Table 8.
Average correct rates and SDs in classifying chest CT images as COVID-19 positive/negative when Resnet-101 and each algorithm hyperparameter combination in Table 6 were used in five independent experimental runs
Model# experiment number | Dataset | Experimental runs | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | SD | ||
Resnet-101#1 | Training set | 0.7124 | 0.7059 | 0.7075 | 0.7042 | 0.7026 | 0.7065 | 0.00376 |
Validation set | 0.6061 | 0.596 | 0.6263 | 0.6162 | 0.6263 | 0.6142 | 0.01317 | |
Resnet-101#2 | Training set | 0.7876 | 0.781 | 0.7876 | 0.7876 | 0.7892 | 0.7866 | 0.00321 |
Validation set | 0.6566 | 0.6566 | 0.6566 | 0.6566 | 0.6566 | 0.6566 | 0 | |
Resnet-101#3 | Training set | 0.9804 | 0.9755 | 0.982 | 0.9853 | 0.982 | 0.9810 | 0.00357 |
Validation set | 0.8788 | 0.8788 | 0.8788 | 0.8788 | 0.8788 | 0.8788 | 0 | |
Resnet-101#4 | Training set | 0.4951 | 0.5065 | 0.4951 | 0.4951 | 0.4951 | 0.4974 | 0.0051 |
Validation set | 0.5051 | 0.4848 | 0.5051 | 0.5051 | 0.5051 | 0.5010 | 0.00908 | |
Resnet-101#5 | Training set | 0.9085 | 0.8987 | 0.9101 | 0.9101 | 0.9101 | 0.9075 | 0.00497 |
Validation set | 0.7879 | 0.7273 | 0.7879 | 0.798 | 0.798 | 0.7798 | 0.02979 | |
Resnet-101#6 | Training set | 0.8366 | 0.8758 | 0.8317 | 0.835 | 0.835 | 0.8428 | 0.01852 |
Validation set | 0.7475 | 0.7677 | 0.7475 | 0.7475 | 0.7475 | 0.7515 | 0.00903 | |
Resnet-101#7 | Training set | 0.9918 | 0.9869 | 0.9853 | 0.9804 | 0.9869 | 0.9863 | 0.00409 |
Validation set | 0.8687 | 0.899 | 0.8889 | 0.8586 | 0.899 | 0.8828 | 0.01835 |