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ABSTRACT Reproducibility is a major issue in microbiome studies, which is partly
caused by missing consensus about data analysis strategies. The complex nature of
microbiome data, which are high-dimensional, zero-inflated, and compositional, makes
them challenging to analyze, as they often violate assumptions of classic statistical
methods. With advances in human microbiome research, research questions and study
designs increase in complexity so that more sophisticated data analysis concepts are
applied. To improve current practice of the analysis of microbiome studies, it is impor-
tant to understand what kind of research questions are asked and which tools are
used to answer these questions. We conducted a systematic literature review consider-
ing all publications focusing on the analysis of human microbiome data from June
2018 to June 2019. Of 1,444 studies screened, 419 fulfilled the inclusion criteria.
Information about research questions, study designs, and analysis strategies were
extracted. The results confirmed the expected shift to more advanced research
questions, as one-third of the studies analyzed clustered data. Although heteroge-
neity in the methods used was found at any stage of the analysis process, it was
largest for differential abundance testing. Especially if the underlying data structure
was clustered, we identified a lack of use of methods that appropriately addressed
the underlying data structure while taking into account additional dependencies in
the data. Our results confirm considerable heterogeneity in analysis strategies among
microbiome studies; increasingly complex research questions require better guidance
for analysis strategies.

IMPORTANCE The human microbiome has emerged as an important factor in the de-
velopment of health and disease. Growing interest in this topic has led to an increas-
ing number of studies investigating the human microbiome using high-throughput
sequencing methods. However, the development of suitable analytical methods for
analyzing microbiome data has not kept pace with the rapid progression in the field.
It is crucial to understand current practice to identify the scope for development. Our
results highlight the need for an extensive evaluation of the strengths and shortcom-
ings of existing methods in order to guide the choice of proper analysis strategies. We
have identified where new methods could be designed to address more advanced
research questions while taking into account the complex structure of the data.

KEYWORDS microbiome, 16S rRNA, shotgun metagenomics sequencing, analysis
strategies

Recent advances in high-throughput sequencing methods led to an exponentially
increasing number of publications that aim to investigate the relationship between

diseases and structural changes in the human microbiome (1–3). Reproducibility
remains a major issue in this context. While some publications find support for a link
between the microbiome and a disease, other studies often lead to different or even
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contradictory conclusions. This conflict can be exemplified by a recent review on the
role of the gut microbiome in Parkinson’s disease which shows that among 16 studies
comparing gut microbiota between Parkinson’s disease patients and healthy individu-
als, 100 different taxa were detected to be differentially abundant (4). Notably, several
taxa, e.g., Lactobacillaceae and Bacteroidetes, were significantly increased in Parkinson’s
disease patients in four studies but significantly decreased in two other studies.

Heterogeneity between studies and low reproducibility may be caused by many
sources of variability in microbiome data. While biological differences exist, e.g., based
on the genetics of the host or its diet, there is a lot of potential for technical variation
in microbiome studies. Technical variation may be introduced during sequencing as
well as by the bioinformatics pipeline used to translate the results of the sequencing
into the composition of the microbiome (5). The choice of the data analysis strategies
following this process also contributes to the observed heterogeneity. Issues in micro-
biome data prohibit the use of classic statistical methods, especially methods designed
for low-dimensional data that make specific assumptions about the data, which do not
hold in the microbiome context. Microbiome data obtained by 16S rRNA amplicon or
shotgun metagenomic sequencing are high dimensional, with thousands of taxa pres-
ent. In addition, microbiome data are sparse because specific taxa are either not pres-
ent in some samples (structural zeros) or are not detected due to low abundance (tech-
nical zeros). This is especially problematic because microbiome data are compositional
and add up to a fixed overall read number (6–8), which in itself is variable and mainly
determined by technical issues and not the true quantity of microbiota in the original
sample. Taxa with low abundance are more likely to be considered absent in samples
with a low number of total reads, which will lead to bias if analysis strategies are based
on relative frequencies (9).

As research in the field advances, study designs become more complex and need
appropriate analysis strategies. While many early publications focused on the charac-
terization of different parts of the human microbiome in healthy individuals or in the
context of diseases, recent publications focus on more distinguished links between the
microbiome and diseases, e.g., the detection of predictive biomarkers that may enable
early diagnosis of diseases or the effect of a disease on the development of the micro-
biome over time.

This review aims to identify recent studies with a focus on microbiota in the human
host and to extract information about what kind of research questions are asked,
which study designs are used to answer these questions, and which statistical methods
are applied to analyze the data. The results will provide an overview of current practice
in microbiome studies and highlight the challenges posed by the complex data struc-
ture of microbiome data.

RESULTS
Research questions and study designs. Out of the 419 studies evaluated in this

review (see Fig. S2 in the supplemental material), 307 (73%) collected microbiome sam-
ples of individuals from a single time point using a cross-sectional design. The majority
(98.1%) of these studies assessed the outcome at the same time as the exposure; six
studies (1.9%) used a time-to-event analysis (with microbiome data as the exposure of
interest). Among studies that sampled at a single time point, 14% obtained clustered
data, e.g., by sampling multiple body sites of the same individual. A total of 112 studies
(27%) collected repeated microbiome samples of the same individual using a longitu-
dinal study design.

Inconsistencies between the objectives and what was achieved through analysis
could be identified (Table 1) in 31.7% of the analyzed studies. Most studies claimed an-
alytical objectives (n = 316, 75.4%); however, some of these studies (19.6%) either built
predictive models to assess predictive performance or tested for explicitly defined
treatment effects. In contrast, 39.3% of the 28 studies claiming predictive objectives
did not actually do this but instead performed only group comparisons—either
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descriptive or based on statistical tests—without any measure of predictive perform-
ance. Most studies that claimed descriptive goals actually performed statistical tests to
detect group differences (90.9% out of n=44). Among the 31 studies that aimed to
investigate treatment effects, 17 (54.8%) did not formally assess treatment effects but
only performed statistical tests to compare the microbial community structure between
study groups.

Sample size. Among all studies included, 51.1% (n = 214) compared two study
groups, typically a group of individuals with the outcome of interest (further referred
to as group 1) and a group without (further referred to as group 2). Two-hundred and
five (48.9%) studies sampled one study group, usually within longitudinal study
designs or for subgroup comparisons within the study group of interest. Studies using
only 1 study group had a median sample size of 51 ranging from 3 to 1,709. Studies
with 2 study groups had a median sample size of 60.5 ranging from 7 to 6,896; the me-
dian size of study groups 1 and 2 were 32 and 24, respectively. Among all studies with
2 study groups, an unbalanced design was common, with group 1 being twice as big
as group 2 (or vice versa) in 25.9% of the studies (Fig. 1B). The largest overall sample
size could be observed in studies with analytical objectives. An in-depth overview of
the samples sizes is depicted in Table 2.

Software. The statistical programming language R (48.6%) was used most fre-
quently for the analysis of microbiome data and 2.2% used Python. Although mothur
is a bioinformatic pipeline by nature, it incorporates functions to be used for statistical
analysis of the processed data; they were applied in 14.8% of the studies. PICRUSt and
cytoscape, both open source software packages, were used in 18.9% and 4.3% of the
studies, respectively. SPSS was used by 16.2% of studies, while either Stata or SAS were
used in 5.6% of the studies. Calypso, Galaxy, and metastats—analysis platforms designed
for the analysis of microbiome data—were used by 7.2% of the studies. More than one-
fourth of the studies (n = 117, 30.1%) did not explicitly mention the software used for
analysis, suggesting that analyses were performed by the used bioinformatics pipeline. A
detailed overview of the software used can be found in Fig. S2.

Taxonomic levels. The majority of studies (96.9%) used the classical operational
taxonomic unit (OTU) approach to cluster reads and assign taxonomic annotations to
the clusters. Thirteen studies (3.1%) used the DADA2 (10) pipeline, indicating the use
of amplicon sequence variants (ASVs), and assigned taxonomic annotation directly to
sequence reads without previous clustering. Genus was the most frequently used level
for analysis (75.7%), followed by phylum (55.3%). The species level was investigated by
34.7% of the studies; however, only 16.0% of the studies focused on species level data
only. In general, 66.8% (n=280) of all included studies performed analyses at multiple
taxonomic levels, with a wide range of different combinations (Fig. 2). The most fre-
quently investigated sets were genus and phylum (17.7%) and genus, phylum, and
species (7.9%). Only 18 studies (4.3%) investigated all taxonomic levels.

Alpha diversity analysis. Alpha diversity was investigated by 87.1% (n=365) of all
studies. Among these studies, 12 different indices were used to quantify alpha diver-
sity, richness or eveness (11–15) (see Fig. S1 in the supplemental material). The
Shannon index (16) was used most frequently (88.5%), followed by Chao1 (17) (41.9%),
the Simpson index (18) (28.2%), and observed richness (19) (19.2%). A commonly
observed strategy was to investigate a set of indices jointly (Fig. 3).

TABLE 1 Comparison of the intended objective with the performed analysisa

Objective

Actual analysis

Treatment effect Row totalDescriptive Analytical Predictive
Descriptive 4 39 1 0 44
Analytical 12 260 43 1 316
Predictive 1 10 17 0 28
Treatment effect 0 14 3 14 31
Column total 17 323 64 15 419
aCell counts represent number of studies.
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About 38% of the studies focused on an exploratory approach to alpha diversity only,
comparing alpha diversity indices between groups without testing these differences statisti-
cally (Fig. 4). Among those studies that performed statistical tests (n=227), 37% used para-
metric tests, while the rest used nonparametric tests or a combination of both parametric
and nonparametric tests.

In the 134 (43.4%) studies with clustered data, only between 13.2% (Chao1) and 21.2%
(Simpson index) of the alpha diversity analyses took clustering into account at the analysis
stage (Fig. 4).

TABLE 2 Sample sizes stratified by research objective and study groups for studies with two
study groups

Objective Study group Min Q1a Median Q3a Max
Descriptive (n= 5) Group 1 10 20 22 25 28

Group 2 10 10 11 19 32
Overall 20 30 33 44 60

Analytical (n=162) Group 1 4 18.25 31 59 1404
Group 2 3 13 20 37.75 5492
Overall 7 34 55 98.25 6896

Predictive (n=41) Group 1 7 32 48 88 767
Group 2 14 29 35 48 1025
Overall 28 65 84 137 1792

Treatment effect (n=6) Group 1 5 10.25 17 30.5 43
Group 2 5 9 16 30.5 36
Overall 10 19.25 38 62.75 70

aQ1, first quartile; Q3, third quartile.
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Beta diversity analysis. Beta diversity was investigated by 87.1% (n=365) of all
studies. The majority of studies used weighted (44.1% of studies investigating beta di-
versity) or unweighted (41.6%) UniFrac distance (20), followed by the Bray-Curtis dis-
similarity (21) (45.8%). The remaining indices were used in less than 5.0% of the studies
investigating beta diversity (22–26) (Fig. S1). Half of the studies that investigated beta

FIG 2 Upset plot of most frequently applied investigated combinations of taxonomic levels.

FIG 3 Upset plot of most frequently applied sets of alpha diversity measures.
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diversity (51%, n = 186) focused on a single index, while 30.4% (n=112) investigated
two different indices and 9.6% (n= 35) more than two indices. UniFrac distances were
predominantly investigated as a joint set, considering the weighted and unweighted
version, or together with Bray-Curtis dissimilarity (Fig. 5). In the studies focusing on a
single metric, Bray-Curtis dissimilarity was used dominantly.

The most frequently used approach to detect differences in beta diversity between
groups was permutational multivariate analysis of variance (PERMANOVA) (27) (45.2%,
n = 165), followed by analysis of similarity (ANOSIM) (28) (13.4%, n = 49). Violation of
the assumption of heterogeneity of multivariate dispersion was generally not reported,
even though unbalanced groups were quite common (Fig. 1). More than one-third (39%,
n = 85) of the studies using PERMANOVA or ANOSIM analyzed clustered data, which can
be accounted for by PERMANOVA or ANOSIM by restricted permutation schemes.
However, as most studies did not report how these methods were implemented, it is not
clear whether these adjustments were applied.

Dimension reduction. The most frequently used ordination method was principal-
coordinate analysis (29) (PCoA) (63% of studies investigating beta diversity), while
10.8% (n = 37) used nonmetric multidimensional scaling (30) (NMDS). Classical princi-
pal-component analysis (PCA), applied either to the count or relative abundance data
or to already transformed data, was used in 9.0% of the studies. Almost 7% of all stud-
ies assessing beta diversity used an unsupervised clustering approach to define groups
with similar bacterial community structures. In these studies, the most frequently used
method was Dirichlet multinomial mixtures (DMM) (31) (36%, n = 9), followed by parti-
tion around medoids (PAM; 28%, n=7) (32) and k-means clustering (33) (12.0%, n=3).
Only DMM is applied to raw count data directly, while the other methods are based on
the chosen beta diversity measure.

Differential abundance analysis. The largest amount of heterogeneity was found
at the stage of differential abundance testing, with 45 different approaches used.
About three-fourths of all studies in this review (77.1%) investigated differential abun-
dance, while one-fourth (22.9%) focused solely on diversity analyses. As differential
abundance testing is often performed univariately for every possible taxon, multiple
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testing need to be addressed. Among those studies that tested for differential abun-
dance univariately, 58.1% corrected for multiple testing. Among those studies, 84.8%
used the Benjamini-Hochberg false-discovery rate correction (34), while 15.2% used a
Bonferroni correction (35). About half of the studies investigating differential abun-
dance used a combination of multiple methods to test the same hypotheses (44.3%).

Nonparametric differential abundance analysis. Nonparametric methods were
the most frequently applied group of methods for differential abundance testing
(69.3% of all studies, n= 224) out of all the studies. Among these methods, linear dis-
criminant analysis effect size (LEfSe) (36) (a sequence of nonparametric tests combined
specifically for the microbiome research field) was used most commonly (58.9%), fol-
lowed by the Mann-Whitney U test (37, 38) (22.2%) and the Kruskal-Wallis test (39)
(20.8%). Analysis of composition of microbiomes (ANCOM), a method designed specifi-
cally for microbiome data under the framework of compositional data analyses (40),
was applied in 13 studies (5.8%).

Parametric differential abundance analysis. Different types of parametric models
were used for differential abundance analysis. Thirty-eight studies (11.8%) used simple
parametric tests for group differences, e.g., ANOVA (47.4%) or t test (42.1%). Only one
of these studies applied transformations (beyond relative abundance transformation)
prior to analysis.

More often, generalized linear models (GLMs; 22.3%, n=72) were used. Based on
the type of GLM, the model either treats the microbiome data as independent or as a
dependent variable.

Parametric differential abundance analysis—microbiome as predictor. Among
studies (n=155) treating the microbiome as independent variables, logistic (23.9%)
and linear (32.4%) regression were used most frequently, followed by partial least-
squares-discriminant analysis (PLS-DA; 19.4%) (41) and multivariate association with
linear models (MaAsLin; 18.3%) (42). Among all studies that used generalized linear
models with microbiome as the independent variable, 26.4% (n = 19) transformed their
data prior to analysis; in particular, 13 studies used ArcSine square root transforma-
tions—transformations applied to relative abundance data (43) and part of the

FIG 5 Upset plot of most frequently applied sets of beta diversity measures.
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MaAsLin workflow—and five studies used centered log-ratio (44) (CLR) transformations.
Five studies used Cox regression with microbiome data as independent variables.

Parametric differential abundance analysis—microbiome as outcome. Generalized
linear models for count data model the microbiome as the dependent variable and
were used by 5.6% (n = 18) of the studies. Among those studies, negative binomial
(45) (77.8%) and Poisson (46) (21.6%) regression models were used most frequently,
followed by their zero-inflated extensions (16.7% [47] and 11.1% [48], respectively).
More elaborated negative binomial models as implemented by edgeR (49) or DESeq2
(50) were classified as GLMs as well, as they were reported as negative binomial models
in many cases so that a clear distinction was not possible.

All methods—including those not specifically discussed in the text (28, 51–56)—
observed among all studies in this review can be found in Fig. 6.

Differential abundance analysis with clustered observations. Among all studies
that investigated differential abundance, 113 studies analyzed clustered data. However,
most (n=68) of these studies used analysis techniques which are not designed for clus-
tered data. A closer look at these studies revealed that strategies to avoid the direct anal-
ysis of nested or longitudinal data were common. Taking LEfSe (36) as an example, 10
out of 22 studies which used LEfSe for the analysis of clustered data treated repeated
observations falsely as independent groups, while the rest (n=12) circumvented the lon-
gitudinal analysis by splitting the analysis into multiple comparisons at different time
points or between different subgroups. Forty-five studies (39.8%) applied methods that
take into account additional dependencies in the data, e.g., Wilcoxon signed-rank tests
(40%, n=18) or linear mixed effect models (22.2%, n = 10). However, Wilcoxon signed-
rank tests are specifically designed to analyze data obtained from paired samples (e.g.,
pre- and posttreatment) and are not suited for any other source of clustering, e.g., longi-
tudinal or multicenter sampling.
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Predictive models. Predictive models were developed by 18.9% (n = 79) of the
studies. Among those studies, 78.5% (n = 62) used microbiome data as the independ-
ent variables and aimed to predict an outcome, e.g., disease status. If the microbiome
was treated as the independent variable, the most frequently used prediction model
was a random forest classifier (57) (44.9%, n = 31) followed by different types of GLMs
(30.6%, n = 19). Two studies trained a neural network based on previously detected dif-
ferential taxonomic units. Among those predictive models with the microbiome pat-
terns as the independent variables, 37.7% used LEfSe for variable selection into the re-
spective models. Few studies (12.7%) aimed to predict changes in specific taxonomic
units of the microbiome (as the dependent variable), as the outcome of a specific treat-
ment or condition based on subject matter knowledge. All of these studies used GLMs;
however, only one study used a count-outcome-based linear model (zero-inflated
Poisson regression), while two studies used MaAsLin (42) to build predictive models,
and four studies used linear regression models. Throughout all studies, the predictive
performance of models was evaluated by receiver operating characteristic (ROC) curves
and the respective area under the curve (AUC). A total of 34% of the studies used inter-
nal validation measures (e.g., leave-one-out or k-fold cross-validation); one study vali-
dated their findings externally by testing the model on an independent cohort.

DISCUSSION

The aim of this review was to provide information about analysis strategies cur-
rently used in studies investigating the human microbiome. The broad range of meth-
ods found among the studies in this review might reflect the lack of consensus on the
best approach for analyzing microbiome data. Moreover, our results confirm that the
interest in the field moved away from general descriptions of the microbiome to more
focused research questions and more sophisticated study designs.

Instead of establishing general associations of diseases to microbial dysbiosis, which
may be represented by alpha and beta diversity measures, researchers are interested
in identifying single taxonomic units or functional pathways that may serve as a thera-
peutic target or biomarker for the early diagnosis of diseases. An increasing number of
longitudinal studies show that researchers are interested in long-term effects of dis-
eases on the microbiome; moreover, the question whether diseases are a cause or an
effect of dysbiosis in the microbiome is of increasing interest. One other field of current
research is the use of multiple biosamples obtained from the same individual to detect
shared responses among microbiomes of different niches of the human body. These
types of studies will result in data with additional layer interdependence due to cluster-
ing of samples. Independently of the nature of clustering, observations within one clus-
ter express additional dependencies, which—if not taken into account—may bias the
results of statistical analyses. While many of the 155 (37%) studies that analyzed clus-
tered data had specifically designed analysis strategies—which are often characterized
by a combination of highly individualized approaches and sophisticated visualization
of results—these strategies mainly focused on diversity indices, e.g., alpha diversity dy-
namics over time or shared alpha diversity responses of multiple body sites within the
same subject. In contrast, our results show that testing for differential abundance in
more complex research designs is challenging. While some studies did not move
beyond diversity analyses, other studies applied alternative analysis strategies avoiding
the complex data structure while limiting the possibility of detecting true associations.
In some cases, methods were applied that treated clustered observations as independ-
ent ones, likely leading to biased estimates and spurious associations.

Alpha diversity. Although we observed various alpha diversity indices used in the
studies included in this review, the focus on four indices suggests high consensus
about how to quantify alpha diversity. Different indices address different domains of
diversity so that a combined evaluation of different domains seems useful. However,
most combinations observed included multiple indices measuring the same domain.
In addition, the vast majority of studies did not describe their choice of indices nor did
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they interpret the implications. Although 43.4% of the studies used clustered data, the
majority of the studies did not apply methods that account for additional dependen-
cies in the data (e.g., random effect models) when assessing alpha diversity. Given that
most studies investigated multiple alpha diversity measures, the application of inap-
propriate methods may lead to an even higher number of false conclusions, as multi-
ple testing leverages these biases. Many commonly used alpha diversity measures, e.g.,
the Shannon index (16), are nonlinear; statistical inference on mean differences may be
biased due to the implied assumption of linearity. Effective species numbers (as esti-
mated by Hill numbers [58]) circumvent this problem as they are defined on a linear
scale. Hill numbers serve as a generalization to alpha diversity measures defined by the
order q. The Hill numbers of the first three orders correspond to the most frequently
used alpha diversity indices—observed species richness (19), Shannon index (16), and
(inverse) Simpson index (18). A reasonable strategy for future analyses is to use all
three measures, as they cover the range from observed species richness to evenness
with different weightings so that their combination provides more information about
the true alpha diversity than each single index alone. For this strategy, it is necessary
to report all results to avoid publication bias.

Beta diversity. Beta diversity measures showed homogeneous patterns with
weighted and unweighted UniFrac (20); additionally, Bray-Curtis dissimilarity (21) was
used in most studies. Again, these measurements represent different types of beta diver-
sity quantification. Bray-Curtis dissimilarity is a nonphylogenetic dissimilarity measure; it
quantifies the dissimilarity between two sample pairs ignoring phylogenetic relatedness.
Unweighted UniFrac distances incorporate phylogenetic information as they quantify
the fraction of shared branch length on the phylogenetic tree. Its weighted counterpart
weights the branch length according to the abundance of the respective taxa. The use
of multiple measures that complement each other is found to be common, but only a
few studies describe their choices and interpret the respective results in the context of
their motivation. However, analogous to the use of complementary alpha diversity meas-
ures, it is a reasonable strategy to use all three beta diversity measures and actively inter-
pret detected differences, as these differences may provide useful insight beyond the in-
formation that a single metric provides.

Differences in beta diversity measures between study groups were mostly assessed
by PERMANOVA (27) or ANOSIM (28). Both methods construct an empirical null-distri-
bution based on permutations of group labels. The permutation scheme needs to be
adjusted when analyzing clustered data in order to take the additional dependencies
into account, restricting the permutation of group labels within the clusters. In the spe-
cial case of repeated measurements, additional restrictions may be used to account for
temporal dependencies between observations.

Differential abundance. The highest level of heterogeneity was observed for dif-
ferential abundance analysis. The methods used in the studies included in the review
suggest that researchers are aware about the violation of assumptions of parametric
statistical methods in microbiome studies, as the use of nonparametric models was
common.

Only a minority of studies aimed to account for the nature of the data by applying
generalized linear models for count data, e.g., Poisson (46) or negative-binomial (45)
regression. Although opting for models assuming count-based outcomes may be a
reasonable strategy to represent the true structure of the data, these methods are of-
ten not specifically designed for high-dimensional data and may produce results that
should be interpreted carefully. Although count-based models are able to account for
compositionality and various sequencing depth by incorporating the sequencing
depth as offset, we could not identify whether studies included these offsets. Hawinkel
et al. (59) showed recently that the negative binomial distribution often poorly fits
microbiome data. Given the large number of univariate tests in microbiome studies,
even a small number of bad fits may influence global inference substantially when cor-
rections for family-wise error rates are applied. A substantial amount of studies still
chose to tackle the analysis using linear models assuming normally distributed errors,
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which are likely to be inappropriate for the analysis of microbiome data without proper
preparation of the data, e.g., by applying transformations to account for composition-
ality. All studies transformed their data to relative abundances where necessary. We
could only identify 12 studies that applied transformations beyond the calculation of
relative abundances, e.g., log-ratio transformations as referred to by reference 44.
Although simple transformation may not be sufficient to deal with compositionality in
the data, we could identify only ANCOM (40) as a method used that inherently takes
compositionality into account. Although Dirichlet multinomial models are suitable
for compositional data as well, no study applied these models to test for differential
abundance.

Linear discriminant analysis effect size (LEfSe) (36) was the most frequently used
method overall. LEfSe couples a series of standard nonparametric methods—Kruskal-
Wallis test (39), Wilcoxon rank-sum test (37, 38), and linear discriminant analysis (56)—
to detect differentially abundant taxonomic units and subsequently estimate the effect
size for each detected unit. These steps are performed on relative abundances to
account for compositionality in the data. As one of very few methods specifically pro-
moted to analyze microbiome data, LEfSe is an established tool that is easily accessible
via the Galaxy platform and straightforward to use; it provides appealing visualizations
and easily interpretable results. However, as LEfSe applies a series of classical nonpara-
metric methods, its main advantage is to protect false-positive rates, while accepting
higher rates of false negatives. Although it may be desirable to reduce false-positive
rates, it limits the ability to detect important true effects. When analyzed with classical
nonparametric methods, e.g., Kruskal-Wallis tests, the analysis has to be performed uni-
variately taxon by taxon. Instead of applying the method to every single taxon, analysis
is often aided by subject matter knowledge, focusing on a small set of taxa of interest.
Although this may represent a valid strategy, it is impractical when no subject matter
knowledge is available, e.g., when the aim is to detect novel biomarkers, and analyses
cannot be focused on single taxonomic units.

The simulation study by Thorsen et al. (60) showed that methods with the lowest
false-positive rate also had the lowest predictive performance (and vice versa). Rank-
based methods may be limited in their statistical power due to constraints in sparse
data. In contrast, parametric models may show higher power but also inflated false-
positive rates due to violated distributional assumptions. Although permutation tests
may be susceptible to small sample sizes common in microbiome studies and highly
zero-inflated data, Thorsen et al. (60) recommend the use of permutation tests or
metagenomeSeq (61), which is based on a zero-inflated Gaussian mixture model.
Another simulation study by Weiss et al. (8) showed, however, that metagenomeSeq
had the highest false-positive rate among all inspected methods. While metagenomeSeq
was not used in any of the studies included in this review, permutation tests were mostly
applied to distance measures; only a few studies applied permutational methods for differ-
ential abundance analysis. Given the frequent use of classic rank-based methods, we
would like to argue that permutation tests might be a better alternative. While the applica-
tion is straightforward in most settings, the results are much more robust to bias and
maintain appropriate statistical power. We recommend using permutation tests as a
replacement for rank-based methods like Wilcoxon rank-sum tests or Kruskal-Wallis tests,
as permutation tests are more flexible, easy to implement, provide higher power, and are
easily adjustable for clustered data structures.

Clustered data structure. Although 37% of all studies in the review analyzed clus-
tered data, none of them used an adequate strategy to tackle differential abundance
analyses in the context of clustered data. Despite the fact that we observed thoroughly
designed analysis strategies for longitudinal microbiome data, these studies mainly
focused on general microbiome dynamics which can be captured by diversity measures.
However, as the field advances, the focus will shift to the complex interplay of individual
taxonomic units, either longitudinal or across different body sites. Our results emphasize
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that currently no methods are used that adequately addresses research questions that
move beyond the investigation of microbiome diversity dynamics.

Conclusions. The high heterogeneity in methods used for differential abundance
analysis implicate a need for a standardized guidance for the analysis of microbiome
studies in human hosts in order to improve reproducibility. Guidance documents will
improve comparability and reproducibility among studies by requiring researchers to
critically think about their design choices and to motivate proactive decision-making.
They further motivate researchers to share the intentions and aims of their analyses,
improving the interpretability of the presented results. So far, no such guidance for
human microbiome studies is available; however, a recent publication by Calle et al.
(62) may serve as a template for the analysis of microbiome data. Considering the
results in this review, we summarized a collection of reasonable strategies for future
research in Table 3 that prevent many of the possible pitfalls.

We summarized the main shortcomings with respect to microbiome data in
Table 4. This table emphasizes the ability of models with microbiome as outcome to
account for microbiome-specific data characteristics and indicates the main challenges
in microbiome data and possible bottlenecks with respect to the most frequently used
types of methods.

In order to construct more sophisticated guidelines, independent simulation studies
are crucial for benchmarking methods on a large scale with respect to the full complex-
ity of microbiome data. So far, only a few independent benchmarks are available.
Despite the discussed simulation by Thorsen et al. (60), to the best of our knowledge,
only two recent simulation studies evaluated a collection of frequently used methods.
The results by Hawinkel et al. (63) indicated excess false discoveries among all investi-
gated methods, independent of the chosen benchmarking tool. While Weiss et al. (8)
mainly focused on the effects of normalization techniques on differential abundance
testing, the results showed that benchmarking results are highly dependent on the
chosen simulation strategy. Although a wide range of other simulation studies are
available, these simulations were intended to justify newly developed methods and
inherently favor the proposed method, e.g., by simulating data from the same para-
metric model as the method is based on. As currently no further independent evalua-
tion of the performance of methods is available, the magnitude of bias induced by the
use of inappropriate methods is not known. The results may aid researchers in making

TABLE 3 Recommendationsa for future research based on the most commonly identified pitfalls in this review

Subject Recommendationb Rationale
Alpha diversity Hill numbers (58) of first three orders Linear scale, quantify different information, represent most

commonly used diversity indices, combination provide more
information compared with single indices

Beta diversity Bray-Curtis dissimilarity (21), unweighted UniFrac,
weighted UniFrac (20)

Most commonly used diversity indices, quantify different
information, combination provide more information than single
indices

Differential abundance Replacement of common nonparametric
methods (e.g., Wilcoxon rank-sum) by
permutation tests

Robust, higher power, easy to implement, easily adjustable to
account for clustered observations, results more directly
interpretable than rank-based methods

Model-wise assessment of fit/violation of
assumptions

Generally well fitting models may show bad fit for some taxa; misfit
of univariate models may influence other analyses, e.g., due to
FDRc corrections

Triangulation The use of multiple methods, which are ideally susceptible to
different data characteristics, may protect from false-positives;
reasonable if very conservative approach is needed, e.g., if
appropriateness of methods is unclear/not known

General Careful consideration of data structure, especially
due to study design

Ignoring the underlying data structure jeopardizes the meaningful
interpretation of results; detecting dependency structures is a
matter of subject-matter knowledge, e.g., due to the study design

aNote, that these recommendations represent sensible strategies based on current knowledge to easily avoid common pitfalls.
bReferences are in parentheses.
cFDR, false-discovery rate.
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informed choices regarding appropriate methods and analysis strategies needed to
adequately address their research questions.

Furthermore, there is a clear need for novel methods designed to analyze micro-
biome data obtained by more complex study designs. Independently of the statistical
properties of new methods, it is crucial to provide these methods in an accessible and
transparent way. The most frequently observed methods share the characteristic that
they are straightforward to apply, are well documented, and provide accessible and
interpretable output. Although oversimplification of complex methods should be avoided,
transparent documentation, including extensive tutorials is crucial.

MATERIALS ANDMETHODS
We identified relevant studies published in peer-reviewed journals via search of the PubMed data-

base using the search term “(16s[All Fields] AND rrna[All Fields]) OR amplicon[All Fields] OR shotgun [All
Fields]” with the filter “Humans.” Publications from June 2018 to June 2019 (the date of this PubMed
search) were screened. Primary studies that used 16S rRNA or metagenomic shotgun sequencing and
that investigated human subjects were included. Methodological studies, reviews, pooled analysis of
published studies, studies in mice, and studies that investigated viruses or eukaryotic organisms were
excluded. Each of the three reviewers (S.K.B., N.R., and T.B.) extracted data from the included studies
regarding the following domains: study design, research question, sample characteristics, data charac-
teristics, software, and statistical methods. The workflow is depicted in Fig. 7, while an overview of all
included and excluded publications can be found in Table S1 in the supplemental material. The extracted
data were compared between the reviewers and screened for anomalies (e.g., if categories were inter-
preted differently so that one reviewer assigned that category more often than the other reviewer). In case
differences were detected, they were discussed and data extraction was revised and repeated for the re-
spective categories. In total, information from 419 publications was extracted.

In the domain “research question,” we extracted information about the objective of the study (as
described in the publication) and the actual analysis performed to investigate whether the chosen analy-
sis strategy was adequate to answer the respective research question. Objective and actual analysis
were each categorized as either (i) descriptive if no inferential statistical analysis were (to be) performed,
(ii) analytical if at least in one part inferential statistical analysis was (to be) used to answer the research
question, (iii) predictive if any prediction models were (to be) built (including an assessment of their pre-
dictive performance), or (iv) assessment of treatment effects if such an effect was clearly defined as the
outcome of interest. We assigned each study to one main objective. If a study met several objectives, the
most advanced one (in the order treatment effect, predictive, analytical, and descriptive) was selected.

We further inspected which taxonomic levels were used for microbiome analysis. The levels of taxon-
omy are phylum, class, order, family, genus, and species, with phylum and species representing the
highest and lowest level, respectively. In studies using 16S rRNA or metagenomic shotgun sequencing,
these taxonomic levels are generally obtained in the following way: the reads from the sequencing step
are clustered by applying a predefined similarity threshold (often 0.97) into operational taxonomic units
(OTUs) to control for random variations due to sequencing errors. These OTUs are aligned to a reference
database to infer taxonomic annotations of each respective OTU. Dependent on the underlying sequence,
OTUs can be assigned to a specific taxon at a taxonomic level (often genus). Higher taxonomic levels can
be constructed as the sum of lower taxonomic levels, with species being grouped into genera, which are

TABLE 4 Ability of models with microbiome as outcome to account for microbiome-specific data characteristics

Statistical approach Overdispersed
Zero-
inflation

Compo-
sitionality

Multivariate
outcomes

Adjusting for
confounders

Extension to
clustered data

Extension to
longitudinal data

Nonparametric modelsa No Indirectb Indirect Yes Not possible Easy Easy
Parametric modelsc No Indirect Indirect Yes Possible Easy Easy
Linear regression No Indirect Indirect Indirect Possible Easy Easy
Poisson regression (46) No Indirect Indirect No Possible Easy Easy
Negative binomial
regression (45)

Yes Indirect Indirect Indirect Possible Easy Easy

Zero-inflated Poisson
regression (47, 48)

No Yes Indirect No Possible Difficult Difficult

Zero-inflated negative
binomial regression (48)

Yes Yes Indirect Indirect Possible Difficult Difficult

ANCOM (40) Yes Indirect Yes No Possible Easy Easy
Dirichlet-multinomial
regression (67)

Yes Indirect Yes Yes Possible Difficult Difficult

LEfSe (36) No Indirect Indirect No Not Possible Easy Difficult
MaAsLin (42) No Indirect Indirect Indirect Possible Easy Easy
aNonparametric refers to group comparison models like Kruskal-Wallis and Wilcoxon signed-rank test.
bIndirect indicates that additional adjustments or preprocessing steps are necessary to take a specific characteristics into account.
cParametric refers to group comparison models like t test and ANOVA.
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then grouped into families, and so on. However, OTUs have been criticized in recent literature, mainly due
to their lack of biological interpretability. Callahan et al. (64) proposed an alternative approach, referred to
as (exact) amplicon sequence variants (ASVs). Regardless of the use of OTUs or ASVs, analyses can be per-
formed at every level of this taxonomy. As the higher taxonomic ranks are accumulated from lower ranks,
dimensionality and proportion of zero counts decreases with every step upward the taxonomy. However,
given that the lowest level provides the most detailed information (e.g., about pathogenic species), avoid-
ing lower levels may limit the possibility to detect important associations.

As there is plenty of software available for the analysis of microbiome data, we explored which soft-
ware packages were used most frequently. We focused on the software used for statistical analysis and
not the bioinformatics pipeline used for any preprocessing of the data. If, however, a bioinformatics
pipeline was used for statistical analysis independently of data preprocessing, it was included in the do-
main software.

The first step in the analysis workflow of microbiome studies is usually the assessment of alpha and
beta diversity. Alpha diversity is defined as the diversity within a given sample, generally measured by
the dimension richness (number of observed taxa) and evenness (equality of distribution across
observed taxa). Note, that we grouped the Simpson index and the inverse Simpson index together, as
they can be directly convertible into each other. Beta diversity is defined as the diversity between sam-
ples. As various measures exist for both alpha or beta diversity, we assessed which measures were used
and whether only one or multiple measures were used. Given that most measures differ in their defini-
tion of diversity (both for alpha and beta diversity), we also investigated which set of measures were
used together most frequently.

Ordination methods are typically applied to beta diversity measures to visualize underlying patterns
in the data. Principal-component analysis (PCA), often used in other fields, is based on Euclidean distan-
ces and has therefore been deemed inappropriate for microbiome data; instead, alternatives like the
principle coordinate analysis (PCoA) (30) or nonmetric multidimensional scaling (NMDS; rank-based) (30)
are used. Although applied to beta diversity measure as well, ordination in NMDS is based on ranks
instead of the raw distances and may produce visually more interpretable results than PCoA.

Clustering techniques are another way to structure microbiome data without a predefined hypothe-
sis (unsupervised), e.g., to derive biological clusters (like so called “enterotypes” [65] in the gut). While
some unsupervised clustering techniques are adapted for the use in microbiome data and are used in
combination with a preceding transformation of the data (like the k-means algorithm), others (e.g.,
Dirichlet multinomial mixtures [31]) are specifically designed for microbiome data and applied to raw
count data directly.

If there is an a priori hypothesis, supervised approaches to detect differences in beta diversity
between predefined groups can be applied. Methods include permutational multivariate analysis of var-
iance (PERMANOVA) (27) and analysis of similarity (ANOSIM) (28). PERMANOVA and ANOSIM are both
distance (or dissimilarity)-based permutation methods (using beta diversity measures) designed to
mimic an analysis of variance (ANOVA), without assuming a normal distribution of errors. While
PERMANOVA is applied directly to the distances, ANOSIM first assigns ranks to interindividual distances.
Analogous to the assumption of homogeneity of variances in classical ANOVA, both methods assume
heterogeneity of multivariate dispersion. While PERMANOVA is quite robust against violations of this
assumption given balanced study groups, violations will inflate type-1 error rates for ANOSIM. If a study
compared two groups with PERMANOVA or ANOSIM, we extracted the sizes of these groups and calcu-
lated their ratio as a measure of balance. Although PERMANOVA is not sensitive against unbalanced
study designs, heterogeneity in dispersion among groups will result in biased estimates for both meth-
ods (66) if the study groups are not balanced.

Finally, we extracted information on which methods were used to test for differential abundance of
single taxonomic units. As this stage of the analysis poses the most complex challenges, there is cur-
rently no consensus about appropriate methods. An overview of the most frequently used methods for

Records retrieved through PubMed database search (n = 1444)

Excluded due to non-eligibility

based on title (n = 913)

Remaining records after screening by title (n = 531)

Excluded due to

non-eligibility

based on full-text

(n = 112)

Records used for data extraction (n = 419)

FIG 7 Flowchart of literature review and data extraction process.
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microbiome analysis and whether they deal with the characteristics in microbiome data is displayed in
Table 4 in the discussion section. Only if indicated with “yes” is the respective characteristic addressed
by the method directly. Several characteristics can be accounted for by preprocessing the data or
extending methods (indirect). However, this does not ensure that the approach is adequately used in
practice. An extensive simulation study by Thorsen et al. (60) evaluated the performance of frequently
used approaches; based on their results, they advise the use of permutation tests over rank-based or
parametric approaches that assume count distributions (e.g., negative binomial). According to the
authors, permutation tests outperformed other methods because they are less limited in statistical
power (compared with rank-based approaches) and do not make any distributional assumptions which
are likely to be violated due to the characteristics in microbiome data. However, permutation methods
do not address all characteristics directly, e.g., compositionality or zero-inflation. We extracted detailed
information about how differential abundance analysis was performed and whether the findings of this
simulation study are applied in current practice. Methods were categorized as either nonparametric,
parametric, generalized linear models for normally distributed or binary outcome data (GLM), general-
ized linear models specifically for count data (GLMc), and other methods that did not clearly fit into one
category; they were mostly based on distance measures in combination with permutation tests. An over-
view of these classifications can be found in Fig. 6. If the objective of the respective study was predic-
tion, we assessed which type of models were used (now including machine learning methods like ran-
dom forests and support vector machines) and how their performance was measured.

Among all stages of the analysis—alpha diversity, beta diversity, and differential abundance testing—
we specifically looked at how analysis strategies were adopted in case of clustered data. If clustering is
present in the data, observations within a cluster are expected to be more similar compared with observa-
tions between clusters. Ignoring these additional dependencies will induce bias and possibly lead to spuri-
ous associations. Therefore, we grouped methods according to whether they took into account these
dependencies adequately.
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