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Abstract

Introduction: Vascular endothelial growth factor (VEGF)-A is a sought therapeutic target for 

the treatment of PAD because of its potent role in angiogenesis. However, no therapeutic benefit 

was achieved in VEGF-A clinical trials, suggesting that our understanding of VEGF-A biology 

and ischemic angiogenic processes needs development. Alternate splicing in VEGF-A produces 

pro- and anti-angiogenic VEGF-A isoforms; the only difference being a 6-amino acid switch in 

the C-terminus of the final 8th exon of the gene. This finding has changed our understanding of 

VEGF-A biology and may explain the lack of benefit in VEGF-A clinical trials. It presents new 

therapeutic opportunities for peripheral arterial disease (PAD) treatment.

Areas Covered: This review examines a newly recognized “anti-angiogenic” VEGF-A isoform 

and its role in ischemic angiogenesis regulation. A literature search was conducted to include: 1) 

reports on the predicted mechanism by which the anti-angiogenic VEGF-A isoform would inhibit 

angiogenesis, 2) findings of the unexpected mechanism of action, and 3) how this mechanism 

revealed novel signaling pathways that may enhance future therapeutics in PAD.

Expert opinion: Inhibiting a specific anti-angiogenic VEGF-A isoform in ischemic muscle 

promotes perfusion recovery in preclinical PAD. Additional efforts focused on the production 

of these isoforms, and the pathways altered by the presence and removal of different VEGF 

receptor-ligand interactions, and how this new data may allow bench to bedside progress offers 

new approaches to PAD.
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1. Introduction

Angiogenesis, the formation of blood vessels from the existing vasculature is essential 

for the development and survival of an organism[1]. Angiogenesis regulates several 

physiological and pathological processes. While angiogenesis can be an adaptive response 

to injury, insufficient angiogenesis results in ischemic disorders[2], whereas uncontrolled 

angiogenesis promotes tumor progression and retinopathies[3,4]. Targeting angiogenesis 

has been of pivotal interest in several ischemic cardiovascular diseases[5,6] and cancer[7]. 

Vascular Endothelial Growth Factor-A (VEGF-A) is one of the most extensively studied 

growth factors in the field of angiogenesis[8,9]. VEGF-A in humans is located on 

chromosome 6p12 spanning 16,272 bp with eight exons[10,11]. Members of the VEGF

A family are characterized by the presence of eight conserved cysteine residues[11]. 

VEGFs are highly conserved among species and are found in all vertebrates that have 

been examined to date[12]. Apart from VEGF-A, other prominent members of the VEGF 

super-family include VEGF-B, PLGF, VEGF-C, and VEGF-D, all of which are encoded 

on other chromosomes[13]. These VEGF ligands serve as extracellular signaling molecules 

for receptor tyrosine kinases including VEGFR1, VEGFR2, and VEGFR3[14]. VEGF-A 

serves as a ligand for both VEGFR1 and VEGFR2; VEGF-B and PLGF are specific ligands 

for VEGFR1, and VEGF-C and VEGF-D serve as ligands for VEGFR2 and VEGFR3. 

While VEGFR2 plays an important role in physiological and pathological angiogenesis[15], 

VEGFR3 plays an important role in regulating lymphangiogenesis[16]. Though VEGFR2 

is regarded as the dominant receptor in post-natal angiogenesis, VEGFR1 also regulates 

a broad range of physiological and pathological functions[17,18]. Due to our interest in 

therapeutic angiogenesis for peripheral artery disease (PAD)[19], this review focuses on the 

recent advances in our understanding of the “anti-angiogenic” VEGF-A isoforms and how 

differential regulation of the isoforms may effect VEGFR signaling in PAD. To state this 

more clearly, promoting angiogenesis as a therapeutic in PAD has largely been accomplished 

by enhancing ligand mediated receptor activation, certainly for VEGF. Recent studies 

have clearly demonstrated that removal of this anti-angiogenic VEGF165b isoform was 

not equivalent to the delivery of additional ligand. Indeed, removal of the anti-angiogenic 

isoform was pro-angiogenic through activating a novel VEGFR1-STAT3 pathway, one that 

would not have been recognized without the appreciation and systemic interrogation of 

modulating this specific anti-angiogenic ligand.

1.1 Search methodology

A literature search was conducted to include: 1) reports that covered the predicted 

mechanism by which the anti-angiogenic VEGF-A isoform would inhibit angiogenesis, 

2) findings of the unexpected mechanism of action, and 3) how this mechanism revealed 

novel signaling pathways that may set the stage for future therapeutics in PAD. The 

following search terms were used to obtain studies/findings relevant to VEGFs and PAD 

in Pubmed that were discussed in this review. VEGF165b & angiogenesis; VEGF165b & 

PAD; preclinical & PAD & models; VEGF-A & PAD & clinical & trials; Cilastozol & 

PAD; sVEGFRs & pre-eclampsia; sVEGFR & PAD; sVEGFR & Immune & responses; 

VEGF-A & PAD; VEGF-A & hind & limb & ischemia; VEGF-A & signaling; VEGF165b 

& signaling; VEGFR1 & signaling; VEGFR2 & signaling; Macrophage & polarization; 
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Macrophages & PAD; Monocyte & phenotypes; Platelets & PAD; Monocyte & phenotypes 

& Cardiovascular & disease; Monocyte & Phenotypes & PAD.

2. Targeting alternatively spliced VEGF-A isoform as a therapeutic for PAD

2.1 Peripheral Artery Disease

Peripheral artery disease is a disease outcome resulting from atherosclerotic occlusion(s) 

in the leg(s)[20]. In a large number of symptomatic patients, complete occlusions of blood 

vessels can result in an inadequate blood flow to meet the demands of everyday walking 

or profound enough to place the limb at risk for amputation. Hence, the quantity of 

blood that can be delivered to the distal ischemic leg becomes dependent on the extent 

of the large vessel (collateral) and microvascular remodeling. Severe PAD (chronic limb

threatening ischemia (CLI) often results in limb amputation[21]. ~200,000 amputations 

occur in the US/year with PAD as the largest contributing factor for amputations in adults. 

While surgical and catheter-based revascularization therapies, despite carrying risk, are the 

preferred first line of treatment for severe PAD, many patients have low or no chance of 

success from revascularization. Currently, Cilostazol is the only FDA approved drug to 

treat PAD[22,23], however significant drug interactions with patients that take Cytochrome

P450 inhibitors (CYP34A (erythromycin, diltiazem) or CYP2C19 (Omeprazole)) limits 

its use[24,25]. Based on its ability to activate VEGFR2 induced angiogenesis, VEGF-A 

has been extensively sought out as a therapeutic for PAD[26–32]. However, none of the 

therapies that induce VEGF-A in the ischemic leg were able to provide clinical benefit 

to PAD patients. Moreover, in some instances, consistent with the known side-effect of 

VEGF-A in PAD patients, two clinical trials showed the induction of edema[29,32]. These 

failures of VEGF-A clinical trials and the recent discovery of a novel alternatively spliced 

isoform family that occurs due to alternate splicing in exon-8 of VEGF-A[33] indicated that 

our knowledge of VEGF-A isoforms signaling/function in regulating ischemic endothelial 

angiogenic function is inadequate and more in-depth studies are necessary to allow for 

successful clinical trials.

2.2 Challenges in translating VEGF-A therapy from bench to bedside in PAD.

VEGFR2 signaling is well known to be the dominant pro-angiogenic signaling in post-natal 

and pathological angiogenesis[14]. The ability of VEGF-A to induce potent VEGFR2 

dependent angiogenesis made it an attractive target for treating ischemic cardiovascular 

diseases including PAD and Cancer. While blocking VEGF-A has been therapeutically 

effective for treating cancer[34] and age-related macular degeneration[35], none of the 

clinical studies conducted in PAD were successful[26,28,30–32]. This clearly indicates that 

making new vasculature in an ischemic environment is a more formidable challenge than 

blocking angiogenesis in a tumor environment.

A significant number of preclinical studies to induce hind limb ischemia by femoral artery 

ligation and resection were conducted to determine the translational potential of VEGF-A 

treatment[36–42]. In this model, the femoral artery is isolated and ligated proximally just 

above the inguinal ligament and distally at the start of the popliteal arteries to induce 

hind limb ischemia (HLI)[43,44]. To a large extent, the pathological features presented in 
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this model faithfully reflect human PAD. In fact, femoral artery ligation and resection in 

C57BL/6 mice is considered a close match to PAD patients with intermittent claudication, 

due to their greater resistance to ischemic muscle damage and excellent perfusion recovery 

to HLI[45–47]. On the other hand, BALB/C mice show a dramatic tissue loss with higher 

necrosis incidence and poor perfusion recovery to HLI reflecting patients with chronic 

limb-threatening ischemia[45–47]. Few variations of this model exist, wherein depending on 

the rationale of the study, either single ligation (proximal) or double ligation (proximal and 

distal) without resecting the femoral artery are performed[43]. Despite the ability of these 

models to recapitulate most of the common features of PAD, all these models induce acute 

ischemia in the hind limb, whereas PAD is a secondary manifestation of atherosclerotic 

plaque build-up in the in-flow blood vessels that induces chronic ischemia[19].

It is unclear whether one of the possible reasons for an excellent therapeutic effect of 

VEGF-A in preclinical murine models but not in human PAD is due to the chronic ischemic 

environment which may induce pathological features distinct from acute HLI in murine 

models. A recent report by Krishna et al[48]., developed a new 2-stage variation of femoral 

artery ligation and resection model to produce a more clinically relevant PAD[48] model. 

In this model, the authors used an ameroid constrictor to induce a gradual narrowing of 

the femoral artery for 14 days followed by the resection of the femoral artery. The authors 

observe a significant decrease in the blood flow in this 2-stage hind limb ischemia model 

vs. the femoral artery ligation and resection without using ameroid constrictor[48]. The 

development of murine models that can produce chronic ischemic conditions to match 

human PAD will enable a more accurate assessment of a gene/molecules’ therapeutic 

efficacy for PAD treatment. Another possible explanation for the reason behind the failure of 

VEGF-A in PAD clinical trials can be explained based on the expression of anti-angiogenic 

VEGF165b isoforms in ischemic muscle[49,50], whose levels and/or function was not 

accounted for during the VEGF-A clinical trials. Until the discovery of these anti-angiogenic 

VEGF-A isoforms[33], total VEGF-A in the PAD muscle was considered pro-angiogenic 

and the focus has been to increase the inadequate VEGF-A levels in the ischemic muscle to 

activate VEGFR2 signaling and downstream angiogenesis.

2.3 Alternatively spliced anti-Angiogenic VEGF-A isoforms

Alternate splicing in the VEGF-A family is well understood[51]. Alternate stop codons in 

exons 6 and 7 result in multiple VEGF-A splice variants with prescribed varying lengths and 

degrees of extracellular matrix binding ability[52]. VEGF-A isoforms that retain heparin

binding sites exhibit strong binding to the extracellular matrix, whereas VEGF-A isoforms 

that lack the heparin-binding sites show reduced ability to bind to the extracellular matrix 

resulting in a predominant increase in circulation as soluble isoforms[53]. E.g. VEGF-A189 

that retains both exons 6 and 7 is sequestered almost entirely to the extracellular matrix, 

whereas VEGF-A121 that lacks both exons 6 and 7 is predominantly secreted isoform[53]. 

Nevertheless, whether membrane-bound or soluble these “exon 6, 7 alternatively spliced 

isoforms” exhibit comparable angiogenic activity upon binding to VEGFR2.

The discovery of the novel VEGF-A isoform family occurring due to alternative splicing 

in exon-8 with “anti-angiogenic” properties questioned the inherent pro-angiogenic nature 
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of VEGF-A isoforms[54]. Distal and proximal 3’ splicing regulates the formation of 2 

isoform families, with the only known difference so far, being a 6 amino acid switch 

from CDKPRR in distal splice variants (from hereon called as VEGFxxxa, xxx for the 

number of amino acids) to SLTRKD in proximal splice variants (called as VEGFxxxb 

(VEGF165b, most abundantly occurring isoform). However, unlike the isoforms generated 

by the alternate splicing in exons 6 and 7, isoforms that occur due to splicing in exon-8 

display appear to largely display anti-angiogenic properties in-vivo [55]. The recognition 

of the anti-angiogenic isoforms within the VEGF-A family pushes the boundaries of 

our understanding of VEGF-A induced angiogenesis. Needless to say that before the 

discovery of anti-angiogenic VEGFxxxb isoforms, the total amount of VEGF-A identified 

by either PCR, western blot, ELISA, or immunohistochemical analysis was considered 

pro-angiogenic, since any reagent that was developed against common sequences/regions 

in VEGF-A will have in fact detected both the pro- and the anti-angiogenic VEGF-A 

family members[49,54]. Hence, in physiology or pathology, the actual or relative amounts 

of pro- vs. anti-angiogenic VEGFxxxa or VEGFxxxb isoforms were not known until the 

advent of primer sequences and antibodies that are raised/developed specifically against the 

6-aminoacid or base-pair sequences[49,54]. Moreover, even though reports demonstrating 

the expression, as well as the biological activity of VEGFxxxb isoforms, began to increase 

the mechanistic role of VEGFxxxb isoforms in regulating pathophysiology is still in its 

infancy; specifically, the precise mechanism(s) by which VEGFxxxb isoforms exert their 

inhibitory effect on angiogenesis. Additional detail will then be needed to apply these 

findings to conditions that occur in PAD.

2.4 VEGF165b signaling in endothelium

VEGF165b isoform was first discovered by Bates et al. in renal carcinoma samples[33]. 

The authors showed that VEGF165b blocked VEGF165a induced human umbilical vein 

endothelial cells (HUVEC) migration. In a subsequent paper by Woolard et al.[55] 

the authors report that VEGF165b competitively blocked VEGF165a induced VEGFR2 

activation in human microvascular endothelial cells. These reports laid the foundation for 

the concept that VEGF165b functions as a competitive inhibitor of VEGF165a induced 

VEGFR2 activation and angiogenesis. The data presented in Woolard et al. also showed that 

VEGF165b was not able to induce VEGFR2 activation by itself but only blocked VEGF165a 

induced VEGFR2 activation suggesting that VEGF165b might not have a biological activity 

by itself. Interestingly, the data in the manuscript also showed that, despite an inability to 

induce VEGFR2 activation, VEGF165b treated HMVECs showed a significant increase in 

ERK1/2 activation, one of the other important signaling mediators downstream of VEGFR2 

activation[55]. This data suggested the possibility that VEGF165b can induce receptor kinase 

signaling that is different and/or independent of VEGFR2 activation.

Subsequently, Kawamura et al.[56], using pulmonary arterial endothelial (PAE) cells that 

express VEGFR2-NRP1 showed that VEGF165b decreases VEGFR2 binding with NRP1 

and suggested that decreased VEGFR2 activation by VEGF165b is due to its inhibitory 

effect on VEGFR2-NRP1 interactions. However, the extent of VEGFR2-NRP1 complex 

inhibition achieved by VEGF165b did not reflect the relative change in VEGFR2 activation 

questioning whether VEGFR2-NRP1 complex inhibition was, in fact, responsible for 
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VEGFR2 inhibition by VEGF165b. Later, another report by Catena et al[57]., showed that 

VEGF165b and its sister isoform VEGF121b isoform are weakly angiogenic isoforms of 

VEGF-A. In this report, Catena et al[57]., showed that VEGF165b and VEGF121b induced 

VEGFR2 and Erk1/2 activation albeit to varying degrees compared to VEGF165a. This data 

contrasts with Woolard et al[55]., who showed that VEGF165b was not able to VEGFR2 

activation but suggested the possibility that VEGF165b might not be an inhibitory isoform 

of VEGFR2. Clearly, data was emerging that VEGF ligand-receptor interactions and down

stream receptor signaling was going to be more complex than a single interaction.

Until recently mechanistic studies on VEGF165b were focused on examining the ability of 

VEGF165b to block VEGF165a induced VEGFR2 activation[58]. However, data from Catena 

et al[57]., and Kawamura et al[56]., indicated that VEGF165b not only induces VEGFR2 

activation but also downstream ERK1/2 activation suggesting that indeed VEGF165b is not 

an inhibitory isoform of VEGFR2. Consistently, our recent data showed that VEGF165b 

induced VEGFR2 activation to the same extent as VEGF165a in physiologically relevant 

HUVECs, as well as in HEK293 cells that express only VEGFR2[49]. This data suggested 

that the anti-angiogenic property of VEGF165b is not due to its inhibitory effect on 

VEGFR2. Furthermore, the ability of VEGF165b to activate VEGFR2 showed that it is 

not an inactive ligand[49,56,57]. Taken together these findings presented evidence that 

VEGF165b exerts its anti-angiogenic effects via a receptor other than VEGFR2.

Previous studies by Waltenberger et al[59]., and Sawano et al[60]., showed that the binding 

affinity (Kd) of VEGF165a to VEGFR1 is Kd ~1–16pmol/L, whereas for VEGFR2 it 

is ~410–760pmol/L. However, the extent of VEGFR1 autophosphorylation that follows 

VEGF165a binding is several magnitude lower compared to VEGFR2[60]. Since the binding 

sites for VEGFR1 (in exon3) and VEGFR2 (in exon4) are the same in VEGF165a and 

VEGF165b isoforms, VEGF165b binding affinity to VEGFR1 and VEGFR2 was predicted 

to be similar to VEGF165a. The intensity of phosphorylation (e.g. measured on western 

blot) is considered a hallmark for the ability of the receptor to activate the downstream 

signaling. VEGF165a has a high binding affinity to VEGFR1 (vs. VEGFR2) but cannot 

induce potent VEGFR1 phosphorylation. This has resulted in the existing paradigm 

that endothelial VEGFR1 is an anti-angiogenic receptor that functions as a VEGF-A 

trap to limit angiogenesis. This paradigm was further supported by the developmental 

studies where VEGFR1 deficient mice die embryonically due to excessive malformed 

angiogenesis[61,62]. Even though the abnormal angiogenesis was later shown to be due to 

defective hematopoietic progenitor recruitment, excessive VEGFR2/Akt activation observed 

in VEGFR1 deficient tissues indicated that lack of VEGFR1 increases the bioavailability 

of VEGF165a to bind and sustain VEGFR2 activation resulting in excessive angiogenesis. 

Further experiments using mice that have N-terminal binding regions for VEGFR1, but 

lack the C-terminal tyrosine kinase region, showed that these mice develop normally 

indicating that VEGFR1-tyrosine kinase is dispensable for developmental angiogenesis and 

also suggested a lack of activity for VEGFR1 tyrosine kinase[63]. Even though several 

reports have presented convincing evidence that VEGFR1 plays critical roles in several 

pathologies[64–70], only fewer reports have shown a specific and direct pathological role of 

the VEGFR1 tyrosine kinase[71–73].
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In our studies to understand the role of VEGF165b in regulating ischemic angiogenesis in 

PAD, we anticipated that VEGF165b inhibition (achieved via delivery of an isoform-specific 

monoclonal antibody) would activate the classical pro-angiogenic VEGFR2-AKT signaling 

pathway[49]. However, our data showed that VEGF165b inhibition actually decreased 

VEGFR2 activation in ischemic endothelial cells within the preclinical PAD model. This 

is consistent with our in vitro data that showed that VEGF165b actually can function 

as an activating ligand for VEGFR2[49]. What we discovered was that VEGF165b is a 

potent silencer of VEGFR1 activation. In our studies using HEK-293 cell models (cells 

that lack VEGFRs but were transfected to be HEK293-VEGFR1 or HEK293-VEGFR2), 

to determine the competitive inhibitory effect of VEGF165b on VEGFR2 and VEGFR1, 

we observed that VEGF165b blocked VEGFR1 activation even at 10X lower concentration 

than VEGF165a, but showed a synergistic effect with VEGF165a in activating VEGFR2[49]. 

This data was further supported by the evidence that VEGFR1+/− mice have significantly 

lower perfusion recovery and angiogenesis in ischemic muscle post-hind-limb ischemia[74]. 

These data confirmed that VEGFR1 deficiency inhibits angiogenesis and VEGF165b blocks 

VEGFR1 induced angiogenesis to exert its anti-angiogenic effect. A role of VEGFR1 

tyrosine kinase in regulating ischemic angiogenesis was also demonstrated in the experiment 

where VEGFR1 pull-down demonstrated an increased STAT3 binding upon VEGF165b 

inhibition and overexpressing VEGFR1 in HEK293 cells resulted in STAT3 activation[49]. 

This data pointed out that VEGFR1 tyrosine kinase has activity and can interact with 

STAT3 to induce its activation. What remains to be determined is whether the downstream 

signaling and effects due to VEGFR1+/− may not be the same as VEGFR1-tyrosine kinase 

deficiency and these differences in disease outcomes and signaling may be more pronounced 

in cardiovascular pathologies including PAD and cancers.

While we have shown that VEGF165b blocks VEGFR1 to decrease angiogenesis, whether 

this is due to a direct inhibitory effect of VEGF165b on VEGFR1 or due to competition with 

VEGF165a for binding sites on VEGFR1 is not completely understood. Furthermore, the 

molecular mechanism by which VEGF165b inhibits VEGFR1 but activates VEGFR2 is not 

well understood. The arginine residues in the 8th exon 6 amino acid sequence (CDKPRR) 

of VEGF165a are positively charged. These positively charged arginine residues can induce 

a strong conformational change in VEGFR2 resulting in strong receptor dimerization and 

autophosphorylation and downstream signaling activation. However, in VEGF165b isoforms, 

the arginine residues are replaced with lysine and aspartic acid (SLTRKD) resulting in a net 

neutral charge. This net neutral charge was thought to be a “factor” in inadequate internal 

rotation and weak VEGFR2 autophosphorylation upon VEGF165b binding[58]. However, 

our experimental data showing the ability of VEGF165b to activate VEGFR2 to the same 

extent as VEGF165a[49] strongly suggests that this is not the case. We hypothesize that a 

net positive charge on VEGF-A isoforms is essential to induce strong autophosphorylation 

that is required for VEGFR1 activation but may not be essential for VEGFR2 activation. 

Consistent with our hypothesis, a comparison of the C-terminal 6 amino acid sequence in 

VEGFR1 activating ligands including PLGF and VEGF-B with VEGF165a and VEGF165b 

showed that all PLGF isoforms and VEGF-B-167 have positive “RR” residues at the C

terminus (Table 1). Further experiments including the structural alterations and receptor 
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dimerization upon specific ligand binding are necessary to decode the mechanism by which 

VEGF165b activates VEGFR2 but silences VEGFR1.

2.5 VEGF165b signaling in macrophages

While VEGFR2 expression is largely confined to endothelial cells, VEGFR1 expression 

is quite pleiotropic[75–77]. For example, neurons[75], glia[78], adipose[70], and 

macrophages[77] express VEGFR1 with varying functions. Macrophages are extremely 

plastic cells that play important roles in maintaining tissue homeostasis[79]. In PAD, studies 

were focused mainly on the role of macrophages in arterial remodeling[80–83] with very 

few studies presenting evidence on their role in microvascular remodeling[84]. The ability 

of macrophages to modulate tissue repair is dependent on their polarization state which in 

turn is dependent on the tissue microenvironment[85–88]. For example, classically activated 

(by LPS-IFN-g) cytotoxic M1 macrophages and alternatively activated (IL4) reparative 

M2 macrophages are at the 2 ends of the macrophage polarization spectrum[89]. New 

macrophage subsets based on unique marker/cytokine combination are constantly identified 

making the nomenclature for macrophages more fluidic[90–92]. For example, we have 

identified that macrophages in the ischemic environment present an M1-like phenotype 

based on differential arginase and iNos expression[49,84]. Macrophages are also grouped 

on the basis of the pathological state of the tissue, for example, TAMs (tumor-associated 

macrophages) in cancer tissues[93], ATMs (Adipose tissue macrophages) in adipose 

tissue[94], and the tissue they reside in e.g. Kupffer cells in the liver[95], Langerhans cells in 

the skin[96], and microglia in the brain[97]. Nevertheless, most of the pathologies that study 

macrophage function focus broadly on M1 and M2 macrophage populations.

Decoding VEGFR1 signaling in endothelial cells is challenging. Several factors including 

VEGFR1 and VEGFR2 crosstalk, and receptor heterodimerization, contribute to this 

complexity. However, the lack of VEGFR2 expression on macrophages has enabled us 

and others to dissect VEGFR1 specific signaling. VEGF165b secreted by macrophages 

has been suggested to result in increased circulating serum levels in PAD patients[50]. 

However, in our experiments including in vitro or ex vivo macrophage conditioned medium 

or human plasma samples we did not detect VEGF165b presence in the circulation[98]. 

What we found was a significant increase in the macrophage intracellular VEGF165b 

levels correlating with lower VEGFR1 activation and an M1-like polarization state[98]. 

This data indicated that the heparin motifs in VEGF165b isoforms[58] enable the cell 

surface presenting of VEGF165b to VEGFR1 inhibits VEGFR1 activation to induce 

an M1-like phenotype. Macrophage polarization states are dynamic and reversible with 

changing tissue environment and cytokine milieu[99]. Hence, inducing and maintaining an 

M2-like reparative macrophage phenotype in an M1-inducing ischemic tissue environment 

is extremely challenging. However, VEGF165b inhibition induced and maintained M2-like 

phenotype in both infiltrating and resident macrophages until day 3 post HLI in a chronic 

limb-threatening ischemia model[98]. While increased M2-like macrophages in ischemic 

muscle decreased necrosis and enhanced perfusion, further experiments are necessary to 

determine how long VEGF165b inhibition can induce and sustain the M2-like phenotype in 

preclinical PAD models to better understand its therapeutic efficacy.
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While VEGF165b inhibition via a VEGF165b antibody allowed VEGFR1 activation to induce 

STAT3 activation in endothelial cells, in macrophages VEGF165b inhibition modulated 

VEGFR1 function to induce signaling that is distinct from endothelial cells[49,98]. 

In VEGFR1+/− macrophages, we have observed a significant increase in S100A8/A9 

expression[98]. This increased S100A8/A9 expression played a causal role in driving an 

M1-like phenotype in VEGFR1+/− macrophages. Interestingly, while we did not see a direct 

effect of S100A8/A9 on endothelial cells[98], conditioned medium from macrophages that 

overexpress S100A8/A9 impaired endothelial angiogenesis by a paracrine mechanism in 
vitro suggesting that not only the signaling but the mechanism of the genes downstream 

of VEGF165b-VEGFR1 signaling is unique between endothelium and macrophages. 

Similar to macrophages, monocytes in the circulation also display heterogeneity in 

the phenotypes[100–102]. We are just beginning to understand monocyte heterogeneity. 

Differential CD14, CD16 expression (in human monocytes) was used to cluster the 

monocytes into 3 different subsets[103]. Classical CD14+CD16-, CD14+CD16+ intermediate 

and CD14-CD16+ non-classical monocyte subsets[100–102]. However, an elegant report by 

Hamers et al[101]., using Mass Cytof and RNA-Sequencing of human monocyte populations 

clearly showed the inadequacy of using only CD14 and CD16 markers to distinguish 

monocyte subsets indicating that more studies are necessary to distinguish specific monocyte 

subsets using comprehensive marker panels in cardiovascular diseases[103]. Current studies 

on monocyte heterogeneity in cardiovascular diseases are confined to identifying the 3 major 

macrophage subsets based on CD14 and CD16 expression. Interestingly even with CD14 

and CD16 markers, several papers showed an important correlation with specific monocyte 

subsets and disease outcomes in coronary artery disease[104], PAD[105], and cardiovascular 

events[106,107]. Studies using single-cell transcriptomics are underway to decode the 

molecular machinery that regulates this monocyte subset as well as the possibility of using 

this monocyte subset as a cell marker to predict adverse coronary outcomes in PAD patients 

and/or PAD progression.

3. Conclusions

Despite an increasing number of studies demonstrating a potential role of VEGF165b 

isoforms in several pathologies including stroke[108], PAD[49,50,98], systemic 

sclerosis[109], tumors[33,55–57], and retinal diseases[110,111], a complete understanding 

of the mechanism by which these isoforms regulate pathological processes and whether 

the mechanisms are the same across different processes are still unclear. Our recent 

studies have expanded the role of VEGF165b function from endothelial cells[49] to 

macrophages[98] and other studies have demonstrated the presence of VEGF165b in 

platelets[112] indicating that the functions of VEGF165b are not confined to vasculature. 

More importantly, the signaling regulated by VEGF165b is distinct between cell types. 

For example, while VEGF165b regulates VEGFR1-STAT3 signaling in ischemic endothelial 

cells[49], it regulates VEGFR1-S100A8/S100A9 signaling in ischemic macrophages[98]. 

These studies indicate that we have just begun to understand the role of VEGF165b isoforms 

function; and significant gaps remain in our understanding of its signaling, mechanism, and 

production in ischemic pathologies[58]
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4. Expert opinion

What are the key developments and challenges in the area?

Vascular endothelial growth factor receptor (VEGFR)-2-Akt-endothelial nitric oxide 

synthase (eNOS) mediated nitric oxide generation is widely considered the dominant 

pathway promoting hypoxia-dependent angiogenesis[15]. Although preclinical studies have 

focused on VEGF165a induced VEGFR2 activation to achieve therapeutic angiogenesis, 

numerous human studies targeting this pathway have failed to achieve any meaningful 

clinical improvement in patients with PAD[21,26–32]. Cloaked within the vascular 

endothelial growth factor (VEGF) system alternative splicing of VEGF-A results in a 6 

amino acid switch that changes the “pro-angiogenic VEGF165a” to the “anti-angiogenic 

VEGF165b” isoform[54]. Two aspects of this splice variant are of critical importance. First, 

detailed attention to the presence of this isoform is required for its recognition, and unless 

specifically sought studies to date on “VEGF” were unable to distinguish VEGF165a vs. 

VEGF165b, for the 165 and likely other amino acid versions[54]. In PAD our murine 

and human studies unexpectedly demonstrated that the major effects of the VEGF165b are 

directly linked to VEGFR1 signaling[49,98]. On ischemic endothelial cells in PAD muscle, 

greater VEGF165b produced by ischemic/hypoxic conditions reduce the ability of VEGFR1 

to promote angiogenesis[49]. On macrophages, greater VEGF165b polarizes macrophages 

toward an inflammatory phenotype and in a paracrine manner, these inflammatory 

macrophages inhibit angiogenesis[98] (Figure 1). In both situations, the negative effects 

of greater VEGF165b are not readily countered by VEGF165a supplementation; the approach 

of choice in human intervention.

What are knowledge gaps and how should they be tackled?

Biomarkers are generally invaluable for guiding human therapeutics. One key question 

that remains to be answered about these elusive VEGF isoforms is our inability to detect 

VEGF165b in circulation. In contrast to other studies that used the human serum to detect 

VEGF165b, we have used human plasma samples. Since plasma is devoid of platelets, 

platelets may contribute to the circulating VEGF165b levels. Consistent with this hypothesis, 

Hirigoyen et al[112]., showed that platelets from systemic sclerosis secrete significantly 

higher VEGF165b/VEGF-A levels. Single antiplatelet therapy with aspirin or clopidogrel is 

recommended as a treatment for symptomatic patients to decrease cardiovascular risk[113–

115]. However, more studies are necessary to understand whether platelets serve to deliver 

VEGF165b or VEGF165b expression modulates platelet function in PAD.

Furthermore, increased binding of plasma VEGF165b to soluble VEGFR1 in the circulation 

can mask its detection. In addition to sVEGFR1[116], other soluble VEGFRs and NRPs 

including sVEGFR2[117], sVEGFR3[118], sNRP1[119], and sNRP2[120] have been 

reported in various physiological and pathological conditions. However, a systematic 

analysis of the expression or function of these soluble forms beyond their assumed role 

as a growth factor sink in PAD is not clear[121,122]. For e.g., sVEGFR1 has been shown 

to interact with α5β1 integrin to inhibit tumor angiogenesis[123]. The function of soluble 

VEGFR1 has been extensively studied in pre-eclampsia[124]. Increased sVEGFR1 levels 

have been shown to contribute to the pathogenesis of pre-eclampsia by sequestering VEGF
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A and PLGF leading to decreased angiogenesis[124,125]. Very limited information exists 

on soluble VEGFRs in PAD[121,122]. The ability of sVEGFR1 to sequester VEGF-A 

strongly indicates the possibility of sequestering VEGF165b as well[126]. However, if there 

is a preferential binding between VEGF isoforms to sVEGFR1 (and other sVEGFRs) and 

how these interactions regulate membrane VEGFR1 (vs. VEGFR2) signaling needs to be 

further studied. More importantly, whether and how sequestering of VEGF165b to sVEGFR1 

regulates circulating monocyte phenotype needs to be further examined. It is appealing to 

speculate that targeting VEGF165b may have the potential to decrease cardiovascular events 

(via effecting VEGF165b+CD14+CD16+ monocyte subsets and/or VEGF165b expressing 

platelets in the circulation) in PAD patients.

What should be unfolding in the next 5 years?

Structural studies will be one essential aspect for advancing our understanding of this 

problem Data to date has shown that, unlike VEGF165a that has 8 cysteine disulfide bonds, 

VEGF165b has only 7 suggesting that the dimer formed by VEGF165b is weaker compared 

to VEGF165a. This is evident from our experimental observations (data not shown) that 

it is relatively easier to observe ~20kD VEGF165b monomer than VEGF165a monomer in 

western blot analysis. Further experiments are needed to understand whether and how the 

VEGF165b monomer regulates VEGFR1 vs. VEGFR2 receptor dimerization and signaling.

While progress has been made in understanding the pathological consequences of 

VEGF165b expression in ischemic muscle, the upstream processes that regulate VEGF165b 

production is still in their infancy. For example, the splicing machinery that regulates 

VEGF165b seems to be cell/tissue-specific[50,127–130] and it is yet to be seen what 

regulates the preferential production of VEGF165b in endothelial cells in non-ischemic 

and ischemic tissue. In general, splice factors control target and process multiple genes, 

rendering it difficult to target a splicing factor to achieve therapeutic benefit. However, 

identifying a 3’ specific slice factor regulated by ischemia might provide a way to target 

VEGF165b upstream. This is an important aspect to consider due to the loss of VEGFR2 

signaling upon VEGF165b inhibition. Even though VEGF165b inhibition enhanced perfusion 

despite decreased VEGFR2 activation in preclinical models[49], human pathology is more 

complex to simply overlook the possibility of VEGFR2 signaling inhibition. Hence, more 

studies are needed to understand the upstream mechanism of preferential VEGF165b 

production in ischemic tissues.

Conventional therapies were focused on increasing growth factor levels e.g., VEGF-A in 

PAD muscle to achieve a therapeutic effect[28–32]. However, a 3-fold increased expression 

of VEGF165b over VEGF165a in PAD muscle and the ability of VEGF165b to inhibit 

VEGFR1 even at 10 times lower concentration than VEGF165a indicates a 30Molar excess 

of VEGF165b activity in PAD muscle[49]. This suggests that simply increasing VEGF-A 

levels to obtain a therapeutic effect in PAD muscle may not be clinically feasible and 

can also be partly attributed to the failure of VEGF-A clinical trials. Several VEGF-A 

modulators are in clinical use for cancer[34,131] and macular degeneration[132,133]. 

Hence, it is not very far to move the beachside findings to the clinic in using VEGF165b 

monoclonal antibodies to achieve perfusion benefit for PAD patients.
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What potential do the latest approaches hold? Are there niche questions?

Given the prevalence and consequences of PAD, likely a number of areas will be the focus 

of activity for years ahead regarding VEGF165b, its relationship to VEGF receptor activity, 

and its’ targeting as a therapeutic. Though we have not approached this in this review 

PAD studies targeting VEGF165b have used monoclonal antibodies and beyond the fact that 

monoclonal antibodies are emerging as excellent human therapeutics, RNA levels of the 

VEGF165b are far below that what would be expected when compared to its protein. At least 

with our current knowledge, RNA-directed inhibition can be anticipated to be much more 

challenging than antibody-guided inhibition. Recognition of the amino acid composition 

differences between the VEGF165b and VEGF165a splice variants and its amino acid 

composition difference may well provide important insight into the isoform interactions with 

VEGFR1. Does VEGF165b inhibition lead to the same angiogenic signaling pathways that 

occur with VEGF165a activation or are these distinct and exploitable for investigation? Can 

promoting angiogenesis independent of VEGFR2 offer therapeutic advantages? The ability 

for VEGF165b and its particular relationship to the only VEGF receptor on monocytes/

macrophages may well provide a way in which processes within PAD muscle in humans 

may explain the enigmatic role that PAD plays in the increased risks these patients have for 

heart attack and stroke[134–136]. Finally, the extent to which the finding of this particular 

isoform will be valuable across other disciplines given the widespread role that the VEGF 

ligand and receptor play across a host of physiologic and disease processes.
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Article Highlights

• Alternative splicing in VEGF-A 8th exon, near its C-terminus, results in the 

formation of pro- or anti-angiogenic VEGF-A isoforms of the same amino 

acid length.

• The pre-existing paradigm would have suggested that the anti-angiogenic 

VEGF-A isoforms simply exert their effect by blocking pro-angiogenic 

VEGF-A induced VEGFR2 activation to inhibit angiogenesis

• Our recent studies have shown that anti-angiogenic VEGF-A isoforms are 

in fact agonists of VEGFR2 but antagonists of VEGFR1 and targeted ligand 

removal have unveiled novel VEGFR1 signaling pathways in PAD relevant 

conditions.

• In the ischemic endothelial cells, the anti-angiogenic VEGF-A isoform 

inhibits VEGFR1 signaling to directly decrease angiogenesis.

• In the ischemic macrophages, the anti-Angiogenic VEGF-A isoform 

inhibits VEGFR1 signaling to induce an M1-like phenotype which inhibits 

angiogenesis in a paracrine manner.
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Figure-1: 
Recent advances in Anti-angiogenic VEGF165b isoform signaling in PAD. Schematic of 

our recent findings in VEGF165b signaling. In ischemic ECs, VEGF165b (V165b) blocks 

VEGFR1 (R1) activation to inhibit angiogenesis (left). In ischemic macrophages, VEGF165b 

blocks R1 activation to induced M1-like polarization (right). Distinct signaling regulates 

ischemic angiogenesis and macrophage polarization downstream of R1 activation post 

VEGF165b inhibition. Limited information on the levels and function of Soluble R1 (sR1), 
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sR2, sNRP1 and sNRP1 significantly increases the complexity of VEGF-VEGFR system in 

regulating the pathology of PAD.
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Table-1:

Last 2 amino acid sequences in VEGFR1 activating ligands. The last 2 amino acids in the c-Terminus of R1 

activating ligands are ‘arginine residues’ indicating a positive charge on R1 activating ligands. These arginine 

residues are replaced with lysine-aspartic acid resides in VEGF165b indicating a neutral charge. This suggests 

the requirement of a net positive charge on VEGF ligands to activate R1.

Ligands last 6 amino acids Charge

PIGF-1 (identifier-P49763–2) DAVPRR Positive

PIGF-2 (identifier: P49763–3) DAVPRR Positive

PIGF-3 (identifier: P49763–1) DAVPRR Positive

PIGF-4 (identifier: P49763–4) DAVPRR Positive

VEGF-B-167 (identifier: P49765–2) CRKLRR Positive

VEGF165a (identifier: P15692–4) CDKPRR Positive

VEGF165b (identifier: P15692–8) SLTRKD Neutral
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