and humans [7, 20]. Moreover, there remain commonalities
in behavioral abnormalities between rodents and humans,
with conserved circuitry [20]. Animal models of schizophre-
nia should fulfill the three main criteria of face, construct,
and predictive validity for the disorder [21]. Face validity
represents how well the animal model mimics the symptoms
of schizophrenia in human patients; construct validity de-
scribes the conformity of the model’s pathophysiology and
etiology with those proposed in human schizophrenia; and
predictive validity indicates the expected response to estab-
lished and novel therapeutics [4, 5, 21, 22]. Consequently,
animal models of schizophrenia should be devised based on
construct validity and evaluated according to both face and
predictive validities [5]. In particular, face and predictive va-
lidities are confirmed by subjecting the model animals to
various behavioral tasks [23]. Preclinical and clinical studies
have thus established similar behavioral tasks for laboratory
animals and human patients with the primary objective of
correctly studying homologous actions in both organisms
[7]. Within the past 10 years, multiple review papers have
examined the ways in which schizophrenia is constructed
and modeled in animals [4, 21, 24-37]. In contrast, to the au-
thors” knowledge, no review papers have attempted to eluci-
date the various behavioral tasks employed to evaluate these
animal models in the same encompassing scope and detail.
The primary goal of this review paper was to fill this gap by
providing a comprehensive but concise account of how to
confirm schizophrenia-like behavior in animal models.

2. BEHAVIORAL TASKS MEASURING POSITIVE
SYMPTOMS OF SCHIZOPHRENIA

Schizophrenia's key positive symptoms include
paranoia, visions, disorganized perception, and traits that are
uniquely human. A subgroup of patients with schizophrenia
also shows psychomotor agitation, which includes hyperac-
tivity or increased stereotypic movements [38, 39]. Due to
its face validity and simple quantification compared to other
positive symptoms, the measurement of locomotor activity
has been extensively used to elucidate the positive symptom
of schizophrenia in preclinical fields [23]. However, this
symptom is not exclusive to schizophrenia, as patients with
several neuropsychiatric disorders such as attention deficit
disorder and bipolar disorder also exhibit psychomotor agita-
tion [20, 40]. The involvement of dopamine in movement
control is well known, and psychomotor agitation in schi-
zophrenia could be caused by hyperdopaminergic activity.
Thus, enhanced dopaminergic activity in rodents results in
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hyperlocomotion, including greater horizontal movement,
rearing, and a range of stereotyped behaviors [23]. Further-
more, patients with schizophrenia show a deficit in sensori-
motor gating, which is widely accepted as an endophenotype
of schizophrenia [41]. The impairment causes oversensitivi-
ty to sensory stimulation resulting in cognitive fragmenta-
tion and cognitive disorders [42]. The deficit in sensorimo-
tor gating is thus considered to be an “interface of psychosis
and cognition” rather than a simple positive symptom [43].
Here, we describe the behavioral tasks most commonly used
to measure positive symptoms, namely the open field test
for evaluating locomotor activity and prepulse inhibition (P-
PI) for evaluating sensorimotor gating.

2.1. Open Field Test

Locomotor activity describes the ambulatory movement
of a species in a given environment. Usually, it is measured
by using the open field test, which tests subjects by placing
them in a confined space and subsequently determining the
distance they traveled and time they spent traveling over the
total duration of the experiment [40]. This can be convenient-
ly measured using automated photocell cages or scored by
observation. More complex methodology includes measure-
ment of the ethological range of natural behaviors and quali-
tative analysis of behavior patterns and perseverative fea-
tures [44]. In mouse models, a typical method of locomotor
activity measurement entails the placement of the animal in
a rectangular acrylic arena, with transparent walls, that is
completely novel to the animal. Mice are allowed to freely
explore the area for a set amount of time while their move-
ments are manually or automatically recorded [44].

In various established models of schizophrenia, animals
display increased locomotor activity, either at the baseline
level or in response to a novel environment. Table 1 lists re-
cent articles on locomotor activity in several types of animal
models, including developmental, genetic, and pharmacolog-
ical models. In the developmental model, maternal immune
activation (MIA) by the inflammatory agent polyinosinic-po-
lycytidylic acid (poly(I:C)) during pregnancy [45] and peri-
natal levodopa (L-dopa) treatment in juvenile female mice
[46] induced hyperlocomotion in the offspring. Various ge-
netic models of schizophrenia have also shown different lo-
comotion results depending on which gene is manipulated.
Most genetically induced animal models of schizophrenia
display an increase in locomotor activity in various condi-
tions. Such conditions include Sterol regulatory elemen-
t-binding protein 1c (SREBP1c) knockout (KO) mice [47],
G protein-coupled receptor 88 (GPR88) KO mice [48], dys-
trobrevin binding protein 1 (Dtnbpl) deficiency mice [49],
knockdown of metabotropic glutamate receptor 5 (mGluR 5)
mice [50], N-methyl-D-aspartate (NMDA) receptor ablation
mice [51], brain-specific collapsin response mediator protein
2 (CRMP2) KO mice [52], 1g21.1 hemizygous microdele-
tion (hemizygotic Df(hlg21)/+) mice + amphetamine [53],
dopamine transporter (DAT) KO mice [54], and glial gluta-
mate and aspartate transporter (GLAST) KO mice [55].
However, no effect on locomotor activity was observed in
animal models with reduced solute carrier family 1
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Table 1. Recent studies using behavioral paradigms that measure positive symptoms of schizophrenia in rodent models.

Paradigm | Animal Model

Experimental Manipulation

Results References

Open field | Developmental

Poly(I:C)-induced MIA mouse offspring

1 increased locomotion [45]

test

Perinatal L-Dopa treatment in female juvenile mice

1 increased locomotion [46]

Genetic SREBPIc¢c KO mice 1 increased locomotion [47]

GPR88 KO mice 1 increased locomotion [48]

Dtnbpl deficient mice 1 increased locomotion [49]

mGlu5 KO mice 1 increased locomotion [50]

NMDA receptor ablated mice 1 increased locomotion [51]

Brain-specific CRMP2 KO mice 1 increased locomotion [52]

Df(hlg21)/+ mice (1q21.1 hemizygous microdeletion) 1 increased locomotion [53]

DAT KO mice 1 increased locomotion [54]

GLAST KO mice 1 increased locomotion [55]

Reduced SLC1AL1 expression in mice NE [56]

GAS?7 deficient mice NE [57]

Type I NRG1™ male mice from the mutant fathers NE [58]

Selective mPFC PLC-B1 knockdown mice NE [59]

Pharmacological Amphetamine (1 and 5 mg/kg) or MK-801 (0.01 and 0.05 mg/kg), 1 increased locomotion [23]
Higher doses of amphetamine (25 mg/kg) or MK-801 (0.25 mg/kg) administration in mice NE

Administration of Catha edulis forsk extract in mice

1 increased locomotion [60]

hM4D-mediated inhibition of GADG65 interneurons in the mouse vHPC

1 increased locomotion [61]

PCP + A9-THC treated mice

1 increased locomotion [62]

Prepulse | Developmental

Poly(I:C)-induced MIA mouse offspring

| decreased inhibition [70]

inhibition Genetic SREBP1c KO mice | decreased inhibition [47]
NAc-TMEM mice | decreased inhibition [80]

GPR88 KO mice | decreased inhibition [48]

Dtnbp! deficient mice | decreased inhibition [49]

Df(h1q21)/+ mice (1q21.1 hemizygous microdeletion + amphetamine) | decreased inhibition [53]

Chakragati mice | decreased inhibition [72]

mGlu5 KO mice | decreased inhibition [50]

GAS7 deficient mice | decreased inhibition [57]

DAT KO mice | decreased inhibition [54]

Nlgn2 R215H KI homozygous mice 1 increased inhibition [73]

Selective mPFC PLC-B1 knockdown mice NE [59]

Type 111 NRG1" omale mice from mutant fathers NE [58]

Reelin-deficient + corticosterone-treated mice NE [71]

Pharmacological hM4D-mediated inhibition of parvalbumin interneurons in the mouse vHPC | decreased inhibition [61]

PCP+ A9-THC treated mice

| decreased inhibition [62]

hM4D-mediated inhibition of GADG65 interneurons in the mouse vHPC NE [61]

Abbreviations: CRMP2 = collapsin response mediator protein 2; DAT = dopamine transporter; Dtnbp1 = dystrobrevin binding protein; GAD65 = glutamic acid decarboxylase 65;
GAS7 = growth arrest-specific 7; GLAST = glial glutamate and aspartate transporter; GPR88 = G protein-coupled receptor 88; KO = knockout; L-dopa = levodopa; mGluR5 =
metabotropic glutamate receptor 5 = MIA, maternal immune activation; mPFC = medial prefrontal cortex; NAc-TMEM mice = Tmem168 vector was injected into the NAc of
C57BL/6J mice; Nlgn2 R215H = missense mutation R215H of neuroligin 2; NMDA = N-methyl-D-aspartate; NRG1 = neuregulin-1; PCP = phencyclidine; PLC-B1 = phospholipase
C-B1; poly(I:C) = polyinosinic-polycytidylic acid; SLC1A1 = Solute Carrier Family 1 Member 1; SREBP1c = sterol regulatory element-binding protein 1¢; vHPC = ventral hippo-

campus; A9-THC = A9-tetrahydrocannabinol; NE = no effect.

member 1 (SLC1A1) expression [56], growth arrest-specific
7 (GAS7) deficiency mice [57] (however, this model has de-
creased sensorimotor gating, as measured by PPI), type 111
neuregulin-1 (NRG1) +/— male mice from mutant fathers
[58] (however, this model has increased sociability in the
three-chamber test), and selective knockdown mice of phos-
pholipase C-B1 (PLC-B1) in the medial prefrontal cortex
(mPFC) [59]. Pharmacologically, several drugs, including
amphetamine and MK-801 (NMDA receptor (NMDAR) an-
tagonist) increase locomotor activity but can inversely lead

to a decrease at higher doses due to sedative and anesthetic
effects [23]. Recently, Catha edulis forsk (khat plant) extract
[60], hM4D-mediated inhibition of glutamic acid decarboxy-
lase 65 (GAD65) neurons in the ventral hippocampus (vH-
PC) [61], and phencyclidine (PCP) + A9-tetrahydrocannabi-
nol (A9-THC) treatment [62] were also shown to induce schi-
zophrenia-like hyperlocomotion behavior.

In most of these recent studies, the consensus finding
was an increase in locomotor activity. This hyperlocomotion
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phenotype was generated through varied means, mostly ge-
netic manipulations and environmental alterations, or the in-
teraction between the two. Genetic manipulations have main-
ly focused on the alteration of genes that were previously im-
plicated as risk factors for schizophrenia in human patients
[47-49, 52, 56, 59] or shown to play a role in NMDAR dys-
function [50, 51]. Additionally, some studies have also
suggested the involvement of alterations in the dopaminerg-
ic [53, 54] and y-aminobutyric acid (GABA)ergic systems
[61] in inducing schizophrenia-linked hyperlocomotion. The
locomotor phenotype of rodent models of schizophrenia has
been further elucidated by previous review papers [40, 63,
64] where other mechanisms are discussed in detail.

2.2. Prepulse Inhibition

As a common measure of sensorimotor gating, PPI is ex-
tensively accepted as one of the most important parameters
in assessing the genetic base of schizophrenia [65] . PPI is
the level of startle reflex reduction when a non-startling
(weak 1initial) acoustic stimulus is presented prior to a
startling (strong) stimulus [42, 66, 67]. In brief, PPI can be
measured by recording the animal response in the presence
or absence of a weaker, non-startling prepulse that precedes
the startling pulse by a short delay. One of the primary ad-
vantages of PPI measurement is its translatability between
mice and humans, as it is one of the few tests that are essen-
tially conserved across all vertebrate species [41]. PPI re-
sults are reproducible and convenient to measure, as most
set-ups are automatic. Furthermore, experiments do not re-
quire prior subject training or any special preparation [40,
68]. Although there is general agreement in the literature re-
garding the protocols and equipment used, it is important to
note that some factors may confound the results of PPI such
as environment, age, seX, inter-stimulus intervals, stimulus
modalities, treatment doses, and animal strains [23, 69].

The various factors found to be associated with deficien-
cy in sensorimotor gating include the developmental stage
[70], stress [71], as well as risk factors of various types [48]
including genetic risk factors previously established in pa-
tients with schizophrenia [53, 71-73]. Previous reviews have
extensively summarized and discussed the use of PPI in ani-
mal models of schizophrenia in terms of genetic [23, 41, 65,
74-77] and pharmacological [78, 79] manipulations. Many
recent studies have also clarified schizophrenia-like be-
haviors by measuring the deficiency of sensorimotor gating
through PPI in several types of animal models (Table 1).

A recent report has found that a developmentally-in-
duced animal model of BALB/c mouse offspring by po-
ly(I:C) maternal injection exhibited impaired PPI [70]. More-
over, most recent studies involving genetically induced ani-
mal models of schizophrenia have revealed a deficit in PPI.
The animal models included SREBP-1¢ KO mice [47],
C57BL/6J mice with adeno-associated virus Tmem168 vec-
tor injected into the nucleus accumbens (NAc-TMEM mice)
[80], GPR88 KO mice [48], Dtnbpl deficient mice [49],
1g21.1 hemizygous microdeletion (hemizygotic Df(hlg21)/+
mice) plus amphetamine [53], chakragati mice [72], mGlu5
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KO mice [50], GAS7-deficient mice [57], and DAT KO
mice [54]. However, some genetically manipulated models
have revealed an increase in PPI or no effect. These models
include missense mutation R215H of neuroligin 2 (Nign2
R215H) knock-in (KI) homozygous mice [73], selective
knockdown mice of phospholipase C-B1 (PLC-B1) in the me-
dial prefrontal cortex (mPFC) [59], type III neuregulin-1 (N-
RGT1) +/— male mice from fathers with the mutation (howev-
er, this model shows increased sociability in the three-cham-
ber test) [58], and reelin-deficient and corticosterone-treated
mice (however, this model shows increased sociability in the
three-chamber test and decreased spontaneous alternation in
the Y-maze) [71]. Pharmacologically, hM4D-mediated inhi-
bition of parvalbumin neurons in vHPC [61] and phencycli-
dine (PCP) + A9-THC treatment [62] also resulted in de-
creased PPI in mice. However, some pharmacological ani-
mal models of schizophrenia show no change in PPI, such as
mice with hM4D-mediated inhibition of GADG65 interneu-
rons in the vHPC (however, this model shows increased lo-
comotor activity and decreased spontaneous alternation in
the Y-maze) [61].

Table 1 shows that various developmental, genetic, or
pharmacological animal models of schizophrenia that exhib-
it positive symptoms, including hyperlocomotion and defi-
ciency of sensorimotor gating. In general, within the past 10
years, most studies of animal models utilizing the locomotor
activity and PPI paradigms have employed genetic followed
by pharmacological and developmental models. Numerous
studies attempting to characterize their animal models of
schizophrenia primarily measure locomotor activity and sen-
sorimotor gaiting using the open field test and PPI, respec-
tively (Fig. 1), to prove the presence of positive symptoms
or congruent behaviors [42, 75, 81]. Particularly, PPI is con-
sidered a gold standard for measuring schizophrenia-like im-
pairment in animal models [82]. Hence, among the symp-
toms of schizophrenia, behavioral tests measuring positive
symptoms have been well described. The neural basis for th-
ese has been well reported through the development of differ-
ent animal models and subsequent drug trials.

3. BEHAVIORAL TASKS MEASURING NEGATIVE
SYMPTOMS OF SCHIZOPHRENIA

Negative symptoms, also known as defect symptoms of
schizophrenia, are characterized by a reduction in normal
functioning, which leads to disability and reduced quality of
life [83]. These symptoms are generally considered to reflect
features such as anhedonia (inability to experience pleasure
from positive stimuli), avolition (decreased goal-directed mo-
tivational behavior), asociality (social withdrawal), alogia
(paucity of speech), and blunted affect (diminished facial
and emotional expression) [84-87]. Although the mech-
anisms underlying the negative symptoms are complex and
not well elucidated, recent studies have suggested the hypo-
function of NMDA, more specifically, the reduced activa-
tion of the NMDAR subtypes as a mechanism implicated in
the pathophysiology of negative symptoms [88, 89]. NMDA
hypofunction of cortical interneurons could lead to the acti-
vation of GABAergic interneurons in the ventral tegmental
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Neurobehavioral correlations between clinical symptoms of human
schizophrenia and behavioral paradigms of schizophrenia animal models

Clinical symptom

v’ Hyperactivity/ stereotypic

Positive S ——

Symptom

v Impairment of sensory motor

gaiting
. v i
Negative Anhedonia
Symptom
motivational behavior)

v' Asociality (social withdrawal)

v Alogia (paucity of speech)

v' Blunted affect (diminished facial

and emotional expression)

v Impairment of spatial working

Cognitive
Symptom

memory

Behavioral paradigm

= v Open field test
-» v PPI

—» ¥ FST, TST, Sucrose preference test

v Avolition (decrease of goal-directed = v FST, TST

—» v Three-chamber sociability test

= v Sucrose preference test, EPM

—» v Sucrose preference test, EPM

=» v RAM, Y-maze, MWM

v Impairment of non-spatial working —» v* Odor span task, Novel object

memory

v' Attention impairment

recognition test

= v ASST, 5-CSRTT

v Impairment of executive function —» v ASST, 5-CSRTT

Fig. (1). Schematic flow diagram of neurobehavioral correlations between clinical symptoms of human patients with schizophrenia
and behavioral paradigms of schizophrenia animal models. Symptoms of schizophrenia in human patients have been translated into be-
havioral versions in various animal models to elucidate the etiology and precise mechanisms of schizophrenia.

Abbreviations: PP, prepulse inhibition test; FST, forced swim test; TST, tail suspension test; EPM, elevated plus maze; RAM, radial arm
maze; MWM, Morris water maze; ASST, attentional set-shifting task; 5S-CSRTT, 5-choice serial reaction time task.

area [90]. The increased interneuron activity could decrease
adequate dopamine release in the PFC by inhibiting stimula-
tion of the mesocortical dopaminergic pathway, and could
thus contribute to the negative symptoms [91]. Because
most therapeutic drugs for schizophrenia are dopaminergic
antagonists, they are mainly effective against positive symp-
toms, only showing low efficacy against negative symptoms
[5, 92, 93]. Therefore, cautiously proven animal models com-
bined with suitable evaluations of negative symptoms are
key to the development of new therapeutic strategies for th-
ese symptoms [94]. Certain negative symptoms, such as alo-
gia, however, are virtually impossible to reproduce in labora-
tory animals; thus, such behavior may be uniquely human
[83]. In contrast, at least theoretically, anhedonia, avolition,
and asociality may be experienced by both humans and ani-
mals and can therefore be replicated in a mouse model [84].
Here, we describe several common tasks to assess negative
symptoms in animal models of schizophrenia, such as the
forced swim test (FST), tail suspension test (TST), sucrose
preference test, three-chamber sociality test, and elevated
plus maze (EPM).

3.1. Forced Swim Test

Swimming, or the lack thereof, in the FST is one of the
most well-known animal behavioral tasks utilized for assess-
ing the effect of potential anti-depressant drugs [95].
Trained observers measure the immobility time of subject an-
imals in a transparent acrylic vessel containing water over a
period of several minutes. The animal is considered immo-
bile when it remains floating only performing the move-
ments necessary to stay afloat and retain its head above wa-
ter [96]. The FST and other behavioral paradigms used to
evaluate depression-like behaviors have also been applied to
assess negative symptoms of schizophrenia, including anhe-
donia and avolition [84].

Many studies have utilized the FST in past years, and nu-
merous factors have been associated with increased immobil-
ity in animal models of schizophrenia. Such factors include
prenatal MIA [97], genetic factors that were found to be re-
lated to schizophrenia in human patients, such as transcrip-
tion factors [98], other schizophrenia-associated genes [99],
receptor-associated proteins [100], compromised glutathione
synthesis [101], reduced brain serotonin levels [102], dereg-
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Table 2. Recent studies using behavioral paradigms that measure negative symptoms of schizophrenia in rodent models.

Paradigm Animal Model Experimental Manipulation Results References

Forced swim test Developmental LPS-treated NMRI mouse offspring 1 increased immobility [97]

Genetic En2 null mutant mice 1 increased immobility [98]

EPRAP KO mice 1 increased immobility [100]

NCS-1 KO mice 1 increased immobility [105]

NT KO mice 1 increased immobility [104]

Heterozygous reeler mice + corticosterone 1 increased immobility [99]

GRIA1 KO mice | decreased immobility [106]

ALK KO homozygous mice | decreased immobility [103]

GCLM KO mice | decreased immobility [101]

DBA/2J mice | decreased immobility [102]

PTPRG KO mice | decreased immobility [107]

Grin1®"?/Grin1" mice NE [108]

Pharmacological Chronic administration of ketamine in mice 1 increased immobility [109]

Subchronic treatment with ketamine in mice 1 increased immobility [110]

13-day treatment with MK-801 in mice 1 increased immobility [112]

15-day treatment with MK-801 in mice 1 increased immobility [111]

PCP treatment in mice 1 increased immobility [113]

Tail suspension test Developmental LPS-treated NMRI mouse offspring 1 increased immobility [97]

Prenatal LPS-exposed mice 1 increased immobility [122]

Genetic SREBPI1c KO mice 1 increased immobility [47]

Forebrain-specific NCAM-deficient mice 1 increased immobility [123]

Male MB-COMT deficient mice 1 increased immobility [124]

NCS-1 KO mice 1 increased immobility [105]

NT KO mice 1 increased immobility [104]

GRIA1 KO mice | decreased immobility [106]

DBA/2J mice | decreased immobility [102]

Grinl1®*"/Grin1" mice NE [108]

Pharmacological Subchronic treatment with ketamine in mice 1 increased immobility [110]

Chronic administration of ketamine in mice NE [119]

Subchronic PCP administration in mice NE [125]

Sucrose preference test Developmental | Viral mimic Poly(I:C)-induced MIA mouse offspring | decreased preference [129]

Perinatal L-Dopa treatment in male juvenile mice | decreased preference [46]

Genetic CD2 KO mice | decreased preference [130]

G72/G30 Tg mice | decreased preference [131]

Grinl(APV) mice + MK-801 | decreased preference [132]

Grik4 KO mice 1 increased preference [133]

Ahil +/- KO mice + chronic unpredictable stress NE [134]

GluA1 KO mice NE [135]

NRGI mutant mice + stress NE [136]

Pharmacological JNIJ chronic administration in mice | decreased preference [137]

(Table 2) contd....
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Paradigm Animal Model Experimental Manipulation Results References
Three-chamber sociality test Genetic Brain-specific CRMP 2 knockout (cKO) mice | decreased social interaction [52]
Pcm1+/— mice | decreased social interaction [140]
SREBPIc¢ KO mice | decreased social interaction [47]
CPB-K mice | decreased social interaction [141]
Glu-CB1(-/-) female mice | decreased social interaction [142]
Reelin deficiency + corticosterone in male mice | decreased social interaction [71]
Sarm1 knockdown mice | decreased social interaction [143]
V1aR KO mice | decreased social interaction [144]
Type III NRG1+/- male mice from mutant fathers 1 increased social interaction [58]
Selective knockdown of PLC-B1 in mPFC of male mice NE [59]
NRG1 mutant mice NE [146]
Pharmacological Ketamine treatment in mice | decreased social interaction [145]
PCP treatment in mice | decreased social interaction [113]
Administration of Catha edulis forsk extract | decreased social interaction [60]

Elevated plus maze Genetic

Nlgn2 R215H knock-in homozygous mice

1 increased anxiety-like behavior [73]

Heterozygous Ank3 KO mice

1 increased anxiety-like behavior| [152]

Female DISC1(D453G) mice

1 increased anxiety-like behavior| [153]

Kynurenine 3-monooxygenase-deficient mice

1 increased anxiety-like behavior| [154]

NAc-TMEM mice

1 increased anxiety-like behavior [80]

FFAR1-/- female mice

| decreased anxiety-like behavior| [155]

Forebrain knockout of DNMT1 in mice

| decreased anxiety-like behavior| [156]

CRMP2 deficient mice

| decreased anxiety-like behavior| [157]

Mutant DISC1 male mice NE [158]
Peml1(+/-) mice NE [140]
Type III NRG1+/- male mice from mutant fathers NE [58]

Abbreviations: Ahil = Abelson helper integration site 1; ALK = anaplastic lymphoma kinase; Ank3 = ankyrin 3; CD2 = cyclin-D2; CRMP2 = collapsin response mediator protein
2; DISC1 = disrupted-in-schizophrenia 1; DNMT1, DNA methyltransferase 1; En2 = engrailed-2; EPRAP = EP4 receptor-associated protein; FFAR1 = free fatty acid receptor 1;
GCLM = glutamate-cysteine ligase modifier; GLAST = glial glutamate and aspartate transporter; GluA1 = glutamate A1; Glu-CB1 = cannabinoid receptor type 1 in glutamergic neu-
rons; GRIA1 = glutamate ionotropic receptor AMPA type subunit 1; Grik4 = glutamate receptor, ionotropic, kainate 4; Grinl = glutamate ionotropic receptor NMDA type subunit 1;
JNJ = JNJ-28871063; KO = knockout; L-dopa = levodopa; LPS = lipopolysaccharide; MB-COMT = membrane-bound catechol-O-methyltransferase; MIA = maternal immune acti-
vation; mPFC = medial prefrontal cortex; NAc-TMEM mice = Tmem168 vector injected into the NAc of C57BL/6J mice; NCAM = neural cell adhesion molecule; NCS-1 = neuron-
al calcium sensor; Nlgn2 R215H = missense mutation R215H of neuroligin 2; NMRI = Naval Medical Research Institute; NRG1 = neuregulin-1; NT = neurotensin; Pcm1 = pericen-
triolar material 1; PCP = phencyclidine; PLC-B1 = phospholipase C-B1; poly(I:C) = polyinosinic-polycytidylic acid; PTPRG = receptor protein tyrosine phosphatase gamma; SAR-
M1 = sterile alpha and TIR motif-containing 1; SREBP1c = sterol regulatory element-binding protein 1¢; Tg = transgenic; VIAR = vasopressin receptor 1A; NE = no effect.

ulated monoaminergic signaling [103], and prefrontal cortex
dysfunction [104]. As shown in Table 1, recent studies using
animal models of schizophrenia have shown various results
with the FST. Developmentally, lipopolysaccharide (LP-
S)-treated Naval Medical Research Institute (NMRI) mouse
offspring also exhibited increased immobility time [97]. A
general increase in immobility time was observed in geneti-
cally induced animal models, including Engrailed-2 (En2)
KO mice [98], prostaglandin E, type 4 (EP4) receptor-associ-
ated protein (EPRAP) KO mice [100], neuronal calcium sen-
sor-1 (NCS-1) KO mice [105], neurotensin (NT) KO mice
[104], and heterozygous reeler mice with corticosterone
[99]. However, several genetic schizophrenic models have
shown decreased immobility time in the FST, namely GRI-
A1 KO mice [106], anaplastic lymphoma kinase (ALK) KO
homozygous mice [103], glutamate-cysteine ligase modifier
(GCLM) KO mice [101], DBA/2J mice [102], and receptor

protein tyrosine phosphatase gamma (PTPRG) KO mice
[107]. Lastly, Grinl1 ***"/Grin1" mice, a heterozygous mu-
tant strain with a non-synonymous mutation of the C to T
transition in exon 18 of the coding ionotropic glutamate re-
ceptor NMDA1 (Grinl) gene, revealed no effect on immobil-
ity time [108]. Pharmacologically induced models that ex-
hibited an increase in immobility time include ketamine
[109, 110], MK-801 [111, 112], and PCP [113], which are
all non-competitive NMDAR antagonists. Overall, taking in-
to consideration the 10-year span of the review article, most
animal studies utilizing the FST employed mainly genetic
followed by pharmacological and developmental models.

Consequently, previous studies have evaluated and dis-
cussed in detail the specific factors usually affecting the FST
and providing justification for its common use in measuring
negative symptoms of schizophrenia, whereas others have
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argued about its “validity” as a measure of depression-like
behavior [114]. Yet, other studies have explored the validity
of this test through the use of several antidepressants [115]
but have also discussed its ability to measure psychomotor
retardation [116].

3.2. Tail Suspension Test

Similar to the fst, the tst is used as an evaluation
paradigm for depression-like behavior [117] and anhedonia
and avolition, which are negative symptoms of schizophre-
nia in mice [84]. Mice are suspended by their tails with tape
in such a way that they cannot escape or hang on nearby sur-
faces [118]. The principal response of animals is to struggle,
but this is followed by periods of immobility when mice are
dangling passively and entirely stationary [119]. Previous re-
views have evaluated this test in animal models of depres-
sion [120], detailed the methodology [118], and evaluated
the effects of several antidepressants and opioids in this as-
say [121].

Recently, in some developmental animal models of schi-
zophrenia, increased immobility time was observed in LP-
S-treated NMRI mouse offspring [97] and prenatal LPS-ex-
posed mice [122]. Genetically, increased immobility time
was observed in SREBP1¢c KO mice [47], forebrain-specific
conditional neural cell adhesion molecule (NCAM)-defi-
cient mice [123], male membrane-bound catechol-O-methyl-
transferase (MB-COMT)-deficient mice [124], NCS-1 KO
mice [105], and NT KO mice [104]. Conversely, decreased
immobility was observed in GRIA1 KO [106] and DBA/2J
mice [102]. However, no effect was seen in
Grin1®**"™/Grin1" mice [108]. Pharmacologically, in-
creased immobility was seen in mice treated with a subchron-
ic ketamine regimen (5 days, 10 mg/kg/day, intraperitoneal)
[110], whereas no effect was observed in mice with chronic
administration of ketamine (10 days, 100 mg/kg/day, in-
traperitoneal) [119] and subchronic PCP administration (10
days, 10 mg/kg/day, subcutaneous) (however, this model
shows decreased spontaneous alternation in the Y-maze and
decreased working memory in the novel object test) [125].
Collectively, there was a general increase in immobility time
in the schizophrenia-related animal models discussed above
(Table 2). As with the other behavioral assays for negative
symptoms, genetic risk factor alterations were the prime
cause of the increase in immobility time followed by pharma-
cological and developmental alterations.

3.3. Sucrose Preference Test

The sucrose preference test is a compensation dependent
test that aims to assess anhedonia, i.e., the failure to feel plea-
sure, depression, and anxiety [5, 126]. Rodents have been
shown to naturally prefer consuming sweet food and sucrose
solutions when given a free choice between sucrose solution
and plain water [127]. However, when showing signs of
stress and depression, rodents fail to show a preference for
sweetened water to regular water [127]. The rodents are
routinely given the choice of two drinking bottles, one con-
taining plain drinking water and the other containing a su-
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crose solution. The intake of water and sucrose solutions is
then assessed regularly, and sucrose preference is deter-
mined as the proportion of the intake of sucrose over the to-
tal volume of both sucrose and plain water consumption
[126, 128].

Recent studies involving animal models of schizophre-
nia have shown various responses to this test (Table 2). De-
creases in sucrose preference were seen in prenatal immune
activated mice using viral mimic poly(I:C) [129], perinatal
levodopa (L-dopa) treatment in juvenile male [46], cy-
clin-D2 (CD2) KO mice [130], G72/G30 transgenic (Tg)
mice [131], and parvalbumin interneuron-specific NMDAR
1 (NR1) KO mice (Grinl(APV) mice) with MK-801 treat-
ment [132]. Conversely, an increased preference for sucrose
was exhibited in glutamate ionotropic receptor, kainate type
subunit 4 KO mice [133]. Meanwhile, no effect was shown
in Abelson helper integration site 1 +/— KO mice coupled
with chronic unpredictable stress [134], GluA1l KO mice
[135], and NRG1 +/— KO mice with repeated psychosocial
stress [136]. Pharmacologically, a decreased sucrose prefer-
ence was seen in adolescent mice chronically treated with
JNJ-28871063 (JNJ), a pan-ErbB kinase inhibitor [137].

Recent studies employing this task have reported a gener-
al decrease in sucrose preference in animal models related to
schizophrenia. The factors that have been identified to lead
to this decrease in sucrose preference include increased do-
pamine levels [46], prenatal immune activation [129], hippo-
campal parvalbumin-interneuron dysfunction [130], candi-
date genes for schizophrenia [131], the functional deficit in
NMDARSs on parvalbumin (PV)-positive interneurons (PV-
NMDARs) [132], and pharmacological blocking of the
ErbB signaling pathway [137]. An increase in sucrose prefer-
ence was reported by studies testing novel antidepressants in
animal models of schizophrenia [138] and models with dys-
regulation of glutamatergic signaling [133]. Interestingly,
some studies involving schizophrenia models have not re-
ported changes in sucrose preference, including studies em-
ploying schizophrenia-related gene mutation [134], glutamer-
gic dysfunction [135], and gene-environment interaction
models of schizophrenia [136].

3.4. Three-chamber Sociability Test

Reduced social interaction, lower desire to engage in so-
cial communication, and socio-cognitive function deficien-
cies are among the negative symptoms of schizophrenia re-
lated to asociality [85]. While the concepts underlying social
interaction measurement in humans and rodents are similar,
the measured social interaction contents differ. Thus, social
behavior in humans involves a wide range of cognitive struc-
tures classified as agonistic, romantic, and affiliate, while
sensory modalities in rodents are expressed as visual, olfacto-
ry, and auditory in nature [85]. The three-chamber sociabili-
ty test is a commonly used method to measure sociability
function in neuropsychiatric and neurological animal mod-
els, including those of schizophrenia [139]. The apparatus
consists of three communicating chambers, with both end
chambers having wire cups. Under each wire cup, a stranger
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mouse and inanimate novel object, or a familiar and stranger
mouse may be placed. Social interaction is measured as the
number and duration of interactions with the stranger mouse
and object, or a familiar and stranger mouse. Interactions in-
clude time spent in each chamber, sniffing the stranger
mouse or novel object, and entries into each chamber as a lo-
comotor control [6].

Most animal models of schizophrenia exhibit a decrease
in social interaction (Table 2). Genetically, animal models in-
cluding CRMP2 KO mice [52], pericentriolar material 1 +/—
(Pcm1 +/-) mice [140], SREBP-1c KO mice [47], CPB-K
strain mice [141], deletion of cannabinoid receptor type 1 on
cortical glutamatergic neurons of female mice [142], reelin-
deficient mice treated with corticosterone [71], sterile alpha
and TIR motif-containing 1 protein knockdown mice [143],
and vasopressin receptor 1A KO mice [144] have shown a
decrease in social interaction. Similarly, pharmacologically
induced animal models using ketamine treatment [145], PCP
[113], and Catha edulis forsk administration [60] have also
displayed a decrease in social interaction. Conversely, in-
creased social interaction behavior was found in genetically
induced-type III NRG1 +/— males mice from mutant fathers
[58]. Meanwhile, no effect in social interaction behavior
was found in mice with heterozygous NRG/ mutation [146]
and selective knockdown of PLC-B1 in the mPFC [59].

Previous reviews have discussed this paradigm in detail,
discussing the methodology [92, 139] and possible strain dif-
ferences [147]. Moreover, novel assays measuring sociabili-
ty in mice have also been proposed with the aim of produc-
ing an ethologically valid version of the behavioral
paradigm [148]. Recent studies have come to the same gener-
al conclusion of decreased sociability in rodent models of
schizophrenia. The factors causing these impairments in so-
cial interaction include the deletion of schizophrenia risk
genes [52, 58, 59, 144, 146], including microtubule anchor-
ing proteins [140], innate immunity-related protein altera-
tions [143] in dopaminergic and serotonergic parameters
such as neuron number, neuron density, and volume in subre-
gions [141]; cannabinoid receptor deletion [142], stress [71],
amygdala dysfunction related to NMDAR-mediated hypo-
function [145], and plant extracts with psychoactive compo-
nents similar to amphetamine [60].

3.5. Elevated Plus Maze

It is challenging to model decreased facial and emotional
gestures as negative symptoms of schizophrenia in rodents.
Therefore, researchers have reported anti-anxiety behavior
in tasks and consider this a measure of blunted affect [84].
The EPM task is seen as the gold standard for measuring ro-
dent anxiety. The test is based on rodents' natural dislike for
open and high areas, and their innate spontaneous explorato-
ry behavior in new environments [149-151]. The experimen-
tal apparatus consists of open and closed arms that perpen-
dicularly cross each other and share a common center area at
their midway. Generally, mice are placed in the center area
at the beginning of the trial and thereafter allowed to move
freely between areas. The ratios of the frequency and time
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spent on the open arms versus the closed arms reflect space-
induced anxiety in mice [150, 151]. In contrast to other be-
havioral assays that measure anxiety through the use of
noxious stimuli (e.g., electrical stimulation, food/water scarc-
ity, loud noises, interaction with predator odors) and typical-
ly triggered programmed reactions, this task relies on the
mice's inherent desire to explore new conditions and their
propensity toward dim, enclosed areas, normal height, and
open-space terror [150].

Changes in anxiety in the EPM in recent studies have
been observed mainly in genetic models of schizophrenia
(Table 2). Animal models used in recent studies that present-
ed increased anxiety-like behavior was detected in several
genetic models, including Nlgn2 R215H KI mice [73],
heterozygous ankyrin G-deficient mice [152], missense mu-
tated female mice of D465G in disrupted-in-schizophrenia 1
(DISC1I) gene [153], kynurenine 3-monooxygenase-deficient
mice [154], and NAc-TMEM mice [80]. Conversely, animal
models exhibiting anxiolytic behavior include free fatty acid
receptor 1 —/— female mice [155], forebrain KO mice of
DNA methyltransferase 1 [156], and CRMP2-deficient mice
[157]. Conversely, no effect on anxiety-like behavior was
seen in mutant DISC1 male mice [158], Pcm1 +/— mice
(however, this model has decreased sociability in the three-
-chamber test) [140], and type III NRG1 +/— male mice
from mutant fathers (however, this model shows increased
sociability in the three-chamber test) [58].

Previous reviews have described the methodology [159]
of this behavioral assay in detail with the additional assess-
ment of ethological parameters [150, 160]. Others have
argued that the fear of heights plays the main role in creating
the phobic anxiety state measured in the behavior assay
[161]. Yet, another group has recently adapted this task to
measure anxiety-like behavior in fish [162]. Recent studies
have found that manipulations in schizophrenia risk-related
genes involved in neuronal morphogenesis [157], neuronal
development, and maintenance of neuronal function [155]
and DNA methylation catalytic enzymes [156] have resulted
in anxiolytic behavior, as measured by the EPM. In contrast,
risk factors causing anxiety include previously reported ge-
netic mutations in patients with schizophrenia [80, 152, 153]
and postsynaptic adhesion proteins [73].

Table 2 shows that various developmental, genetic, or
pharmacological animal models of schizophrenia that exhib-
it negative symptoms, including anhedonia, avolition, blunt-
ed affect and asociality. Overall, considering the 10-year
scope of the review article, most animal studies utilizing the
FST and TST have mainly employed genetic followed by
pharmacological and developmental models. Conversely,
studies utilizing the sucrose preference test were predomi-
nantly genetic, followed by studies employing developmen-
tal and pharmacological models. In contrast, the three-cham-
ber sociability test has been predominantly utilized for genet-
ic models followed by developmental models. Finally, the
EPM has been solely utilized for genetic animal models of
schizophrenia. For the negative symptoms of schizophrenia,
many tasks have been designed to attempt to replicate the de-
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ficiency in normal functioning usually found in patients with
schizophrenia [5, 83, 163] (Fig. 1). Among various behavio-
ral paradigms, the FST, TST, and sucrose preference test
can be selected for measurement of anhedonia. The FST and
TST can be also used for confirming avolition. Additionally,
the sucrose preference test and EPM and three-chamber soci-
ability test can be used as measures of blunted affect and aso-
ciality, respectively. To confirm phenotypes of anhedonia
and blunted affect, the FST and TST and EPM, respectively,
have been extensively used as gold standards. Although the
sucrose preference test is also widely applied, there is a limi-
tation of the task measuring the behavioral response to a re-
ward because the consumed sucrose levels can be affected
by the interest in reward. Variability in the results of be-
havioral assays falling under this category has been reported
in recent years. Although various developmental, genetic,
and pharmacological animal models of schizophrenia have
presented negative symptoms, there have also been some op-
posite results. Possibly, the low face validity of animal mod-
els for the negative symptoms of schizophrenia might be due
to the difficulty in interpreting the results due to various con-
founding elements. As such, there is a continuous need for
better assessments that can lead to improved reliability, va-
lidity, and characterization of models for negative symp-
toms.

4. BEHAVIORAL TASKS MEASURING COGNITIVE
SYMPTOMS OF SCHIZOPHRENIA

According to some reports, almost 98% of people with
schizophrenia experience cognitive impairment, which is
one of the main symptoms of schizophrenia [164]. The cog-
nitive symptoms of schizophrenia reflect deficiencies in dif-
ferent cognitive capacities such as information processing,
abstract categorization, executive function, cognitive flexibil-
ity, attention, memory, and visual processing [165, 166]. For
adequate cognitive control, the coordination of multiple
brain regions, including the PFC, medial frontal cortex, and
parietal regions, is required [167]. Among them, the PFC is
considered to serve a primary role in combining different
types of incoming information sourced from various brain re-
gions and supplying top-down processing to coordinate be-
haviors because it extensively interconnects with sensory,
motor, and subcortical brain regions [167]. However, in pa-
tients with schizophrenia, occurrence of various structural or
molecular defects, such as neurodevelopmental abnormality,
changes in synaptogenesis and neuroplasticity, alteration in
neuronal maturation, and imbalance of neurotransmitters,
has been confirmed in the relevant brain regions [165]. Al-
though the precise mechanisms inducing cognitive symp-
toms are unclear, the suggested hypothesis is similar to that
for negative symptoms. Hypofunctional NMDARSs on corti-
cal GABAergic interneurons could lead to an imbalance of
neuronal excitation/inhibition and reduced cortical y-oscilla-
tion, associated with the cognitive impairment seen in schi-
zophrenia [168, 169]. Cognitive symptoms are resistant to
therapeutics and greatly influence patient routine function-
ing, therefore providing the best predictor of a patient’s func-
tional status [8, 20, 42, 170].
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Meanwhile, the National Institute of Mental Health in
the United States of America has defined seven functional ar-
eas that are important in the diagnosis of schizophrenia.
Such functional areas include attention/vigilance, working
memory, logic and problem solving, speed of thinking, visu-
al and memory learning, verbal and memory performance,
and social cognition [171]. For use in preclinical studies, spe-
cific rodent tasks have been designed in each of these fields
to recapitulate the cognitive processes underlying the effec-
tive performance of homologous tasks in humans [8, 42].
While parallel tasks between rodents and humans use differ-
ent sensory modalities, temporal schedules, rewards, and mo-
tor requirements, both types require PFC function [42]. In
this section, we described several common rodent tasks used
to study cognitive symptoms of schizophrenia in all seven
proposed cognitive domains, except the previously de-
scribed one, i.e., social cognition.

4.1. Maze Tests, for Spatial Working Memory

Working memory, one of the key memory functions, is
the ability to quickly form memories from unique events and
thus discriminate against fresh valid information from older
and already invalid memorized evidence [172]. Working me-
mory is dependent on the integrity of prefrontal cortical func-
tion and is important for human reasoning and judgment
[173]. In patients with schizophrenia, working memory is
commonly impaired, which can be measured by clinical
working-memory tasks [174]. Preclinical research on ro-
dents employs both spatial and non-spatial working-memory
tasks (Table 3). Spatial working-memory tasks include the
radial arm maze (RAM), T-maze or Y-maze alternation
tasks, Morris water maze (MWM), radial arm water maze,
Barnes circular maze, and spatial span task [175-177]. Non-
spatial working-memory tasks include the delayed match to
sample, delayed non-match to sample, delayed stimulus dis-
crimination task, and odor span task [42, 178]. Performance
deficiency in these tasks may signify not only impairments
in working memory, but also decreased behavioral adaptabil-
ity or heightened persistence, which can also be observed in
patients with schizophrenia [20, 179] .

RAM is one of the best known spatial memory measures
for different species including rodents, birds, and even hu-
mans [42]. RAM usually involves an eight-armed, octagonal
central chamber. Each arm is baited, and the animal is re-
quired to enter each arm and receive a reward. The spatial
working memory of the subject is generally measured by the
number of baited arms reached prior to the re-entry of an al-
ready explored arm. If the subject does not re-enter an arm
that was previously visited, the maximum number of eight is
reached [180], although this may vary depending on the ex-
perimental setup and the numbers of bait and reward arms.
Most of the recent studies employing this behavioral assay
have shown a cognitive deficit in various animal models, in-
cluding alpha-CaMKII +/— mice [181], Grin1®**""?/Grin1"
mice [108], heterozygous reeler mice [182], Homerl-KO
mice [183], and heterozygous KO mice of YWHAE, a gene
encoding 14-3-3 epsilon [184]. Conversely, no effect has
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Table 3. Recent studies using behavioral paradigms that measure cognitive symptoms of schizophrenia in rodent models.

Paradigm | Animal Model Experimental Manipulation Results References
RAM Genetic Alpha-CaMKII+/- mice | decreased working memory [181]
Grin1®®""/Grin1” mice | decreased working memory [108]
HRM + dizocilpine | decreased working memory [182]
Homerl KO mice | decreased working memory [183]
Ywhae (+/-) mice | decreased working memory [184]
NRG1 TM HET mice NE [185]
a7-nAChR KO mice NE [186]
Pharmacological Chronic PCP administration in mice NE [187]
Y-maze/ Genetic mGlu5 KO mice | decreased spontaneous alternation [50]
T-maze Inhibition of GAD65 neurons in mice | decreased spontaneous alternation [61]
Corticosterone-treated HRM | decreased spatial learning and memory [71]
Pharmacological Subchronic PCP administration in mice | decreased spontaneous alternation [125]
MWM Developmental Neonatal lesioning of the vHPC in mice NE [201]
Genetic Dys1B (+/+) mice | decreased spatial learning and memory [197]
mGlu5 KO mice | decreased spatial learning and memory [50]
Nlgn2 R215H knock-in homozygous mice | decreased spatial learning and memory [73]
NRG1 HET mice | decreased spatial learning and memory [198]
Intraflagellar Transport 88 (//t88) gene KO mice | decreased spatial learning and memory [199]
ZnT3 KO mice NE [202]
Pharmacological| ~Administration of Catha edulis forsk extract in mice | decreased spatial learning and memory [60]
MK-801 treatment in mice | decreased spatial learning and memory [200]
PCP + A9-THC treatment in mice | decreased spatial learning and memory [62]
Novel object | Developmental MIA in mice | decreased performance [208]
recognition Genetic 1188 gene KO mice | decreased performance [199]
Null mutation in pallid and dysbindin in mice | decreased performance [209]
Spp homozygous mutant mice | decreased performance [210]
Alpha7-nAChR KO mice | decreased performance [186]
Pharmacological| Antagonism of the muscarinic acetylcholine system in | decreased performance [212]
mice
L-Methionine in mice | decreased performance [211]
PCP + A9-THC in mice | decreased performance [62]
Subchronic PCP administration in mice | decreased performance [113, 125]
Odor span Genetic a7-nAChR KO mice | decreased working memory [213]
task Pharmacological| Subchronic treatment with ketamine (10 mg/kg and 30 | decreased performance [216]
mg/kg) rats
Attentional | Developmental [Neonatal treatment with nuclear progesterone receptor an- | decreased adult performance [228]
set-shifting tagonist in rats
task Postnatal administration (PND, 7, 9, & 11) of ketamine | decreased performance [230]
30 mg/kg in mice
Pharmacological Cuprizone administration in rats | the specific decrease in the ability to shift between [229]
perceptual dimensions
Sertindole (2.5 mg/kg) administration in mice prevented ketamine-induced cognitive inflexibility [231]
Neurotoxic damage to orbitofrontal and medial prefrontal | decreased affective and attentional sets [232]
cortical areas in mice
5-choice serial| Developmental Gestational exposure to high-fat diet in mice 1 increased impulsivity [238]
reaction task Gestational exposure to a low-protein diet in mice 1 marked inattention [238]
Genetic Alpha7-nAChR KO mice 1 increased omission levels [213]
Increased NRG3 gene expression in mice mPFC 1 increased impulsivity [239]
Map2k7 +/- mice 1 increased attentional deficit [240]
Df(h15q13)/+ mice | decreased accuracy [241]
Pharmacological| Chronic oral, but not acute injections of nicotine in mice | decrease phencyclidine-induced impulsivity [242]

Abbreviations: 5-HT7 = 5-hydroxytryptamine 7, serotonin 7; CaMKII = calmodulin-dependent protein kinase II; Dys1B = dysbindin-1B; GAD65 = glutamic acid decarboxylase 65;
Grinl = glutamate ionotropic receptor NMDA type subunit 1; HRM = heterozygous reeler mice; 1ft88 = intraflagellar transport 88; KO = knockout; Map2k7 = mitogen-activated pro-
tein kinase kinase 7; mGluR = metabotropic glutamate receptor 5; MIA = maternal immune activation, mPFC = medial prefrontal cortex; Nlgn2 R215H = missense mutation R215H
of neuroligin 2; NRG1 = neuregulin-1; NRG3 = neuregulin-3; PCP = phencyclidine; vHPC = ventral hippocampus; ZnT3 = zinc transporter 3; a7-nAChR = alpha7-nicotinic acetyl-
choline receptor; A9-THC = A9-tetrahydrocannabinol; NE = no effect.
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been observed in RAM studies using heterozygous trans-
membrane domain Nrgl mutant mice [185], alpha7-nico-
tinic acetylcholine receptor (a7-nAChR) KO mice (howev-
er, this model shows decreased working memory, as tested
in the novel object recognition task) [186], and mice with
chronic PCP administration [187]. Previous reviews have
discussed the methodology and factors affecting the results
of the RAM [180, 188, 189]. More recent studies have found
various factors causing a deficit in working memory as mea-
sured by the RAM, including deficiency in schizophrenia
candidate genes involved in synaptic plasticity and cognitive
function-related factors [108, 181-184]. However, some schi-
zophrenia risk factors such as manipulations in receptor ex-
pression [186], and genes [185], as well as drugs used to elic-
it symptoms of schizophrenia [187] in animal models did
not cause performance deficiencies in the RAM.

The Y-maze is commonly used to measure both general
activity and spatial working memory, as it is based on the na-
tural tendency of rodents to alternate non-reinforced choices
in the Y-maze on consecutive chances [190]. In brief, the
subject is placed in one of the arm compartments and al-
lowed to move freely to other arm compartments for several
minutes, while the sequences of arm compartment entries
are being recorded. An alternation is defined as an entry into
the three designated arm compartments consecutively [190,
191]. Recent studies involving the use of the Y-maze have
found that several animal models of schizophrenia displayed
impaired spontaneous alternation and thus deficit in working
memory. These models include mGluS KO mice [50],
hM4D-treated mice for GAD65 neuron inhibition [61],
heterozygous reelin-deficient mice with corticosterone treat-
ment [71], and mice with subchronic PCP administration
[125]. Previous reports have detailed the methodology and
apparatus needed for this behavior assay [192-195]. Recent
studies involving animal models of schizophrenia implicated
genetic risk factors as the main cause of impairment in this
task.

First described by Morris [177], the MWM has been
used to evaluate spatial working memory and visual learning
and memory abilities in rodents. The subject is arbitrarily po-
sitioned in a circular labyrinth arena filled with opaque wa-
ter with a small hidden platform accessible to avoid the wa-
ter. The experiment lasts for several days, with several trials
conducted each day. After the training trials, a probe trial is
performed without the hidden platform to evaluate reference
memory and perseverance. The interval between the training
and probe trials may vary from a few hours to a few months.
A “reversal” variant of the task involves training the subject
thoroughly in one quadrant with the hidden platform and
moving the platform to a different quadrant in subsequent
trials to assess the erasure of original spatial memory and re-
learning [196]. Most recent studies involving the use of this
behavioral task have shown impaired spatial working memo-
ry and visual learning and memory in genetic or chemical-
ly-induced schizophrenia animal models, including dysbind-
in-1B (+/+) mice [197], mGlu5 KO mice [50], Nlgn2
R215H KI homozygous mice [73], heterozygous mice delet-
ed of NRGI [198], conditional deletion of the intraflagellar
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transport 88 gene in mice [199], subchronic Catha edulis
forsk extract or mice orally treated with ketamine [60],
MK-801 treated mice [200], and PCP + A9-THC treated
mice [62]. Meanwhile, neonatal lesioning of the vVHPC [201]
and female zinc transporter 3 KO mice [202] did not show
any difference in spatial learning and memory. Previous re-
views have detailed the methodology and factors affecting
results in the MWM [203-205]. Such factors include the
type of apparatus and training procedure [203], environmen-
tal variables [205], and measuring indices [204]. Most fac-
tors leading to the expected decrease in spatial learning and
memory in animal models of schizophrenia include genetic
risk factors implicated in human patients [197, 198], abnor-
malities in glutamatergic signaling [50], postsynaptic adhe-
sion protein [73], disrupted ciliogenesis in the cortex and hip-
pocampus [199], administration of plant extracts [60], and
drugs blocking the NMDAR channels [62, 200]. Converse-
ly, recent studies involving developmental manipulations in
neonatal mice [201] and deletion of neuronal synaptic vesi-
cle transporter [202] reported no changes in spatial learning
and memory as measured by the MWM task.

4.2. Novel Object Recognition Test, for Visual Learning
and Memory

Also known as spontaneous object recognition or visual
pair-comparison test, this test is widely used as a visual
learning and memory test in rats and mice [206]. This be-
havioral activity requires a brief exposure of the animal to
two items. One of the items is first presented to the animal
placed in a chamber, which the subject will visit again after
a break that can vary from a few minutes to a few days. At
this point, the subject is introduced to the initial object and
to a second, new object. Rodents have the tendency to ex-
plore the new object more than the familiar one; therefore,
no rule learning or pre-training is usually required prior to
the performance of this behavioral task [206, 207].

Recent studies employing this behavior analysis have re-
vealed cognitive impairment in various developmental, phar-
macological, and genetic rodent models of schizophrenia
(Table 3) including mice subjected to MIA by LPS on em-
bryonic day 8 (E8) [208], conditional deletion of the in-
traflagellar transport 88 gene in mice [199], mice with null
mutation in the pallidin or dysbindin gene, both of which
comprise the biogenesis of lysosome-related organelles com-
plex 1 [209]; dysbindin salt and pepper mice, which possess
a single point mutation on the DtnbpI gene [210]; mice treat-
ed with the muscarinic acetylcholine system antagonist,
scopolamine (2 mg/kg, intraperitoneal), l-methionine treated
mice [211]; PCP + A9-THC treated mice [62], mice treated
subchronically with PCP [113, 125], and alpha7-nicotinic
acetylcholine receptor (a7-nAChR) KO mice [186]. Recent
studies using animal models of schizophrenia have found
that various factors could lead to decreased visual learning
and memory. These factors include neonatal manipulations
via MIA [208], neuronal cilia disruption [199], mutations in
biogenesis of lysosome-related organelle proteins [209], schi-
zophrenia risk-related genes [210], psychostimulant adminis-
tration [212], methylation modulation [211], cannabis poten-
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tiation of phencyclidine administration [62], and NMDAR
blockage or hypofunction [113, 125].

4.3. Odor Span Task, for Non-spatial Working Memory

The task of odor span is designed to assess the contribu-
tion of the hippocampus to non-spatial working memory
[176]. This behavioral task has been used with both rats
[176] and mice [213]. Briefly, the task requires the animal to
dig a food reward in a scented bowl. Afterward, two bowls
are presented to the animal-one bowl containing the familiar
scent from the previous task, and another one with a novel
scent. The bowl is baited with a novel smell aiming for the
animal to ignore the previously baited bowl and search only
in the fresh scented bowl. The animal is then presented with
three scented bowls-the first two bowls previously presented
to the animal, and a third, novel one. Again, the animal
should remember the first two scents and therefore avoid dig-
ging in those bowls in favor of the bowl with the novel
scent. The number of different scents can be increased up to
24, and the subject must always remember the previously en-
countered bowls and thus only commence digging in the nov-
el bowl. The bowls are always arranged in a random order to
ensure that the subject cannot use any visual signals when se-
lecting the novel odor. The number of odors that the subject
is able to successfully remember before making its first mis-
take (digging in an old scent) is considered the “span” of the
trial. To date, few studies have employed the odor span task
in rodent models of schizophrenia [213-215] (Table 3).
Subchronic treatment of ketamine (10 mg/kg and 30 mg/kg
daily for 5 consecutive days) induced a substantial deficit of
odor span detection [216]. In contrast, a7-nAChR KO mice
exhibited impaired olfactory working memory, as shown by
the higher number of sessions required to attain the span
length criteria in training trials, and reduced span length and
lower span completion rates in test trials [213].

The odor span task may also serve to test the verbal
learning and memory domains. Although there is no abso-
lute homolog of verbal information between humans and ro-
dents, the main principle in the animal models of psychiatric
disorders is to maximally reenact a subset of processes dam-
aged by the diseases. As odor-based interactions between ro-
dents are important in various communication types [217],
perhaps olfactory data comprise the closest analogue for ro-
dents to verbal information [42]. If the controversy surround-
ing this concept can be overcome, this task could be classi-
fied under the verbal learning and memory domains [42]. In
the past 10 years, animal experiments that have utilized the
odor span task have employed genetic and pharmacological
models.

4.4. Attentional Set-shifting Task, for Reasoning and
Problem Solving

The attentional set-shifting task (ASST) is a method de-
veloped for use with animal models to measure cognitive
flexibility. ASST was first described by Birrell and Brown
[218] but it was later revised for mice [219]. For the animal
to discriminate relevant from unnecessary prompts, an atten-
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tional set is formed whereby the subject acquires that a set
of rules may be applied to complex stimuli [218]. The ASST
necessitates that the subject inhibit previously learned re-
sponses that are unsuitable to the present conditions [220].
Patients with schizophrenia often have poor set-shifting capa-
bilities, which translates to poor executive functioning
[221-223]. This symptom is generally called executive in-
flexibility or a diminished ability to shift focus [223, 224].
In ASST, a cognitive set is formed by creating a reinforced
rule in a subject. For example, in certain conditions, a rele-
vant cue such as a digging medium should be remembered
by the subject, while an irrelevant cue such as an odor
should be ignored. Such correlation is then strengthened by
subsequent activities where the recipient must remember the
specific shape of the digging medium and the irrelevant cue,
such as odor varies. The relevance of the shape of the dig-
ging medium is reinforced by food rewards. Cognitive ver-
satility could be tested using a reversal or extradimensional
move. In the reversal shift, the previously irrelevant cue is
now set to be relevant (previous “relevant” digging medium
to another type of digging medium, e.g., paper to woodchip-
s), which tests the subject’s capability to ignore the positive
stimuli from the first set of experiments, and thus the ani-
mal’s flexibility in maintaining the previously formed atten-
tional set. While in the extradimensional shift, the animal’s
cognitive flexibility is once again challenged by changing
the previously learned attentional set by adding another di-
mension and shifting the relevance. For example, if the previ-
ous relevant cue was the digging medium, now it will be
some type of odor (e.g., the relevant cue is transferred from
the paper medium to a cinnamon odor). Failure to change
choices from the previously learned attentional set in either
test suggests a deficit in cognitive flexibility [225-227]. Re-
cent studies utilizing this behavioral assay have found gener-
al impairment in cognitive flexibility, as illustrated by im-
paired reversal learning and extradimensional set-shifting, in
animal models of schizophrenia (Table 3). Such models in-
clude mice undergoing neonatal treatment with nuclear pro-
gesterone receptor antagonist [228], adolescent rats that
were administered cuprizone, a copper chelator known to
cause demyelination [229]; ketamine (30 mg/kg)-treated
mice on postnatal days 7, 9, and 11 [230]; mice subjected to
administration of ketamine (10 or 20 mg/kg) [231], and
mice with NMDA-induced neurotoxic damage to orbitofron-
tal and medial prefrontal cortical areas [232]. Factors lead-
ing to impairment in problem solving and reasoning, as mea-
sured by the ASST, include disruption of the mesocortical
dopamine pathway [228], abnormalities in brain white mat-
ter and oligodendroglia [229], dysfunctions in the GABAerg-
ic system by the blockade of NMDARSs [230], and neurotox-
ic damage to the orbitofrontal and medial prefrontal cortical
areas [232]. Conversely, the administration of NMDAR 2B
(NR2B) subunit-selective antagonists improves the perfor-
mance of animal models in the ASST [231]. Previous re-
views have detailed the methodology [219, 233] as well as
species-specific variations [225, 234] involved in this be-
havioral test. Collectively, within the 10-year scope of the
study, most animal experiments utilizing the ASST em-
ployed pharmacological followed by developmental models.
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4.5. 5-choice Serial Reaction Time Task, for Atten-
tion/Vigilance and Speed of Processing

The 5-choice serial reaction time task (5-CSRTT) was
designed to measure visuospatial attentional processes and
motor impulsivity in animals [235]. The task has begun to
clarify the basic neural circuitry and neuromodulation of ex-
ecutive and cognitive prefrontal functions [236] and to clari-
fy disrupted neuropsychological mechanisms in attentional
dysfunctions including schizophrenia, Alzheimer and Parkin-
son’s diseases, aging, and attention deficit/hyperactivity dis-
order, as an analogue of the human continuous performance
task [42, 237]. Briefly, in the 5-CSRTT chamber, there are
at least five holes, which can be illuminated and laden with
food for reward on the opposite side. The rodents are re-
quired to perceive a pseudo-randomly illuminated hole
among the five holes and to provide a nose-poke response in
the correct aperture to obtain the food reward. The attention-
al capacity and speed of response are assessed as the percent-
age of responses to the right location and the mean latency
to respond correctly after detecting the light stimulus, respec-
tively. Additionally, premature responses made before the
stimulus presentation are interpreted as impulsive behavior
[237].

Recent application of the 5-CSRTT to mouse models of
schizophrenia has found general attentional impairment and
impulsivity (Table 3). Increased impulsivity was observed in
male mice raised from female mice exposed to a high-fat di-
et during gestation [238], while marked inattention was
found in the offspring of female mice fed a low-protein diet
during gestation [238]. Moreover mice exhibiting significant-
ly higher omission levels include a7-nAChR KO mice
[213], mice with overexpressed neuregulin-3 gene in the
mPFC [239], mice haploin sufficient for dual specificity mi-
togen-activated protein kinase kinase 7 gene, encoding
MKK7 [240]; and mice with 15q13.3 microdeletion (D-
fh15q13]/+) [241], while significant increase in attentional
impairment, through premature or perseverative responding,
was found in neonatal and adult mice treated with PCP
[242] and mice with 5-HT7 receptor downregulation in the
mPFC. Factors causing impairments in attention and process-
ing speed include manipulations in maternal diet and subse-
quent gestational growth disturbances in the offspring [238],
schizophrenia-associated genetic risk factors [213, 241],
overexpression of genes regulating impulsivity [239], and
impairment of genes strongly linked to synaptic plasticity
and neocortex development [240]. Previous reviews have de-
tailed and discussed the variations in methodology involved
in the 5-CSRTT [243-246]. They have also reviewed the
strengths of this task, which include its high translational val-
ue and adaptability to task modifications [243, 245], and the
various factors, such as sedation, motivation deficits, and lo-
comotor impairments [247], which can affect results. In gen-
eral, within the past 10-years, most animal experiments util-
izing the 5-CSRTT employed developmental followed by ge-
netic and pharmacological models.

Table 3 shows that various developmental, genetic, or
pharmacological animal models of schizophrenia exhibit
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cognitive symptoms, including spatial and non-spatial work-
ing memory and impairment of attention and executive func-
tion. In general, within the 10 year scope of the study, most
recent animal experiments utilizing the RAM maze test have
employed genetic followed by pharmacological models,
while the Y-maze test has employed genetic followed by
pharmacological models, and the MWM test has been pri-
marily used in studies employing genetic followed by phar-
macological and developmental models. Conversely, the
novel object test has been mostly used with pharmacological
followed by genetic and finally developmental models. In
contrast, the odor span task has been primarily only em-
ployed for both genetic and pharmacological models of schi-
zophrenia, while the ASST paradigm has been predominant-
ly utilized by both pharmacological and developmental mod-
els. Finally, most animal experiments utilizing the 5-CSRTT
have employed developmental followed by genetic and phar-
macological models. Behavioral tasks measuring cognitive
symptoms have been developed to attempt to elucidate each
of the cognitive domains affected in patients with schi-
zophrenia, with a focus on (spatial, non-spatial, and visual)
memory and attention [8, 130, 163, 164, 167, 171] (Fig. 1).
Most recent studies of animal models of schizophrenia in-
duced by genetic, pharmacological, and developmental appli-
cations have reported impairment in performing these tasks.
For spatial and non-spatial working-memory tests, maze
tests, including the RAM, Y-maze, and MWM, and the odor
span task can be respectively selected. Among the spatial
working-memory tests, the MWM is more realistic and com-
plex than the other maze tests and is thus considered the
gold standard, although less stressful tasks including the
RAM and Y-maze are also widely applied. The MWM and
novel object recognition test can be applied for visual learn-
ing and memory testing. Additionally, attention and more
complex executive function can be assessed using the ASST
and 5-CSRTT paradigms. Researchers need to be cautious
that alterations in behavioral output could also be induced
by non-cognitive elements such as olfaction, vision, anxiety,
and locomotor activity.

Based on the most recent advances in the field, it is ap-
parent that a myriad of behavioral tests is needed to confirm
and evaluate the congruency of animal models with the nu-
merous behaviors and clinical signs exhibited by patients
with schizophrenia. Animal models have been developed to
mimic schizophrenia-associated behaviors and serve as pre-
clinical models in drug research. As such, some behavioral
tests used to measure schizophrenia-associated behaviors in
human patients have been translated into animal versions to
allow further confirmation of preclinical trials and better
comprehension of the underlying neural basis of the disor-
ders [248, 249]. These animal behavioral tasks are key to
filling the gap between preclinical and clinical research
[250, 251]. Intrinsically, deciding which behavioral task best
describes an animal model is challenging. While, in princi-
ple, an exhaustive battery of tasks seems best to fully com-
prehend and reliably characterize an animal model, this ap-
proach, if ever possible, would require excessive time and re-
sources [251]. Thus, researchers are faced with the task of se-
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lecting the appropriate behavioral assays that can best de-
scribe their animal model. There are no established rules to
help guide the selection of the appropriate behavioral tasks.
Moreover, suitable behavioral tasks may vary depending on
the researchers’ goal.

5. CONCLUSION

At present, most analyses concerning the modeling of
schizophrenia in animals have only focused on the identifica-
tion of the different means through which scientists are ma-
nipulating, generating, and developing these animal models;
however, a gap remains to be filled in the narrative scrutiniz-
ing the behavioral tasks being extensively employed in the
quest to characterize these models. This review provided an
overview of the behavioral tasks currently used to assess the
validity of the available animal models of schizophrenia and
the recent findings of studies that have employed these be-
havioral paradigms.

In assessing positive symptoms in animal models of schi-
zophrenia, measurement of locomotor activity, followed by
the measurement of PPI, remain the standard behavioral
tasks that have been employed by studies in recent years,
while the FST, followed by the EPM, TST, three-chamber
sociality test, and sucrose preference test were the behavio-
ral paradigms most utilized in detecting negative symptoms
of schizophrenia. Lastly, novel object recognition, followed
by the MWM, RAM, 5-CSRTT, ASST, Y-maze, or T-maze,
and finally the odor span task, were the behavioral tasks pre-
ferred by the latest studies that evaluated the cognitive symp-
toms of schizophrenia in their respective animal models.

Collectively, these tests reproduce dysfunctions found in
patients with schizophrenia and may reveal meaningful theo-
retical and neurobiological correlations between preclinical
and clinical findings. Fundamentally, the formulation and ap-
plication of these behavioral tasks allow the advancement of
research using animal models, which, in turn, furthers the
elucidation of schizophrenia’s etiology and exact mech-
anisms.

LIST OF ABBREVIATIONS

S5-HT7 = 5-hydroxytryptamine 7, serotonin 7

Ahil +/-KO = Abelson helper integration site 1 +/—
KO

ALK = Anaplastic Lymphoma Kinase

Ank3 = Ankyrin 3

CaMKII = Calmodulin-dependent protein kinase
II

CD2 = Cyclin-D2

CRMP2 = Collapsin Response Mediator Protein 2

CUB = for Complement C1r/Cls, Uegf, Bmpl

DAT = Dopamine Transporter

DISC1 = Disrupted-in-Schizophrenia 1

DNMT1
Dtnbpl1
Dys1B
En2
EPRAP
FFARI1
GADG65
GAS7
GCLM
GLAST

GluAl
Glu-CB1

GPRS88
GRIALI

Grik4

Grinl

HRM
It88
INJ

KO
L-dopa
LPS
Map2k7

MB-COMT

mGlu5
MIA
mPFC

NAc-TMEM
mice

NCAM
NCS-1
Nlgn2 R215H

NMDA
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DNA Methyltransferase 1
Dystrobrevin Binding Protein 1
Dysbindin-1B

Engrailed-2

EP4 Receptor-associated Protein
Free Fatty Acid Receptor 1
Glutamic Acid Decarboxylase 65
Growth Arrest-specific 7
Glutamate-cysteine Ligase Modifier

Glial Glutamate and Aspartate Trans-
porter

Glutamate Al

cannabinoid receptor type 1 in glu-
tamergic neurons

G Protein-Coupled Receptor 88

Glutamate Ionotropic Receptor AMPA
type subunit 1

Glutamate receptor, ionotropic, kainate
4

Glutamate Ionotropic Receptor NMDA
Type Subunit 1

Heterozygous Reeler Mice
Intraflagellar Transport 88
JNJ-28871063

Knockout

Levodopa
Lipopolysaccharide

Mitogen-activated protein kinase ki-
nase 7

Membrane-bound catechol-O-methyl-
transferase

metabotropic glutamate receptor 5
Maternal Immune Activation
medial prefrontal cortex

Tmem168 vector was injected into the
NAc of mice

Neural Cell Adhesion Molecule
Neuronal Calcium Sensor

missense mutation R215H of neuroli-
gin 2

N-methyl-D-aspartate
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NMRI = Naval Medical Research Institute

NRG1 = Neuregulin-1

NRG3 = Neuregulin-3

NT = Neurotensin

Pcml = Pericentriolar material 1

PCP = Phencyclidine

PLC-B1 = Phospholipase C-B1

poly(I:C) = polyinosinic-polycytidylic acid

PTPRG = receptor protein tyrosine phosphatase
gamma

SARMI1 = Sterile Alpha and TIR Motif-Contain-
ing 1

SLC1ALl = Solute Carrier Family 1 Member 1

SREBPI1c = Sterol Regulatory Element-binding Pro-
tein lc

Tg = Transgenic

V1AR = Vasopressin Receptor 1A

vHC = ventral Hippocampus

vHPC = entral hippocampus

ZnT3 = Zinc transporter 3

a7-nAChR = alpha7-nicotinic acetylcholine receptor

A9-THC = A9-tetrahydrocannabinol
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