Skip to main content
. Author manuscript; available in PMC: 2022 Sep 27.
Published in final edited form as: J Chem Inf Model. 2021 Aug 13;61(9):4224–4235. doi: 10.1021/acs.jcim.1c00683

Table 1.

Five-fold cross validation statistics for all SARS-CoV-2 machine learning models implemented using ECFP6 fingerprints.

ACC AUC CK MCC Pr Recall Sp F1
AC 0.81 0.78 0.62 0.64 0.78 0.88 0.73 0.83
rf 0.75 0.74 0.49 0.5 0.73 0.82 0.67 0.77
knn 0.71 0.71 0.43 0.42 0.71 0.76 0.67 0.74
svc 0.7 0.69 0.39 0.4 0.68 0.79 0.6 0.73
bnb 0.68 0.68 0.36 0.36 0.7 0.7 0.67 0.7
ada 0.64 0.63 0.27 0.26 0.65 0.67 0.6 0.66
DL 0.65 0.65 0.3 0.3 0.66 0.67 0.63 0.66

ACC: Accuracy, AUC: Area under curve, CK: Cohen’s Kappa, MCC: Matthews correlation coefficient, Pr: Precision, Sp: Specificity, F1: F1 Score. bnb: Bernoulli Naïve Bayes, ada: AdaBoost Decision trees, rf: Random Forest, svc: support vector machine classifier, knn: k-Nearest Neighbors and DL: Deep Learning (DL).