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Abstract

Hi-C is a genome-wide assay based on Chromosome Conformation Capture and high-throughput sequencing to decipher 3D
chromatin organization in the nucleus. However, computational methods to detect functional interactions utilizing Hi-C
data face challenges including the correction for various sources of biases and the identification of functional interactions
with low counts of interacting fragments. We present Chrom-Lasso, a lasso linear regression model that removes complex
biases assumption-free and identifies functional interacting loci with increased power by combining information of local
reads distribution surrounding the area of interest. We showed that interacting regions identified by Chrom-Lasso are more
enriched for 5C validated interactions and functional GWAS hits than that of GOTHiC and Fit-Hi-C. To further demonstrate
the ability of Chrom-Lasso to detect interactions of functional importance, we performed time-series Hi-C and RNA-seq
during T cell activation and exhaustion. We showed that the dynamic changes in gene expression and chromatin
interactions identified by Chrom-Lasso were largely concordant with each other. Finally, we experimentally confirmed
Chrom-Lasso’s finding that Erbb3 was co-regulated with distinct neighboring genes at different states during T cell
activation. Our results highlight Chrom-Lasso’s utility in detecting weak functional interaction between cis-regulatory
elements, such as promoters and enhancers.
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Introduction
Chromatin interactions are spatial structures that can bring
distal regulatory elements to spatial proximity to each other or
gene promoters and thereby affect gene transcription [1]. The
formation of interactions is precisely regulated and is essential
for the normal cellular process [2]. Previous studies demon-
strated that transcription factors (TFs), such as estrogen recep-
tors, can induce promoter–enhancer interactions upon binding
to enhancers distal to the downstream genes and subsequently
activate the expression of these genes [3]. Interactions add a new
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layer of complexity to the already complex process of transcrip-
tional regulation.

Chromosome Conformation Capture (3C), which involves
cross-linking and fragmentation of chromatin followed by PCR
amplification, has revolutionized the investigation of chromatin
interactions [4]. Hi-C integrates 3C and high-throughput
sequencing to enable unbiased profiling of the genome-wide
spatial proximity [5]. Sequencing data generated by the Hi-C
experiment are composed of hybrid fragments, the two ends of
which are mapped to two distant genomic locations. A hybrid
fragment is indicative of spatial proximity of the two locations
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the two ends mapped to and most existing statistical models to
identify interactions using Hi-C data are to find a higher-than-
expected number of hybrid fragments linking a pair of genomic
loci [6, 7].

Many challenges remain in the statistic modeling of Hi-C
data. For example, (i) biases from different sources, including the
efficiency of endonuclease digestion, the efficiency of ligation in
the Hi-C experiment and GC content biases in the subsequent
high-throughput sequencing [8]. (ii) The signal-to-noise ratio
of the sequencing data is not ideal. Hi-C requires hundreds of
millions, in some cases billions of reads to reach saturation
in identifying genome-wide interactions, and suffers from low
sensitivity when sequencing depth is insufficient [8]. (iii) Cur-
rently, the analysis of Hi-C data mostly focuses on the detection
of structural interactions such as the interactions between the
boundaries of topologically associated domains (TADs) because
these interactions are more stable across the entire cell popu-
lation, therefore, easier to be detected using the Hi-C assay [9].
However, the fine-tuning of gene expression is usually mediated
by regulatory elements, such as enhancers through their inter-
actions with gene promoters. Functional interactions between
regulatory elements are generally less stable and only exist in
a small fraction of cells at a given snapshot [2]. Hybrid frag-
ments linking regulatory elements are therefore less likely to be
identified.

Analysis of Hi-C genomic data requires computational meth-
ods that can distinguish fragments generated by spatial prox-
imity ligations from random ligations and linear proximity liga-
tions, mitigate complex sources of biases and identify functional
interactions with high statistical power. Though a handful of
methods exist to detect interactions based on a variety of math-
ematical models, the comparison among these methods demon-
strated that each method has its advantages and disadvantages
that may be suitable for distinct tasks [10].

We present Chrom-Lasso, a lasso regression-based model
to identify interactions from Hi-C data. Chrom-Lasso corrects
the complex confounding factors at each locus using an
assumption-free approach based on the number of inter-
chromosomal hybrid fragments (hybrid fragments occur
between different chromosomes) detected at that locus. Because
the vast majority of the inter-chromosomal hybrid fragments
are formed by random ligations and any bias at a specific
genomic locus can be reflected in the number of inter-
chromosome hybrid fragments associated with that locus [11].
Another important feature of Chrom-Lasso is that, instead of
testing the number of hybrid fragments in each genomic locus
independently, it models the distribution of hybrid fragments
surrounding a pair of interacting loci as power-law distribution,
in which the expected hybrid fragment decreases as the distance
between the location of the fragments and the focal loci
increases [12, 13]. Thus, it can utilize not only the fragments
within a specific region but also fragments nearby to increase
the statistical power of detecting interactions and avoid calling
an artificial spike at a single locus as a signal. Chrom-Lasso
also takes advantage of the linearity of log-transformed power-
law distribution and converts the deconvolution of the complex
signals in Hi-C data to a conventional feature selection problem
in multiple linear regression, which is subsequently carried out
using lasso regression. Last but not least, Chrom-Lasso generates
a background P-value distribution using millions of randomly
picked genomic loci to calculate false discovery rate (FDR).

We assessed the performance of Chrom-Lasso by comparing
its results with that of GOTHiC [7] and Fit-Hi-C [6]. A previous
comprehensive evaluation across different Hi-C data analysis

methods (HiCCUPS [14], GOTHiC [7], HOMER [15], diffHic [16], HIP-
PIE [17] and Fit-Hi-C [6]) showed that the interactions identified
by GOTHiC were the most reproducible and GOTHiC recovered
the largest number of true-positive interactions [10]. Although
another popular Hi-C data analysis tool, FitHiC2 [18], added an
inter-chromosomal interaction calling function and a merging
filter module compared to Fit-Hi-C, the core interaction call-
ing algorithm remains similar. We showed that Chrom-Lasso
detected more 5C validated interactions compared to GOTHiC
and identified more interactions with potential biological signif-
icance than that of GOTHiC and Fit-Hi-C. Moreover, we applied
the method to study the dynamics of chromatin interactions
during the process of CD8+ T cell activation. The results showed
that the changes in chromatin interactions detected by Chrom-
Lasso were consistent with the changes in gene expression and
with the state of the T cells. We experimentally validated the
interactions involved Erbb3, which shared co-regulation with
distinct neighboring genes via chromatin loops at the different
stages of T cell activation, demonstrating the power of Chrom-
Lasso in detecting functional interactions associated with tran-
scriptional regulation.

Materials and methods
The statistical framework of Chrom-Lasso

See Supplementary File: The mathematical specification of the
Chrom-Lasso algorithm.

The comparison between Chrom-Lasso and other
software

To compare the results between GOTHiC/Fit-Hi-C and Chrom-
Lasso, we downloaded the GOTHiC/Fit-Hi-C analysis results of 15
samples of the GM12878 Hi-C dataset ([19], Supplementary Table
S1 available online at https://academic.oup.com/bib). We chose
GM12878 dataset because it has the highest number of 5C iden-
tified intra-chromosomal interactions (interactions occur within
the same chromosome), which we took as true-positives events.
The significant interactions identified by GOTHiC were selected
by FDR < 0.05 and read counts >10, the significant interactions
identified by Fit-Hi-C were selected by FDR < 0.05 [10] and the
significant interactions identified by Chrom-Lasso were selected
by FDR < 0.05 for further analysis. To focus on long-range inter-
actions, we set 20 000 bp as the minimum genomic distance
between two interacting loci identified by both GOTHiC/Fit-Hi-C
and Chrom-Lasso.

Unlike GOTHiC or Fit-Hi-C, which divides the genome into
bins with fixed size and chromatin interactions are defined as
two bins with a significantly elevated number of hybrid frag-
ments linking them, Chrom-Lasso outputs a pair of genomic
positions (1 bp in length) as the most likely centers of the
two interacting regions based on the distribution of the sur-
rounding hybrid fragments. Because the downstream compar-
ison between Chrom-Lasso and GOTHiC/Fit-Hi-C relies heavily
on overlapping interaction loci with known functional elements
in the genome, for a fair comparison, we expanded the inter-
acting loci identified by Chrom-Lasso to match the bin size of
GOTHiC/Fit-Hi-C.

Overview of interactions detected by different methods

We first compared the total number of significant intra-
chromosomal interactions detected by the three methods in
different samples. The significant intra-chromosomal interac-
tions identified by GOTHiC were selected using the following

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
https://academic.oup.com/bib


Chrom-Lasso: a Hi-C data analysis method 3

criteria, FDR < 0.05 and read counts >10. The significant
intra-chromosomal interactions identified by Fit-Hi-C and
Chrom-Lasso were selected with FDR < 0.05 [10].

Overlapping with 5C cis interactions

We downloaded cis interactions (interactions occur within the
same chromosome) identified experimentally via 5C technology
in GM12878 cells from a public database [20], and then we set
a 2500 bp range for both directions of each interacting loci for
Chrom-Lasso results to match the 5000 bp bin size used in
GOTHiC/Fit-Hi-C. We considered a Hi-C interaction overlapping
with a 5C interaction if both of the interacting regions called
from Hi-C had an overlapping segment with interacting regions
identified using 5C. When comparing Chrom-Lasso with the
other method, we first selected the same number of significant
interactions detected by Chrom-Lasso as that detected by the
method we are comparing it to under an FDR cutoff of 0.05. We
also calculated the proportions of interactions overlap with 5C
in all detected interactions by the three methods.

Overlapping with GWAS hits and eQTLs

We came up with three strategies to examine whether the
interacting regions found by Hi-C data analysis methods were
enriched with functional genomic loci discovered by large-scale
population studies. (i) We tested which of the two methods iden-
tified more interacting regions overlapped with disease-related
single-nucleotide polymorphisms (SNPs) [21]. We chose to test
SNPs associated with autoimmune disease, cancer and all kinds
of diseases. For finding interacting regions related to disease-
associated SNPs, we used GoShifter [22], a tool developed to find
enriched SNPs for a given list of genomic loci. (ii) We sought
to investigate if the chromatin interactions overlapped with
eQTL SNPs, which we downloaded from the GTEx consortium
[23–25]. We chose eQTLs for the spleen because GM12878 is a
lymphocyte-derived cell line. For the spleen eQTL records, we
counted the total number of unique eQTL SNP loci overlapping
interacting regions detected by Chrom-Lasso or GOTHiC/Fit-Hi-C
in each sample. To focus our analysis on long-range functional
interactions, we removed interactions with a distance of less
than 20 000 bp. (iii) We counted the number of interactions with
both interacting loci located in gene promoter regions. We used
the first base of the first exon as the transcription start site (TSS)
and the promoter regions are defined as upstream and down-
stream 1000 bp from the TSS of genes based on the genome ‘gtf’
file from GENCODE [26], we then searched for interactions with
both loci associated with promoter regions. When comparing
Chrom-Lasso with the other method, we first selected the same
number of significant interactions detected by Chrom-Lasso as
that detected by the method we are comparing it to under an FDR
cutoff of 0.05. We also calculated the proportions of promoter–
promoter interactions in all detected interactions by the three
methods.

Assessing reproducibility

We calculated the total number of interactions detected in
domains based on general human domain files for each
replicate in the GM12878 dataset [27] and then calculated
the correlation between different samples to evaluate the
reproducibility of interaction calling in different methods. We
analyzed the GM12878 dataset consisted of 15 samples ([19],
Supplementary Table S1 available online at https://academic.ou
p.com/bib) treated with different restriction endonucleases

(MboI or DpnII) to assess the reproducibility of Chrom-Lasso
between Hi-C samples treated with the same restriction
endonuclease or different restriction endonucleases.

The data analysis of in vitro mouse CD8+ T cell
activation model

For analyzing Hi-C data, the preprocessing of raw sequencing
data followed the preprocessing protocol of Juicer [14], a tool
developed to identify chromatin interactions using Hi-C data.
And for further identifying interactions from Hi-C data, we used
Chrom-Lasso, and all source code and test data were uploaded
to GitHub with a detailed tutorial (see Availability).

To process RNA-seq data, all sequencing data from each
sample were aligned to the ‘mm10’ reference genome using
the HISAT2 aligner tool [28], and the transformation from raw
reads to gene counts was done by HTSeq [29]. The differentially
expressed gene analysis was done via R package ‘DESeq2’ [30],
and the gene set enrichment analysis (GSEA) [31] was done with
R package ‘fgsea’ [32].

Overlapping with ChIP-seq peaks

To evaluate the overlap between interacting regions with TF and
histone modification, we first downloaded the ChIP-seq peaks of
different TF and histone modifications from the ENCODE project
[33, 34]. We then defined a score to evaluate the enrichment of
interacting loci overlapping with these ChIP-seq signals. For a
specific TF or histone modification, the numerator of the enrich-
ment score was the length of the ChIP-seq regions overlapping
interacting regions divided by the total length of interacting
regions, and the denominator of enrichment score was the total
length of all ChIP-seq regions divided by the length of the whole
genome. If the enrichment score for a TF or histone modification
in a sample was above 1, we inferred that this functional element
was enriched in the interacting regions of this sample; other-
wise, the functional element was deemed as depleted in the
interacting regions. We used significant interactions (FDR < 0.05)
for this analysis.

Analyzing changes in gene expression level

The demonstration of RNA-seq analysis results was the com-
bination of differentially expressed gene analysis and GSEA.
For each of the three transitions of cell states during the in
vitro mouse CD8+ T cell activation, from naïve T cell (Tn) to
short-term activated effector T cell (Teff1), from short-term acti-
vated effector T cell (Teff1) to long-term activated effector T
cell (Teff2) and from long-term activated effector T cell (Teff2)
to exhausted T cell (Tex), we did differentially expressed gene
analysis and then ranked all genes according to their log2 fold
change, followed by pre-ranked GSEA using the ranked gene list
to calculate their enrichment on KEGG pathways [35] associated
with the immune system and cell cycle. We finally derived the
normalized enrichment score (NES) from the GSEA results for
each transition then drew the heat map to show the change of
gene expression level of related pathways during each transition.

Analyzing changes in chromatin interactions

To study the changes in the strength of interactions during this
process, we proposed a strategy that we counted the total num-
ber of interactions related to genes involved in pathways. We
analyzed the same KEGG pathways as in RNA-seq data analysis.
We defined that interactions with one end anchored within a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


4 Lu et al.

5000 bp range centered by the TSS of a gene as interactions asso-
ciated with promoter regions, here we relaxed the criteria for
defining promoters to find more promoter-linked interactions
to better illustrate the strength of interactions of a pathway. For
each Hi-C sample, we first counted the total number of signifi-
cant interactions (FDR < 0.05) involved in each pathway gene set,
which was the sum of significant interactions associated with
all genes in this pathway. Then, we divided the total number
of significant interactions associated with this pathway by the
total number of significant interactions detected in this sample
to assess the strength of interaction for this pathway in this
sample.

Screening functional interactions for experimental validation

The selection of interactions for validation was by the follow-
ing strategy: we first counted the total number of interactions
involved in the promoter region of the genes in the four samples,
and we preserved genes that were the intersection of genes
in Tn, Teff1 and Teff2 as our highly interactive genes. After
intensive study of literature, we picked interactions with one end
anchored near gene Erbb3, which plays an important role in the
regulation of cell proliferation and differentiation [36].

Mice

C57BL/6 mice were purchased from Vital River Laboratories and
maintained under specific pathogen-free conditions in the Ani-
mal Facility of Tsinghua University. All mice used in the experi-
ments were 8-week-old female mice. All studies were approved
by the Animal Care and Use Committee of Tsinghua University.

Isolation and in vitro activation of naïve CD8+ T cell

Naïve CD8+ T cells were isolated from single-cell suspensions of
splenocytes using EasySep™ Mouse Naïve CD8+ T Cell Isolation
Kit (STEMCELL technologies, 19858) according to the manufac-
turer’s instructions. Freshly purified naïve CD8+ T cells were
stimulated with anti-mouse CD3e (10 μg/ml) (BioLegend, 100314)
and anti-mouse CD28 (10 μg/ml) (BioLegend, 102112). Overnight,
recombinant mouse IL-2 (PeproTech, AF212-12-20) was added to
the culture at 300 U/ml. T cells were used for further experiments
after 2 or 5 days of in vitro activation.

Cell sorting

Cells were sorted on a BD influx (BD Biosciences). Single-cell
suspensions of freshly purified naïve CD8+ T cells and activated
CD8+ T cells were incubated with PBS containing 1% FBS and
then stained with the indicated antibodies for 30 min on ice.
Staining reagents included FITC anti-CD8 (53-6.7) (BD, 553031),
eFluor 450 anti-CD44 (IM7) (eBioscience, 48-0441-82), APC anti-
CD62L (MEL-14) (eBioscience, 47-0621-82), APC anti-PD-1 (J43)
(BD, 562671) and PE anti-TIM-3 (5D12) (BD, 566346). Dead cells and
cell aggregates were excluded from analyses by Fixable Viability
Dyes eFluor™ 506 (eBioscience, 65-0866-18) and FSC-H/FSC-A
characteristics. Gating criteria were as follows: for Tn: CD8+,
CD44−, CD62L+; for Teff1 and Teff2: CD8+, PD-1+, TIM-3−; for
Tex: CD8+, PD-1+, TIM-3+.

Hi-C library generation and sequencing

All the procedures are performed as in situ Hi-C protocol with
minor modifications [19, 37]. Briefly, 0.2 million T cells from

fluorescence-activated cell sorting were fixed with 1% formalde-
hyde at room temperature (RT) for 10 min. Formaldehyde was
quenched with glycine (a final concentration of 0.2 M) for 10 min
at RT. Then, T cells were washed once with cold 1× PBS and
lysed in 150 μl lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl,
0.2% Igepal CA630 and proteinase inhibitor) on ice for 50 min.
Pelleted nuclei were washed once with 250 μl of ice-cold Hi-C
lysis buffer, and the supernatant was discarded carefully with
a pipette. Chromatin was solubilized in 25 μl 0.5% SDS and
incubated at 62◦C for 10 min. 72.5 μl of water and 12.5 μl of 10%
Triton X-100 (Sigma, 93443) were added to quench the SDS at
37◦C for 20 min. Then, the chromatin was digested with 50 U
MboI at 37◦C overnight with rotation with a total volume of
125 μl. MboI was then inactivated at 62◦C for 20 min. To fill in
the restriction fragment overhangs and mark the DNA ends with
biotin, 0.75 μl 10 mM dCTP, 0.75 μl 10 mM dGTP, 0.75 μl 10 mM
dTTP, 18.75 μl 0.4 mM biotin-14-dATP and 20 U Klenow were
added to the solution and the reaction was incubated at 37◦C
for 1.5 h with rotation. After adding 450 μl ligation mix (331.5 μl
water, 60 μl 10× NEB T4 DNA ligase buffer, 50 μl 10% Triton X-
100, 6 μl 10 mg/ml BSA and 2.5 μl 400 U/μl T4 DNA ligase), the
fragments were ligated at RT for 4 h with rotation. This was
followed by a reversal of crosslinking and DNA purification. DNA
was sheared to 300–500 bp with Covaris M220. The biotin-labeled
DNA was then pulled down with 75 μl Dynabeads M-280 Strep-
tavidin (Thermo Fisher Scientific, 11205D). Sequencing library
preparation was performed on beads, including end repair, dATP
tailing, adaptor ligation and PCR amplification. Twelve cycles of
PCR amplification were performed with Q5® High-Fidelity DNA
Polymerase (NEB, M0491S). Finally, size selection was done with
AMPure XP beads and fragments ranging from 200 to 1000 bp
were selected. All the libraries were sequenced on Illumina
HiseqXten-PE150 (Novogene) according to the manufacturer’s
instruction.

RNA sequencing library preparation and sequencing

RNA of T cells (0.2 million cells per sample) was extracted using
the Monarch Total RNA Miniprep Kit (NEB, T2010S). After qual-
ity analysis, mRNA enrichment was carried out with NEBNext
Poly(A) mRNA Magnetic Isolation Module kit (NEB, E7490L) and
bulk RNA-seq libraries were constructed using NEBNext Ultra
RNA Library Prep Kit for Illumina (NEB, E7530L). All experi-
mental procedures followed the manufacturer’s specification.
All libraries were sequenced on an Illumina Hiseq Xten-PE150
(Novogene) according to the manufacturer’s instruction.

PCR analysis of the ligation products

Three or four primer pairs were designed to test if the ligation
events occurred across five interacting regions in different states
of the T cell activation time-course. To improve the sensitivity
and accuracy of detection, a nested PCR method was performed.
The first-round PCR was performed using 0.5 ng Hi-C library
products; 1 of 100 of the first-round PCR product was then
used in the second-round PCR amplification. For PCR reactions,
each well was mixed with 25 μl NEBNext High-Fidelity 2X PCR
Master Mix (NEB, M0541L) and 5 μl of 10 μM corresponding paired
primers (Supplementary Tables S2 and S3 available online at
https://academic.oup.com/bib). All amplification reactions were
carried out using the following thermocycling program: 98◦C for
30 s, 25 cycles of (98◦C for 10 s, 60◦C for 30 s, 72◦C for 1 min)
and a final 72◦C for 5 min. All second-round PCR products were
resolved by electrophoresis on 1.5% agarose gels.
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Results
A lasso linear regression model to identify interactions
from Hi-C data

Existing algorithms for identifying chromatin interactions usu-
ally divide the genome into bins with fixed length and build a
statistical model to find the pairs of bins having higher than
expected numbers of hybrid fragments linking the two bins [6].
Random distribution of background hybrid fragments is usually
modeled as negative binomial distribution, Poisson distribution
or a mixture of these distributions [7, 11, 38]. The vast majority
of these models test individual bins independently using a local
or a global background without considering the distribution of
the reads of their neighbors. The probability of two genomic
loci interacting with each other and joint by the ligase during
a Hi-C experiment decreases as the genomic distance between
the two loci increases, and it has been shown that the rela-
tionship between the probability of interaction and the genomic
distance is best described as a power-law distribution [12, 13].
A great property of the power-law distribution is that it can be
transformed into a linear relationship by taking the logarithm of
both the independent and dependent variables. We took advan-
tage of the special relationship and model the distribution of
hybrid fragments surrounding the two interacting loci to explain
the ligation probability of the restriction endonuclease cutting
sites (RECSs) at various distances to the two interacting loci
(Supplementary File, 3 available online at https://academic.oup.
com/bib).

In theory, all hybrid fragments are formed by ligating two
distant RECSs during the Hi-C experiment. Thus, we mapped
each end of the hybrid fragments to its nearby cutting site and
discarded hybrid fragments with one end mapped to a genomic
locus that is 500 bp away from any consensus RECS. A previous
study showed that genomic loci located in different TADs seldom
interact with each other [27]. Therefore, to limit the number of
statistical tests, instead of testing the number of hybrid frag-
ments linking every possible pairwise genomic locus across the
genome against the expected number under the null hypothesis,
we only considered pairwise locus within the same TADs and
excluded testing the interactions between genomic loci located
in different TADs.

The strategy Chrom-Lasso takes to identify interaction can be
briefly described as follows (Figure 1). After filtering hybrid frag-
ments produced via self-ligation and random-ligation as intro-
duced in a previous study [39], Chrom-Lasso attempts to remove
biases in the data in a single step utilizing the variation in
the number of inter-chromosomal hybrid fragments mapping to
different RECSs. Due to the low signal-to-noise ratio of the Hi-C
experiment and the scarcity of inter-chromosomal interactions,
the vast majority of the inter-chromosomal hybrid fragments are
formed by random ligations. Thus, the variation in the number of
inter-chromosomal hybrid fragments linked to different RECSs
can reflect the biases in the Hi-C data generated at various steps
of the experiment [11]. A normalization factor for each RECS is
calculated based on the number of inter-chromosomal hybrid
fragments linked to that RECS. The normalization factors of the
two RECSs under test are then multiplied to calculate the ran-
dom ligation probability between them (Supplementary File, 4
available online at https://academic.oup.com/bib).

The log transformation of the probability density function
of the power-law distribution is a linear function. Therefore,
if an interaction exists between two genomic loci (B, E)
(Supplementary File, 2, figure b available online at https://a
cademic.oup.com/bib), the log transformation of the counts

of hybrid fragments linking two nearby genomic loci (C, D)
linearly decreases as the log transformation of the summed
distance from C, D to the interacting loci B, E increases
(Supplementary File, 6 available online at https://academic.ou
p.com/bib). Instead of testing if the number of hybrid fragments
linking to two genomic loci is higher than expected or not given
a genome-wide or a local background distribution, Chrom-
Lasso defines its null hypothesis as no linear relationship
exists between the log-transformed number of hybrid fragments
linking two surrounding regions of the interacting loci and the
log-transformed distance from the two loci to the interacting loci
(Supplementary File, 7 available online at https://academic.ou
p.com/bib). Accordingly, the alternative hypothesis of Chrom-
Lasso is that there exists a linear relationship. The parameters
of the linear model are estimated with lasso regression with the
‘L1’ penalty using the R package ‘nnlasso’ [40].

We model the observed log counts of hybrid fragments as
the dependent variable and consider it as a mixture of hybrid
fragments generated from ligations of all pairs of potentially
interacting loci within a certain region. The testing regions are
centered on one pair of potentially interacting loci and extended
by five restriction cutting sites in both directions. The expected
distribution of hybrid fragments of two pairs of closely posi-
tioned and potentially interacting loci can be highly correlated;
thus, the parameters can be difficult to estimate if regular linear
regression is used. Lasso regression can help select the true
interacting centers among the closely positioned potentially
interacting loci for the reason that it penalizes the sum of the
absolute value of the coefficients of all pairs of potentially inter-
acting loci (Supplementary File, 8 available online at https://aca
demic.oup.com/bib). As a result of its modeling strategy, Chrom-
Lasso can achieve higher accuracy by utilizing information of the
surrounding regions of potentially interacting loci in contrast
with testing each pair of loci independently. Another advan-
tage of Chrom-Lasso is that the estimated coefficient for each
pair of interacting loci can be interpreted as the proportion
of cells having the interaction at the snapshot of the experi-
ment. Finally, Chrom-Lasso calculates the FDR for the potential
interacting loci based on the distribution of P-values generated
by fitting random pairs of genomic loci to the linear model
(Supplementary File, 9 available online at https://academic.oup.
com/bib).

Chrom-Lasso identified more functional interactions
than existing software

GOTHiC is a Hi-C data analysis method based on a binomial
probabilistic model that resolves different sources of biases and
identifies true interactions [7]. And it also applies the ratio
of observed-over-expected counts to measure the strength of
the interaction. This model takes no consideration of genomic
distance and yields a well-controlled FDR. Fit-Hi-C computes
confidence estimates for Hi-C data by capturing the relationship
between genomic distance and ligation probability without any
parametric assumption [6]. Another newly developed method
HiC-DC [41] calls a significant overlap of long-range contacts
with Fit-Hi-C [18].

A previous study quantitatively compared the performance
of six algorithms to detect interactions using Hi-C data and
showed that GOTHiC found the most cis interactions in
the majority of the tested datasets. The same study also
reported that GOTHiC called more reproducible interactions
and recovered the highest number of true-positive interactions
[10]. Based on the results of significant intra-chromosomal
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Figure 1. Schematic overview of Chrom-Lasso. The overall analysis strategy of Chrom-Lasso involves four steps. Step1 is to filter the random-ligation reads and self-

ligation reads from the Hi-C library and to take the trans (inter-chromosomal) reads as the reflection of biases resulting from the Hi-C experiment and high throughput

sequencing to estimate biases for further detecting functional interactions. Step2 focuses on modeling the distribution between ligation frequency and genomic

distance which fits linear distribution after log transformation. Step3 detects true chromatin interactions based on testing whether the potential interacting center

and its surrounding reads fit the distribution modeled in Step2, and when two or more potential interaction centers are detected within a user-defined neighborhood

region (e.g. interaction center A and B), it performs lasso regression to determine the iinteracting center(s) fit the model the best. Step4 is to calculate the FDR for

interactions according to a background P-value distribution inferred by randomly picking genomic loci pairs and testing their reads distribution.

interactions (FDR < 0.05) detected by different methods from
this study, we noticed that Chrom-Lasso called a compara-
ble number of interactions with GOTHiC and significantly
more than Fit-Hi-C (Figure 2A). We visualized the significant

interactions detected by different methods in the same
chromosomal region, showing that Chrom-Lasso detects inter-
actions anchored at RECS map without the bin size limitation
(Supplementary Figure S1 available online at https://academi

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
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c.oup.com/bib). Considering GOTHiC and Fit-Hi-C’s overall
performance compared to other existing methods, we decided
to compare our method, Chrom-Lasso, to GOTHiC and Fit-
Hi-C to assess its performance. The comparison was made
using the publicly available data of in situ Hi-C assay in the
GM12878 cells ([19], Supplementary Table S1 available online at
https://academic.oup.com/bib). To make a fair comparison, we
focused on long-range interactions with a distance between
the two interacting loci above 20 kb and preserved significant
interactions with the same total number (see Materials and
methods).

To compare the power to recall true-positive interactions
between Chrom-Lasso and other methods, we used interactions
detected using 5C technology in the GM12878 cell line as true-
positive interactions [10, 19]. We demonstrated that Chrom-
Lasso identified more true-positive interactions than GOTHiC,
which detected the largest number of true-positive interactions
among the six widely used Hi-C interaction calling methods
[10], in most samples. Chrom-Lasso also had more stable per-
formance of detecting 5C interactions among samples with dif-
ferent total sequenced reads than Fit-Hi-C (Figure 2B, detailed
methods see Materials and methods). We then tested the meth-
ods’ performance in detecting promoter–promoter interactions.
Promoters are more likely to involve in long-range interactions
than a set of random loci in the genome and promoter–promoter
interactions play important role in recruiting genes to shared
transcription factories [42], so the performance of detecting
promoter–promoter interactions reflects the power of detect-
ing potential functional interactions through different methods.
Chrom-Lasso is more likely to detect promoter–promoter inter-
actions than other methods (Figure 2C, detailed methods see
Materials and methods).

To further evaluate the functional relevance of interactions,
we overlapped the interacting loci with expression quantitative
trait loci (eQTL) SNPs [24] and disease-associated SNPs [21].
GWAS/eQTL SNPs are, on average, more likely to form functional
interactions than a set of random genomic loci. Functional
interactions that connect regulatory elements with genes
play important role in transcriptional regulation, and the
GWAS/eQTL SNPs located in the regulatory elements region
can influence gene expression through the interaction with
target genes [43–45]. Our results showed that interactions
detected by Chrom-Lasso were more likely to overlap with
eQTL SNPs (Figure 2D, detailed methods see Materials and
methods). For disease-associated SNPs, we examined three
sets of SNPs, all disease-associated SNPs, cancer-associated
SNPs and autoimmune disease-associated SNPs. Similar to
the eQTL SNPs, we found that interacting regions detected
by Chrom-Lasso were more enriched for disease-associated
SNPs (Figure 2E).

To assess the reproducibility between replicates, we demon-
strated that the numbers of interactions in TADs detected by
Chrom-Lasso were more correlated among the replicates than
that detected by GOTHiC and Fit-Hi-C (Figure 2F). In addition,
we showed that Chrom-Lasso produced more consistent contact
maps and interactions between biological replicates treated with
two different restriction endonucleases than that of GOTHiC and
Fit-Hi-C (Figure 2F).

Our results highlight the ability of Chrom-Lasso in detecting
functional interactions. The increased statistical power is likely
due to borrowed information from nearby regions, leading to the
detection of a larger number of functionally relevant interactions
with high reproducibility.

Hi-C and Chrom-Lasso capture the dynamics of
functional interactions during the process of CD8+

T cell activation

To further validate the ability of Chrom-Lasso to investigate bio-
logical function related to chromosome organization, we applied
Chrom-Lasso to study the dynamic changes of interactions dur-
ing the process of CD8+ T cell activation.

Cytotoxic CD8+ T cells are the main effector cells of the
adaptive immune system responding to infections and diseases
[46]. Activation of CD8+ T cells involves profound changes in the
gene regulatory networks [47]. Accumulate evidence has demon-
strated that spatial chromatin organization formed by interac-
tions added a new perspective to the understanding function-
ality of transcriptional regulation [48]. Here, we sought to inves-
tigate the dynamic changes of interactions and their impact on
transcriptional regulation throughout CD8+ T cell activation by
generating Hi-C and RNA-seq data in cells at four different states
during the process.

The in vitro CD8+ T cell activation model started from naïve
CD8+ T cells separated from mouse spleen (day 0) to exhausted
CD8+ T cells marked by the expression of Tim-3 on day 5 after
constant anti-CD3/CD28 and IL2 stimulation. We collected cells
for Hi-C experiments at four different states, including naïve T
cells (Tn, day 0), the short-term activated effector T cells (Teff1,
day 2), the long-term activated effector T cells (Teff2, day 5)
and exhausted T cells (Tex, day 5). We also performed RNA-
seq in cells at these four states with three replicates for each
state (see Materials and methods). We preprocessed the raw Hi-C
sequencing data following the Juicer preprocessing protocol [14],
and then we identified interactions using Chrom-Lasso.

To assess the performance of detecting interactions associ-
ated with cis-regulatory elements that involve transcriptional
regulation, we overlapped interacting loci of significant inter-
actions (FDR < 0.05) identified by Chrom-Lasso with the mouse
spleen ChIP-seq peaks of different TFs and histone modifica-
tions from ENCODE (see Materials and methods). We found
that the interacting loci identified at four different cell states
were enriched with binding sites of insulator protein such as
CTCF similar to previous reported [49], showing Chrom-Lasso’s
ability to find known structural interacting loci. Our results also
suggested that the interacting loci were enriched with histone
markers related to active chromatin state, enhancers (H3K4me1
and H3K27ac) and promoters (H3K4me3), consistent with the
expectation that functional interactions preferentially involve
promoters and distal regulatory elements such as enhancers
(Figure 3A). However, the enrichment level of histone markers
for transcribed regions (H3K36me3) and the Polycomb repression
(H3K27me3) was weaker than that of the functional regulatory
elements (Figure 3A). Together, these results highlight the strong
capability of Chrom-Lasso in identifying interactions associ-
ated with functional elements that may impact transcriptional
regulation.

Next, we sought to study the dynamic changes of interactions
during the process of CD8+ T cell activation and their impact
on the function of biological pathways. We defined interaction
strength for a certain pathway as the proportion of signifi-
cant interactions (FDR < 0.05) involved with promoter regions
of all genes belong to that pathway in the total number of
detected significant interactions (see Materials and methods).
We found that the interaction strength of the cell cycle path-
way increased from the naïve state to the short-term activated
effector state (Figure 3B, left panel). However, the interaction
strength for the immune response-related pathways, such as

https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
https://academic.oup.com/bib
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Figure 2. Comparison between Chrom-Lasso and other software. (A) The total number of significant cis interactions (interactions occur within the same chromosome,

FDR < 0.05) detected by different methods. (B) Bar plots demonstrate the number of 5C interactions detected by the tested methods in indicated replicates when

comparing same number of top significant interactions (upper panels), and the proportion of interactions overlap with 5C in all interactions identified (the lower

panel). (C) Box plots show the number of promoter–promoter interactions found in the top significant interactions (left), and the proportion of promoter–promoter

interactions in all interactions identified (right). (D) Box plots show the number of unique eQTL SNPs involving interactions found by tested methods. (E) Box plots

compare the number of disease-associated SNPs involving interacting loci in different replicates. The comparison was done in three GWAS categories: SNPs associated

with all diseases (red), SNPs associated with autoimmune diseases (green) and SNPs associated with cancer (blue). (F) Correlation matrices show the correlation between

different replicates (treated with MboI or DpnII) based on the number of interactions detected in each TAD.

the T cell receptor signaling pathway, initially decreased from
the naïve state to the short-term activated effector state and
then increased after long-term activation (Figure 3B, left panel).

These findings remained consistent under different FDR cut-
offs (Supplementary Figure S2 available online at https://acade
mic.oup.com/bib). These results suggest that cell proliferation

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
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Figure 3. Widespread changes in gene expression and chromatin interactions during the process of CD8+ T cell activation. (A) Heat map represents the log2 enrichment

score of the indicated ChIP-seq targets in four samples. (B) Heat maps show the changes in gene expression and interaction strength in the cell cycle and immune-

related KEGG pathways during CD8+ T cell activation. The left panel shows the scaled log2 fold change of interaction strength measured the proportion of significant

interactions (FDR < 0.05) involved in the promoter region of genes in the indicated pathway, and the right panel shows the scaled log2 enrichment score of pre-ranked

GSEA of the same pathway.

dominated the initial stage of T cell activation, leading to a rapid
expansion of the T cell population, which performs the effector
function in combating infections.

To investigate the regulatory function of chromatin inter-
actions on gene expression, we examined the correlation of
changes in the interaction strength and changes in gene expres-
sion during T cell activation. The principal component analysis
of all RNA-seq samples demonstrated that long-term activated
effector cells shared similar characteristics with exhausted cells
in gene expression profile (Supplementary Figure S3 available
online at https://academic.oup.com/bib). Therefore, we mainly
focused our analysis on the process from the naïve state to the
long-term activated effector state.

For each transition from one state to the subsequent state,
we ranked all genes according to their log2 fold change in
expression. Then, we used these pre-ranked genes to perform
GSEA on cell cycle and immune system-related KEGG pathways
and finally derived the NES to represent the change of activity
of pathways during the activation process (see Materials and
methods). The GSEA results demonstrated that the expression
level of genes in the cell cycle pathway was upregulated from the
naïve state to the short-term activated effector state, yet most of
the immune response-related pathways were not significantly
activated at this initial stage (Figure 3B, right panel). However,
we discovered a significant upregulation of the expression level
of genes in most immune response-related pathways from the
short-term activated effector state to the long-term activated
effector state (Figure 3B, right panel).

These results were in line with the dynamic changes in the
interaction strength. The change of gene expression level in cell
cycle and immune system-related pathways combined with the
change of interaction strength implied that the in vitro activation
of mouse CD8+ T cell was mainly composed of two stages, the
first stage was the cell proliferation stage to enlarge the T cell

population, and the second stage was the cytotoxic stage to
perform immune response. The consistency between the change
of interaction strength and change of gene expression level in
cell cycle and immune system-related pathways suggests that
Chrom-Lasso performed well in identifying functional inter-
actions that regulate gene expression via three-dimensional
genome organization.

Chromatin interactions facilitated co-regulation
between Erbb3 and neighboring genes

After confirming the capability of Chrom-Lasso to detect func-
tional interactions genome-wide, we selected specific interac-
tions that might play important role in regulating gene tran-
scription during T cell activation to perform experimental val-
idation. Interactions with both ends overlapped genes are of
particular interest because such interactions may mediate the
co-regulation of the genes at the two ends through 3D chromatin
organization [1]. Therefore, we searched for genes involved in a
high number of interactions and sought to validate interactions
between such genes and neighboring genes (see Materials and
methods).

We noticed that gene Erbb3, which is known to play an
essential role in the regulation of cell proliferation and differ-
entiation [36], interacted with different neighboring genes in Tn,
Teff1 and Teff2 cells. The interactions in the region centered on
the Erbb3 locus undergone significant reorganization during
T cell activation (Figure 4A). We found that the interactions
nearby Erbb3 were sparsely distributed in Tn cells, and the
interaction intensity of the region upstream of Erbb3 was
significantly increased in Teff1 and Teff2 cells (Figure 4A,
Figure 4B). Moreover, a new domain boundary at the middle
of the region is increasingly apparent in Teff2 and Tex cells, as
shown in the decrease of the proportion of interactions with two

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab181#supplementary-data
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Figure 4. The PCR validation of Erbb3 involved interactions. (A) An overview of all interactions in the genomic region on chr10. The top panel shows the loci of genes

involved in this region. We also separate this region into two potential subdomains A and B based on the changes in the proportion of interactions across these two

subdomains, and the four panels below represent the distribution of all interactions detected in four samples in this region. Each purple line stands for an interaction.

(B) Contact matrices demonstrate the log10 hybrid-fragment counts from the four Hi-C libraries at chr10: 128 000 000–129 000 000 at 5 kb resolution. (C) The proportion

of interactions located in subdomain A, subdomain B and across these two subdomains in four samples. (D) Heat map depicts the scaled log2 fold change of averaged

gene expression level. (E) PCR validation results of selected interactions. For each interaction detected by Chrom-Lasso, we captured the hybrid fragments surrounding

the interacting loci from the Hi-C library and then designed primers based on the sequence of hybrid fragments for PCR. The result showed that the hybrid fragments

are only detected in the corresponding Hi-C library, not in other Hi-C libraries.

ends across subdomain A and subdomain B through four states
(Figure 4C), and this new boundary may be a major cause of the
dissociation between Erbb3 and genes in subdomain A. The

Chrom-Lasso identified interactions showed that Erbb3 inter-
acted with Rab5b, an intracellular membrane trafficking-related
gene [50], at the naïve state. Erbb3 was then connected with
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Cdk2, a cell cycle-related gene [51], and Rnf41, a gene involved
in cytokine receptor signaling [52], at the short-term activated
effector state. Erbb3 was subsequently connected with Rab5b
at the long-term activated effector state, and Ikzf4, a gene
associated with an inhibitory function of T cells [53], at the
exhausted state. The dynamic changes in interactions nearby
the Erbb3 locus were consistent with the notion that T cells
first went through the cell cycle and expanded in number then
turned on their cytotoxic function during the activation process.

More importantly, we found that when two genes are inter-
acting with each other, their expression levels tend to change
in the same direction when cells transit from one state to the
next, suggesting that the expression level of two interacting
genes may be co-regulated. For example, the interaction between
Erbb3 and Cdk2 emerged in Teff1 cells; meanwhile, we found
an upregulation of the expression level of both Erbb3 and Cdk2
in Teff1 cells compared to Tn cells (Figure 4D). Similarly, the
interaction between Erbb3 and Rab5b appeared in Teff2 cells
and the expression level of both genes increased compared to
that in Teff1 cells (Figure 4D). The interaction between Erbb3 and
Ikzf4 was detected in Tex cells and the expression level of both
interacting genes was downregulated compared to that in Teff2
cells (Figure 4D). The consistency between the emergence of
interaction and the co-regulation of the connected genes further
demonstrated the ability of Chrom-Lasso to detect functional
interactions.

Finally, we validated the gene–gene interactions identified
by Chrom-Lasso by confirming the enrichment of the hybrid
fragments linking the genes in the respective Hi-C libraries (see
Materials and methods). PCR results demonstrated that the
captured hybrid fragments for each Erbb3 involved gene–gene
interaction only existed in the corresponding Hi-C library that
identified the interaction (Figure 4E, Supplementary Table S2
available online at https://academic.oup.com/bib), and we also
selected another two interactions with both interacting loci
located in the gene promoter regions in each sample for PCR
validation (Supplementary Figure S4, Supplementary Table S3
available online at https://academic.oup.com/bib), highlighting
the high accuracy and specificity of Chrom-Lasso.

Discussion
The analysis of Hi-C data remains challenging for the following
reasons. (i) Various biases exist in the Hi-C data, including exper-
imental biases such as the cutting efficiency at restriction sites,
ligation efficiency between pairs of cutting sites and sequencing
biases such as GC content and mappability of reads. (ii) The real
interactions captured by Hi-C include both functional interac-
tions that bring regulatory elements into spatial proximity such
as interactions linking gene promoter with distant enhancer and
structural interactions such as CTCF-related interactions which
are involved in the boundaries of TADs. Higher statistical power
is required to detect functional interactions, because unlike
structural interactions, functional interactions are transient and
unstable, perhaps only exist in a small portion of cells at a
given time.

Chrom-Lasso estimates the overall biases from inter-
chromosomal hybrid fragments because the vast majority
of the inter-chromosomal hybrid fragments are formed by
random ligations and the differences in the probability of
inter-chromosomal ligation at different cutting sites reflect the
combined effect of various sources of biases. Therefore, the
probability of inter-chromosomal ligation at different cutting

sites can be used to correct the biases. Moreover, Chrom-
Lasso borrows power from hybrid fragments surrounding the
interacting loci via a lasso regression model. The application of
lasso regression improved accuracy and resolution in detecting
true interacting centers by effectively removes correlated
interactions. Furthermore, Chrom-Lasso randomly picks pairs of
genomic loci and tests if the log frequency of hybrid fragments
decreases linearly as the log genomic distance between the
two ends of the hybrid fragments increases. The distribution
of P-values generated by such tests is used to estimate the
FDR of the interactions. Last but not least, Chrom-Lasso
provides a beta coefficient value for each pair of interacting
loci to represent the relative strength of interaction, which
implies the relative proportion of cells that has the interaction
(Supplementary Figure S5 available online at https://academi
c.oup.com/bib).

Chrom-Lasso detected significantly more interactions iden-
tified by 5C experiments than GOTHiC, which was shown to
outperform five other existing methods in this measure [10],
highlighting the efficiency and accuracy of Chrom-Lasso in iden-
tifying true-positive functional interactions. We demonstrated
that interacting loci identified by Chrom-Lasso has a higher rate
of overlapping with eQTL SNPs, disease-associated SNPs and
promoter–promoter co-regulations when compared to GOTHiC
and Fit-Hi-C, which was reported to perform better in identifying
functional interactions. We also highlighted that Chrom-Lasso
reproduced very consistent significant interactions despite the
biases caused by different experimental conditions. In conclu-
sion, we presented Chrom-Lasso as an approach for Hi-C data
analysis and demonstrated its efficacy in detecting long-range
functional interactions with high reproducibility.

To further assess the performance of Chrom-Lasso in captur-
ing the dynamic changes in functional interactions, we used Hi-C
to investigate the changes in interaction strength during CD8+
T cell activation. We discovered intense interaction involved
with genes in the cell cycle pathway in the early stage of CD8+
T cell activation and interaction strength of immune system-
related pathways such as T cell receptor signaling pathway
enhanced in the subsequent stage. The changes in the inter-
action strength of these pathways were consistent with the
changes in gene expression we observed. Finally, we experi-
mentally validated the dynamic changes in the interactions
facilitating the co-regulation of Erbb3 and its neighboring genes
at different stages of T cell activation. Interestingly, we observed
a dynamic domain boundary formation, which potentially disso-
ciated the interaction between Erbb3 and its downstream genes
in long-term stimulated effector or exhausted T cells.

The comparison between Chrom-Lasso and GOTHiC or Fit-
Hi-C and the application of Chrom-Lasso to analyze the in vitro
time-course T cell activation data demonstrated the strong sta-
tistical power of Chrom-Lasso in detecting weak functional inter-
actions from a noisy background within TADs. Combined with
tools that can accurately define boundary domains [54, 55], we
expect our strategy to provide researchers with a powerful tool
for a broader range of variants of the Hi-C assay, such as single-
cell Hi-C, Capture Hi-C and BL-Hi-C [56–58], which also generate
data following a power-law distribution.

Availability
Chrom-Lasso is an open-source Hi-C interaction calling tool
available in the GitHub repository (https://github.com/Lan-la
b/Chrom-Lasso). The computational time of Chrom-Lasso is
mainly determined by the density of cutting sites of restriction
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endonuclease in the genome. Chrom-Lasso can analyze a whole-
genome Hi-C dataset treated with MboI in ∼40 h via a single core
of a 2.4GHz Intel(R) Xeon(R) CPU E5-2620 v3 on a server equipped
with LINUX.

Accession Numbers
The Hi-C experimental data of GM12878 cell line used in the
comparison between Chrom-Lasso and other methods were
downloaded from the NCBI Gene Expression Omnibus (GEO)
under accession number GSE63525. The Hi-C experimental data
and RNA-seq data of the mouse model have been submitted to
the NCBI GEO under accession number GSE158375.

Key Points
• The vast majority of inter-chromosomal hybrid frag-

ments (ICHFs) are formed by random ligations; thus,
all biases at a specific genomic locus can be reflected
in the number of ICHFs associated with that locus.
Therefore, Chrom-Lasso corrects the complex biases
assumption-free based on the number of ICHFs
detected at each locus.

• Chrom-Lasso takes advantage of the linearity of log-
transformed power-law distribution, which converted
the deconvolution of the complex signals in Hi-C
data to a conventional feature selection problem in
multiple linear regression.

• Because Chrom-Lasso models the distribution of
hybrid fragments in a region of multiple bins, not the
counts in single genomic bins, it increased the statis-
tical power for detecting weak signals and decreased
the chance of calling an artificial spike in a signal bin
as a signal.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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