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Abstract 

Background:  Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignan‑
cies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the 
treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT 
enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression.

Methods:  shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, 
and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of 
AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were 
used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown 
of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of 
CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. 
Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG.

Results:  We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was 
activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line 
Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed 
that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These 
findings indicate that CEBPG could act as a potential therapeutic target for AML patients.

Conclusion:  In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified 
CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology 
of AML and indicate a key role for CEBPG in promoting AML progression.
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Introduction
Acute myeloid leukemia (AML) is a myeloid neoplasm 
that accounts for 7.6% of hematopoietic malignancies. It 
is caused by the oncogenic transformation of hematopoi-
etic progenitors in the bone marrow (BM), which results 
in the destruction of blood tissue. AML is reported to 
have a long-term survival of less than 20% [1–3]. Every 
year there are about 18,000 new cases AML in Europe 
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[4]. AML is a complex disease, and understanding its 
pathophysiology will contribute to improving the treat-
ment and prognosis of AML [5–8].

CCAAT enhancer binding proteins (CEBPs) including 
CEBPA, CEBPB, CEBPD, CEBPE, CEBPG and CEBPZ, 
are suggested as potential biomarkers for cancer progno-
sis [9–14]. CEBPB plays a role in gastric cancer progres-
sion [15], and is involved in breast cancer cell migration 
and invasion [16]. Both CEBPB and CEBPD function in 
cancer cell survival [17]. CEBPD is also reported to par-
ticipate in papillary thyroid carcinoma progression [18]. 
CEBPE is suggested as a prognostic factor for AML [19], 
and CEBPZ is also reported to be mutated in AML [20].

Among CEBPs, CEBPA, CEBPE and CEBPZ have been 
reported to function in AML development [9, 19, 20], 
however the role of CCAAT enhancer binding protein 
gamma (CEBPG) in AML is unclear. CEBPG is a member 
of leucine-zipper transcription factor family that plays a 
role in many biological processes [21–24]. Knockdown 
of CEBPG suppressed tumor growth [25]. CEBPG is sug-
gested as a biomarker for lung cancer risk [26]. It is also 
involved in the differentiation arrest in AML [27, 28]. 
Although the roles of CEBPG in several types of cancer 
have been revealed, its expression profile and molecular 
functions in AML remain unresolved. Therefore, in this 
study we assess the role of CEBPG in AML progression.

In the present study, shRNA mediated gene inter-
ference was used to down-regulate the expression of 
CEBPG in AML cell lines, and the knockdown effi-
ciency was detected by RT-qPCR and western blotting. 
The effect of CEBPG knockdown on the growth of AML 
cell lines was evaluated by Cell Counting Kit-8 (CCK-8) 
assays. Western blotting was used to detect poly(ADP-
ribose) polymerase (PARP) cleavage, and flow cytometry 
was used to determine the effect of CEBPG knockdown 
on apoptosis of AML cells. Genes and pathways affected 
by knockdown of CEBPG were identified by gene expres-
sion analysis using RNA-seq.

One of the genes affected by knockdown of CEBPG 
was Eukaryotic translation initiation factor 4E binding 
protein 1 (EIF4EBP1). EIF4EBP1 is a translation repres-
sor protein [29] that plays a role in multiple types of can-
cer, including lung, breast, and liver cancer [30–33]. For 
example, EIF4EBP1 is reported to be significantly over-
expressed in hepatocellular carcinoma (HCC) tissues 
and is related to poor survival of patients with HCC [33]. 
However, the biological effect and underlying mechanism 
of EIF4EBP1 in AML has not been explored. Therefore, 
knockdown of EIF4EBP1 was used to assess its potential 
role in AML progression downstream of CEBPG.

In the present study, we explored the ChIP-Seq data of 
AML cell lines and non-AML hematopoietic cells and 

found CEBPG was activated through its distal enhancer 
in AML cell lines. Using the public transcriptomic data-
set, the Cancer Cell Line Encyclopedia (CCLE) and 
western blotting, we also found that CEBPG was overex-
pressed in AML. Moreover, CEBPG promotes AML cell 
proliferation by activating EIF4EBP1, thus contributing 
to the progression of AML. These findings indicate that 
CEBPG could act as a potential therapeutic target for 
AML patients.

Materials and methods
Cell lines and culture
Human AML cell lines, including NB4,THP-1, MV4-11, 
and K562 which was from blastic crisis of chronic mye-
logenous leukemia were obtained from the cell bank of 
the American type culture collection and cultured in 
RPMI medium (Termo Fisher Scientifc) containing 10% 
fetal bovine serum (Biological Industries, CT, USA), 
and 1% penicillin–streptomycin (Beyotime Biotechnol-
ogy, Shanghai, China) at 37 °C in a humidified incubator 
with an atmosphere of 5% CO2 and tested routinely for 
mycoplasma.

Lentivirus preparation and infection
Short hairpin RNA (shRNA) targeting CEBPG and EIF-
4EBP1 (Table  1) were constructed in the pLKO.1-puro 
lentiviral vector (IGE BIOTECHNOLOGY LTD, Guang-
zhou, China). For lentivirus preparation, the envelope 
plasmid and packaging plasmid were purchased from 
Addgene (pMD2.G: #12,259; psPAX2:#12,260; Cam-
bridge, MA, USA). pMD2.G, psPAX2 and the transfer 
plasmid were cotransfected into 293FT cells using poly-
ethylenimine (linear MW 25,000  Da, 5  mg/mL, pH7.0) 
(cat. No. 23966–1; Polysciences, Warrington, PA, USA) 
according to the manufacturer’s instructions. After 6  h, 
the culture medium was completely replaced with fresh 

Table 1  shRNAs used to knockdown CEBPG and EIF4EBP1 

Name Sequence

Homo-CEBPG -sh1 CCG​GGA​TTT​GTT​TCT​TGA​GCA​TGC​ACT​CGA​G

TGC​ATG​CTC​AAG​AAA​CAA​ATC​TTT​TTG​AAT​T

Homo-CEBPG -sh2 CCG​GTG​GCG​ACA​ATG​CAG​GAC​AGT​ACT​CGA​

GTA​CTG​TCC​TGC​ATT​GTC​GCC​ATT​TTT​GAA​TT

Homo-CEBPG -sh3 CCG​GGC​AAC​GCC​GAG​AGA​GGA​ACA​ACT​CGA​

GTT​GTT​CCT​CTC​TCG​GCG​TTG​CTT​TTT​GAA​TT

Homo-EIF4EBP1-sh1 CCG​GGC​CAG​AGC​CAC​CTG​CGC​AAT​ACT​CGA​

GTA​TTG​CGC​AGG​TGG​CTC​TGG​CTT​TTT​GAA​TT

Homo-EIF4EBP1-sh2 CCG​GGC​AAT​AGC​CCA​GAA​GAT​AAG​CCT​CGA​

GGC​TTA​TCT​TCT​GGG​CTA​TTG​CTT​TTT​GAA​TT

Homo-EIF4EBP1-sh3 CCG​GGC​GGT​GAA​GAG​TCA​CAG​TTT​GCT​CGA​

GCA​AAC​TGT​GAC​TCT​TCA​CCG​CTT​TTT​GAA​TT
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Fig. 1  a ChIP-Seq data analysis results for CEBPG of AML cell lines (K562 cell line included, tracks 1–6) and non-AML hematopoietic cells (tracks 
7–10); b expression pattern of CEBPG between AML patients and healthy controls in public transcriptomic dataset (GSE114868); c CEBPG was highly 
expressed in hematologic tumors including AML according to the Cancer Cell Line Encyclopedia (CCLE; https://​porta​ls.​broad​insti​tute.​org/​ccle); d 
western blotting results of the expression levels of CEBPG in AML/non-AML cell lines; e CEBPG markedly upregulated in AML cell lines compared 
with non-AML cell lines by western blotting

https://portals.broadinstitute.org/ccle
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medium. The viral supernatant was harvested at 48  h 
post-transfection and filtered through a 0.22  μm filter.
The leukemia cells were then infected with lentivirus in 
the presence of 10  μg/mL Polybrene (Sigma–Aldrich) 
for 24  h. Stable cell lines were selected with puromycin 
(Sigma-Aldrich).

Cell viability assay
Leukemia cells were seeded in 96-well plates at a density 
of 1 × 103 cells per well. The cell viability was determined 
by Cell Counting kit-8 (CCK8) assay (Dojindo Molecular 
Technologies, Tokyo, Japan) according to the manufac-
turer’s instructions. Cell proliferation was calculated as a 
percentage of that in cells in control medium. Each con-
centration was tested in triplicate and repeated in at least 
three independent experiments. The calculation was per-
formed by Graph Prism software 7.0 (GraphPad Software 
Inc., San Diego, CA, USA).

RNA preparation and real‑time PCR expression analysis
Total RNA was extracted from cell pellets using 
TRIzol®reagent (Invitrogen, CA, USA), according to the 
manufacturer’s protocol. For cDNA synthesis, 1  µg of 
total RNA was converted to cDNA using a High-Capacity 
cDNA Reverse Transcription Kit (Applied Biosystems, 
CA, USA). Quantitative real-time PCR analysis was 
carried out using LightCycler® 480 SYBR Green I Mas-
ter mix (cat. No. 04707516001; Roche, Penzberg, Ger-
many) with a LightCycler 480 Real Time System (Roche), 
according to the manufacturer’s protocol. mRNA expres-
sion levels were calculated using the Ct method with 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
expression as an internal reference. Primer sequences are 
listed in Table 2.

Western blotting analysis
Western blotting analysis was conducted using the fol-
lowing primary antibodies: CEBPG (cat. sc-517003; 
1:500; Santa Cruz Biotechnology, Inc. Dallas, Texas,USA), 
EIF4EBP1 (cat. #9644,1:1000; Cell Signaling Technology, 
Boston, MA, USA), and PARP (cat. No. 9542; 1:1000; Cell 
Signaling Technology), with glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) (cat. No. MA3374; 1:1000; 
Millipore) as a reference protein. Peroxidase-conjugated 
Afniure goat anti-rabbit IgG (H + L) (cat.111-035-003; 
1:5000) and goat anti-mouse IgG (H + L) (cat. No. 115-
035-003; 1:5000) secondary antibodies were purchased 
from Jackson ImmunoResearch Laboratories, Inc. (West 
Grove, PA, USA). ImageJ software was used for band 
quantifcation. Then, protein levels were determined 
using a GAPDH antibody for normalization.

Cell apoptosis assay
Leukemia cells (MV4-11, NB4, and K562 cell lines) 
were infected with lentivirus in the presence of 10  μg/
mL Polybrene (Sigma-Aldrich) for 24 h. Stable cell lines 
were selected with puromycin (Sigma-Aldrich). Follow-
ing 4  days incubation, leukemia cells were harvested 
and washed with cold PBS, suspended in 1 × bind-
ing bufer, and stained with fuorescein isothiocyanate 
(FITC)-Annexin V antibody and PI solution using an 
FITC-Annexin V apoptosis kit (cat. No.556420; BD 

Table 2  Primers used for qRT-PCR analyses

Name Sequence (5’- > 3’)

CEBPG Forward GAA​AAA​GAG​CCG​GTT​GAA​AAGC​

CEBPG Reverse ACT​GTA​CGT​TGT​CTG​CAA​GGT​

EIF4EBP1 Forward CTA​TGA​CCG​GAA​ATT​CCT​GATGG​

EIF4EBP1 Reverse CCC​GCT​TAT​CTT​CTG​GGC​TA

GAPDH Forward TGC​ACC​ACC​AAC​TGC​TTA​G

GAPDH Reverse GAT​GCA​GGG​ATG​ATG​TTC​

PDGFB Forward CTC​GAT​CCG​CTC​CTT​TGA​TGA​

PDGFB Reverse CGT​TGG​TGC​GGT​CTA​TGA​G

SRC Forward TGG​CAA​GAT​CAC​CAG​ACG​G

SRC Reverse GGC​ACC​TTT​CGT​GGT​CTC​AC

PLCG1 Forward GGA​AGA​CCT​CAC​GGG​ACT​TTG​

PLCG1 Reverse GCG​TTT​TCA​GGC​GAA​ATT​CCA​

EIF4E Forward ATG​TGG​CGC​TGT​TGT​TAA​TGT​

EIF4E Reverse CTG​CGT​GGG​ACT​GAT​AAC​CAA​

AXL Forward GTG​GGC​AAC​CCA​GGG​AAT​ATC​

AXL Reverse GTA​CTG​TCC​CGT​GTC​GGA​AAG​

PIK3R2 Forward TCA​CCT​TCT​GCT​CCG​TTG​TG

PIK3R2 Reverse GGA​GGT​CCG​TGT​GTA​CTC​TTC​

MET Forward AGC​GTC​AAC​AGA​GGG​ACC​T

MET Reverse GCA​GTG​AAC​CTC​CGA​CTG​TATG​

(See figure on next page.)
Fig. 2  a Knockdown efficiency of CEBPG was evaluated in THP-1 cell line by western blotting. b Knockdown efficiency of CEBPG was evaluated in 
THP-1 cell line by qPCR. c Knockdown of CEBPG significantly inhibited the proliferation rates of THP-1 cell line. d Knockdown of CEBPG significantly 
inhibited the proliferation rates of THP-1 cell line. e Knockdown efficiency of CEBPG was evaluated in MV4-11, THP-1, and NB4 cell lines by western 
blotting. f Knockdown efficiency of CEBPG was evaluated in MV4-11, THP-1, and NB4 cell lines by qPCR. g Knockdown of CEBPG significantly 
inhibited the proliferation rates of MV4-11 and NB4 cell lines. h Knockdown of CEBPG significantly inhibited the proliferation rates of MV4-11, THP-1, 
and NB4 cell lines. i PARP was increased in both MV4-11 and NB4 cell lines upon knockdown of CEBPG. j Flow cytometry showed that knockdown 
of CEBPG increased the apoptotic rates of MV4-11 and NB4 cell lines. k Knockdown of CEBPG increased the apoptotic rates of MV4-11 and NB4 cell 
lines
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Biosciences, Franklin Lakes, NJ, USA), according to the 
manufacturer’s instructions. Cell apoptosis was analyzed 
by flow cytometry (Beckman Gallios™ Flow Cytometer; 
Beckman).

RNA‑seq and data processing
RNA-seq was carried out according to the protocols sug-
gested by Novogene, Beijing, China. First, total RNA was 
reverse transcribed to cDNA for library construction, 
and the cDNA library was then sequenced. The raw reads 
were filtered and clean reads were mapped according to 
HISAT. The gene expression level (as fragments per kilo-
base of exon model per million reads mapped) was then 
calculated. Differentially expressed genes (P < 0.05 and 
fold-change > 2 or fold-change < 0.5) were identified using 
DESeq2 analysis. For enrichment analysis, differentially 
expressed genes were analyzed using the DAVID Bioin-
formatics Resources v6.8 online server (https://​david.​
ncifc​rf.​gov).

Chromatin immunoprecipitation (ChIP)
3–5 × 107 cells were crosslinked with 1% formaldehyde 
for 10 min and neutralized with 1.25 M glycine for 5 min 
at room temperature. Fixed cells were harvested, lysed, 
and sonicated using a Bioruptor (Diagenode, Liège, Bel-
gium). Sonicated chromatin was incubated with anti-his-
tone H3 (acetyl K27) antibody (cat. No. ab4729; Abcam, 
Cambridge, UK) overnight at 4 °C. DNA was eluted and 
purified using a QIAquick PCR purification kit (cat. 
No. 208106; Qiagen, Hilden, Germany). Samples were 
sequenced on a novaseq 6000 platform (Novogene Bio-
informatics  Technology  Co.,  Ltd. Beijing, China). Raw 
data of ChIP-Seq H3K27ac analysis for NB4 cell line 
was aligned to the reference genome (UCSC hg38) using 
Bowtie2 (v 2.3.5) [34], with alignment parameters -p 4 
-q -x. Peaks were identified using MACS2 (v2.0.9) [35], 
with parameters -g hs -n test -B -q 0.01. The bedgraph 
files generated by MACS2 were converted to bigwig files 
using the UCSC bedGraphToBigWig tool, and then big-
wig files were visualized by Integrative Genomics Viewer 
(IGV) [36].

Public ChIP‑Seq data collection and analysis
In this study, we searched public ChIP-Seq H3K27ac 
datasets of AML cell lines and non-AML hematopoi-
etic cells in the Cistrome database (http://​www.​cistr​
ome.​org/). The ChIP-Seq datasets of H3K27ac and 
CEBPG in K562 cell line were also obtained in the Cis-
trome database. The bigwig files of those datasets 
obtained (GSE113040, GSE80779, GSE76783, GSE79899, 
GSE71809, GSE107147, GSE70660, GSE93372, 

GSE105532, GSE70482) were further visualized by Inte-
grative Genomics Viewer (IGV) [36].

Statistical analysis
The association between EIF4EBP1 expression and over-
all survival of AML patients were assessed using the 
Kaplan–Meier analysis. Comparison between two groups 
was carried out using the Student’s t-test or the Mann–
Whitney u test. Statistical analysis was carried out by 
GraphPad Prism 7.0 (GraphPad Software, Inc., La Jolla, 
CA, USA). Statistically significant P values are indicated 
as *P < 0.05, ** P < 0.01, ***P < 0.001, and ****P < 0.0001.

Results
CEBPG is activated through its distal enhancer 
and is overexpressed in AML cell lines
By interrogating ChIP-Seq data of AML cell lines (Fig, 1a, 
tracks 1–6, K562 cell line also included) and non-AML 
hematopoietic cells (Fig. 1a, tracks 7–10), we found that 
the enhancer region of CEBPG in AML cell lines showed 
coincident H3K27ac signals that were not present in 
non-AML hematopoietic cells, suggesting a potential 
role in transcription regulation. Then, we assessed the 
expression pattern of CEBPG between AML patients 
and healthy controls in a public transcriptomic data-
set (GSE114868) [37], and found that CEBPG was more 
highly expressed in AML samples (Fig. 1b) relative to that 
in healthy control samples (the differentially expressed 
genes between AML and control samples in dataset 
GSE114868 are listed in Additional file  1: Table  S1). 
Moreover, the Cancer Cell Line Encyclopedia (CCLE; 
https://​porta​ls.​broad​insti​tute.​org/​ccle) which includes 
CEBPG mRNA expression profiles for multiple cancer 
cell lines, showed that CEBPG was highly expressed in 
hematologic malignancies including AML (Fig.  1c). We 
also assessed the levels of CEBPG in AML and non-AML 
cell lines using western blotting, and found higher levels 
of CEBPG in AML cell lines than in non-AML cell lines 
(Fig.  1d and e). Collectively, these data suggested that 
CEBPG is activated through its distal enhancer and over-
expressed in AML.

CEBPG is oncogenic and promotes AML cell proliferation
To address the biological significance of CEBPG, we 
selected three AML cell lines with high CEBPG protein 
levels shown in Fig.  1d (THP-1, NB4 and MV4-11) and 
performed shRNA-mediated knockdown of CEBPG 
using three independent shRNAs (Table 1). Knockdown 
efficiency of CEBPG was evaluated using western blot-
ting and qPCR (Fig. 2a, b, e and f ). Notably, knockdown 
of CEBPG significantly inhibited the proliferation rates of 
all 3 AML cell lines (Fig. 2c, d, g and h). We also assessed 
the level of the apoptotic protein PARP using western 

https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://www.cistrome.org/
http://www.cistrome.org/
https://portals.broadinstitute.org/ccle
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Fig. 2  (See legend on previous page.)
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blotting and found that PARP levels were increased in 
both MV4-11 and NB4 cell lines upon knockdown of 
CEBPG (Fig.  2i). Knockdown of CEBPG also increased 
the apoptotic rates of MV4-11 and NB4 cell lines (Fig. 2j 
and k). Altogether, these data suggested that CEBPG is 
oncogenic and contributes to the proliferation of AML 
cells.

CEBPG activates EIF4EBP1 in AML cell lines
To reveal potential targets responsible for CEBPG-pro-
moted AML cell proliferation, RNA-seq analyses were 
performed on NB4 and MV4-11 cell lines comparing 
shRNA control cells with CEBPG knockdown cells. A 
total of 1196 and 2207 differently expressed genes (DEGs) 
were identified upon CEBPG knockdown, in NB4 and 
MV4-11 cell lines respectively (Log2 |fold change|> 1, 
P < 0.05, Fig.  3a and b). EIF4EBP1 was included in the 
top 10 downregulated genes upon CEBPG knockdown in 
both NB4 and MV4-11 cell lines (Fig. 3c and d). Next, we 
conducted a functional enrichment analysis of all DEGs 
using the KEGG Pathway Database. The results showed 
a significant enrichment for EGFR tyrosine kinase inhibi-
tor resistance signaling (ranking 4th), which involves 
EIF4EBP1 (Fig.  3e). Therefore, EIF4EBP1 was selected 
for in-depth investigation. To further determine the 
regulation of CEBPG on EGFR tyrosine kinase inhibi-
tor resistance signaling and EIF4EBP1, a total of 8 genes 
(EIF4EBP1, PLCG1, EIF4E, AXL, PIK3R2, MET, PDGFB 
and SRC) from the EGFR tyrosine kinase inhibitor resist-
ance signaling pathway was selected for qRT-PCR vali-
dation. In accordance with the RNA-Seq results, the 
mRNA levels of 6 of these genes, including EIF4EBP1, 
were downregulated while 2 genes were upregulated in 
NB4 cells in response to CEBPG silencing (Fig. 3f and g). 
Additionally, ChIP-Seq data of AML cell lines and K562 
cell line showed that the promoter region of EIF4EBP1 
had coincident H3K27ac signals (Fig.  3h, tracks 1–6), 
while the ChIP-Seq data from K562 cells further indi-
cated that EIF4EBP1 was bound by CEBPG at its TSS-
proximal regions (Fig. 3h, track 7), suggesting a potential 
role for CEBPG in the transcriptional regulation of EIF-
4EBP1. Therefore, we next investigated the role of EIF-
4EBP1 in NB4 and K562 cells.

EIF4EBP1 knockdown interferes with AML cell proliferation 
and increases apoptosis
To evaluate the biological significance of EIF4EBP1, we 
selected 2 cell lines (NB4 and K562) and knocked down 
EIF4EBP1 in both cell lines using three independent 
shRNAs (Table  1). Knockdown efficiency of EIF4EBP1 
was evaluated using western blotting and qPCR (Fig. 4a, 
b, h and i). Notably, knockdown of EIF4EBP1 signifi-
cantly inhibited the proliferation rates of both cell lines 
(Fig. 4c, d, j and k). We also assessed the expression level 
of the apoptotic protein PARP using western blotting 
and found that PARP levels increased in both NB4 and 
K562 cell lines upon knockdown of EIF4EBP1 (Fig.  4e 
and l). Knockdown of EIF4EBP1 also increased the apop-
totic rates of NB4 and K562 cell lines (Fig. 2f, g, 4m and 
n). Collectively, these data suggested that EIF4EBP1 is 
required to sustain proliferation and survival of AML 
cells.

Identification of EIF4EBP1 as an unfavorable prognostic 
factor for AML patients
We assessed the expression pattern of EIF4EBP1 between 
AML patients and healthy controls in two public tran-
scriptomic datasets (GSE114868 and GSE142700) [37]. 
The results showed that EIF4EBP1 was significantly over-
expressed in AML samples in both datasets (Fig. 5a and 
b). To further explore the prognostic value of EIF4EBP1, 
we used the online tool http://​gepia.​cancer-​pku.​cn/ 
and the result showed that the overall survival of AML 
patients with higher EIF4EBP1 expression was signifi-
cantly poorer than those with lower EIF4EBP1 expres-
sion (Fig.  5c). These results suggested that EIF4EBP1 
represents a negative prognostic factor for AML patients.

Discussion
AML is an aggressive malignancy with poor prognosis 
[8]. It is a complex disease and a detailed understanding 
of its pathophysiology is required to improve the treat-
ment and prognosis of AML [5–8].

CCAAT enhancer binding proteins (CEBPs) including 
CEBPA, CEBPB, CEBPD, CEBPE, CEBPG and CEBPZ, 
are suggested as potential biomarkers for cancer prog-
nosis [9–14]. Among CEBPs, CCAAT enhancer binding 
protein gamma (CEBPG), a member of leucine-zipper 

Fig. 3  a Volcano Plot of RNA-seq results for NB4 cell line in either the absence or presence of CEBPG. b Volcano Plot of RNA-seq results for MV4-11 
cell line in either the absence or presence of CEBPG. c Top 10 downregulated and top 10 upregulated genes upon CEBPG knockdown in NB4 cell 
line. d Top 10 downregulated and top 10 upregulated genes upon CEBPG knockdown in MV4-11 cell line. e Enrichment analysis results of all DEGs 
by using the KEGG Pathway Database. f qRT-PCR results of 6 genes (EIF4EBP1, PLCG1, EIF4E, AXL, PIK3R2 and MET) from EGFR tyrosine kinase inhibitor 
resistance signaling pathway in NB4 cell line when silencing CEBPG. g qRT-PCR results of 2 genes (PDGFB and SRC) from EGFR tyrosine kinase 
inhibitor resistance signaling pathway in NB4 cell line when silencing CEBPG. h ChIP-Seq data of AML cell lines and K562 cell line showed that the 
promoter region of EIF4EBP1 had coincident H3K27ac signals (tracks 1–6), ChIP-Seq data of K562 cell line further indicated that EIF4EBP1 was bound 
by CEBPG at its TSS-proximal regions (track 7)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  a Knockdown efficiency of EIF4EBP1 was evaluated in NB4 cell line by western blotting. b Knockdown efficiency of EIF4EBP1 was evaluated in 
NB4 cell line by qPCR. c Knockdown of EIF4EBP1 significantly inhibited the proliferation rates of NB4 cell line. d Knockdown of EIF4EBP1 significantly 
inhibited the proliferation rates of NB4 cell line. e PARP was increased in NB4 cell line upon knockdown of EIF4EBP1. f Flow cytometry showed that 
knockdown of EIF4EBP1 increased the apoptotic rates of NB4 cell line. g Knockdown of EIF4EBP1 increased the apoptotic rates of NB4 cell line. h 
Knockdown efficiency of EIF4EBP1 was evaluated in K562 cell line by western blotting. i Knockdown efficiency of EIF4EBP1 was evaluated in K562 
cell line by qPCR. j Knockdown of EIF4EBP1 significantly inhibited the proliferation rates of K562 cell line. k Knockdown of EIF4EBP1 significantly 
inhibited the proliferation rates of K562 cell line. l PARP was increased in K562 cell line upon knockdown of EIF4EBP1. m Flow cytometry showed that 
knockdown of EIF4EBP1 increased the apoptotic rates of K562 cell line. n Knockdown of EIF4EBP1 increased the apoptotic rates of K562 cell line
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transcription factor family, has been implicated in mul-
tiple cancers [25–28]. For example, it is reported that 
CEBPG significantly promotes the proliferation and 
migration of esophageal squamous cell carcinoma 
(ESCC) cells, and is thus suggested as a prognostic factor 
for patients with ESCC [21].

Although a role for CEBPG in myeloid differentiation has 
been demonstrated [27, 28], if and how it contributes to the 
pathogenesis of AML is unclear. Here, we explored the func-
tion of CEBPG in AML and found that CEBPG is upregu-
lated in AML and contributes to the proliferation of AML 
cells. We also demonstrated that CEBPG promotes AML cell 
proliferation by activating EIF4EBP1 in AML cell lines.

Eukaryotic translation initiation factor 4E bind-
ing protein 1 (EIF4EBP1) gene encodes a translation 
repressor protein [29]. This protein plays a role in mul-
tiple cancer types, including lung, breast, and liver 
cancer [30–33]. For example, EIF4EBP1 is reported to 
be significantly overexpressed in hepatocellular car-
cinoma (HCC) tissues and is related to poor survival 
of HCC patients [33]. However, the biological effect 
and underlying mechanism of EIF4EBP1 in AML has 
not been explored. In this study, we found the knock-
down of EIF4EBP1 significantly inhibited prolifera-
tion and increases apoptosis in NB4 and K562 cells. 
Furthermore, in two public transcriptomic datasets 
(GSE114868 and GSE142700) [37], EIF4EBP1 was 
observed to be significantly overexpressed in AML 
samples. EIF4EBP1 was also identified as an unfavora-
ble prognostic factor for AML patients using the online 
tool http://​gepia.​cancer-​pku.​cn/. Taken together, these 
results suggested that EIF4EBP1 is involved in the 
pathogenesis of AML and represents a negative prog-
nostic factor for AML patients.

In summary, we explored the function of CEBPG in 
AML and identified CEBPG as a potential therapeutic 
target for AML patients. Our findings provide novel 
insights into the pathophysiology of AML and elu-
cidated a crucial role of CEBPG in promoting AML 
progression.
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