Skip to main content
. 2021 Nov 8;22(Suppl 5):147. doi: 10.1186/s12859-021-04083-x

Table 8.

Average correct rates and SDs in classifying chest CT images as COVID-19 positive/negative when Resnet-101 and each algorithm hyperparameter combination in Table 6 were used in five independent experimental runs

Model# experiment number Dataset Experimental runs
1 2 3 4 5 Average SD
Resnet-101#1 Training set 0.7124 0.7059 0.7075 0.7042 0.7026 0.7065 0.00376
Validation set 0.6061 0.596 0.6263 0.6162 0.6263 0.6142 0.01317
Resnet-101#2 Training set 0.7876 0.781 0.7876 0.7876 0.7892 0.7866 0.00321
Validation set 0.6566 0.6566 0.6566 0.6566 0.6566 0.6566 0
Resnet-101#3 Training set 0.9804 0.9755 0.982 0.9853 0.982 0.9810 0.00357
Validation set 0.8788 0.8788 0.8788 0.8788 0.8788 0.8788 0
Resnet-101#4 Training set 0.4951 0.5065 0.4951 0.4951 0.4951 0.4974 0.0051
Validation set 0.5051 0.4848 0.5051 0.5051 0.5051 0.5010 0.00908
Resnet-101#5 Training set 0.9085 0.8987 0.9101 0.9101 0.9101 0.9075 0.00497
Validation set 0.7879 0.7273 0.7879 0.798 0.798 0.7798 0.02979
Resnet-101#6 Training set 0.8366 0.8758 0.8317 0.835 0.835 0.8428 0.01852
Validation set 0.7475 0.7677 0.7475 0.7475 0.7475 0.7515 0.00903
Resnet-101#7 Training set 0.9918 0.9869 0.9853 0.9804 0.9869 0.9863 0.00409
Validation set 0.8687 0.899 0.8889 0.8586 0.899 0.8828 0.01835