Table 2.
ACC | AUC | CK | MCC | Pr | Recall | Sp | F1 | |
---|---|---|---|---|---|---|---|---|
AC | 0.62 | 0.58 | 0.17 | 0.17 | 0.50 | 0.40 | 0.76 | 0.44 |
rf | 0.63 | 0.57 | 0.10 | 0.11 | 0.42 | 0.30 | 0.80 | 0.35 |
knn | 0.67 | 0.6 | 0.21 | 0.21 | 0.50 | 0.40 | 0.80 | 0.44 |
svc | 0.70 | 0.57 | 0.34 | 0.34 | 0.54 | 0.60 | 0.75 | 0.57 |
bnb | 0.50 | 0.49 | −0.09 | −0.09 | 0.27 | 0.30 | 0.60 | 0.28 |
ada | 0.53 | 0.49 | 0.00 | 0.00 | 0.33 | 0.40 | 0.60 | 0.36 |
DL | 0.63 | 0.56 | 0.15 | 0.15 | 0.44 | 0.40 | 0.75 | 0.42 |
ACC: Accuracy, AUC: Area under curve, CK: Cohen’s Kappa, MCC: Matthews correlation coefficient, Pr: Precision, Sp: Specificity, F1: F1 Score. bnb: Bernoulli Naïve Bayes, ada: AdaBoost Decision trees, rf: Random Forest, svc: support vector machine classifier, knn: k-Nearest Neighbors and DL: Deep Learning (DL).