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Abstract

Large datasets of hundreds to thousands of individuals measuring RNA-seq in observational studies are becoming available.
Many popular software packages for analysis of RNA-seq data were constructed to study differences in expression
signatures in an experimental design with well-defined conditions (exposures). In contrast, observational studies may have
varying levels of confounding transcript-exposure associations; further, exposure measures may vary from discrete
(exposed, yes/no) to continuous (levels of exposure), with non-normal distributions of exposure. We compare popular
software for gene expression—DESeq2, edgeR and limma—as well as linear regression-based analyses for studying the
association of continuous exposures with RNA-seq. We developed a computation pipeline that includes transformation,
filtering and generation of empirical null distribution of association P-values, and we apply the pipeline to compute
empirical P-values with multiple testing correction. We employ a resampling approach that allows for assessment of false
positive detection across methods, power comparison and the computation of quantile empirical P-values. The results
suggest that linear regression methods are substantially faster with better control of false detections than other methods,
even with the resampling method to compute empirical P-values. We provide the proposed pipeline with fast algorithms in
an R package Olivia, and implemented it to study the associations of measures of sleep disordered breathing with RNA-seq
in peripheral blood mononuclear cells in participants from the Multi-Ethnic Study of Atherosclerosis.
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Introduction

Many studies of phenotypes associated with gene expression
from RNA-seq consist of small sample sizes (tens of subjects)
and are focused on comparisons of transcriptional expression
patterns between well-delineated states, such as different
experimental conditions, tumor versus non-tumor cells [1, 2] and
disease versus non-disease groups [3]. Some studies are
designed to identify differential expression across hidden,
discrete conditions [4]. Epidemiological cohorts have recently
utilized stored samples to facilitate the use of RNA-seq data in
studies of association with subclinical phenotypes such as blood
biomarkers, imaging and other physiological measures, with
often continuous measures being used in statistical analyses.

High-throughput RNA sequencing enables broad assaying of
a sample’s transcriptome [5] and has been in increasing use
for over a decade [6]. A large variety of analytic and statistical
approaches have been developed to address scientific questions
such as alternative splicing, differential expression, and more
[4, 7-11], often building on methods developed for analyses
of expression microarrays [12-14]; comprehensive reviews are
available [15-19]. In addition, a large body of work is being devel-
oped for single-cell RNA-seq [20]. In this work, we are specifically
interested in differential expression analysis with continuous
exposures, and we assume that count data are already prepared
and available to the analyst. Popular software packages for dif-
ferential expression analysis include the DESeq2 R package [9],
which models the expression counts as following a negative
binomial distribution, with shrinkage imposed on both the mean
and the dispersion parameters, based on estimates from the
entire transcriptome, or user-supplied values. EdgeR [7] uses
a negative binomial model similar to the DESeq2 model for
transcript counts, in combination with overdispersion moder-
ation. EdgeR was primarily designed for differential expression
analysis between two groups when at least one of the groups
has replicated measurements [21]. Limma [22] uses linear mod-
els, which are very flexible and can effectively accommodate
many study designs and hypotheses. Similar to the DESeq2 and
edgeR packages, Limma also uses an empirical Bayes method to
borrow information across transcripts to estimate a global vari-
ance parameter that is applied for the computation of variance
parameters of each single transcript. It uses log transformation
and weighting, known as the ‘voom’ transformation, in the final
linear model that is used for differential expression analysis.
We refer to it henceforth as the limma-voom. Prior to differen-
tial expression analysis, library normalization is performed [23].
Popular approaches are the TMM (trimmed-means of M-values)
normalization [24], implemented in edgeR and the size factors
normalization [25], implemented in DESeq?2.

Sleep disordered breathing (SDB) phenotypes, such as
the Apnea-Hypopnea Index (AHI), the number of apnea and
hypopnea events per hour of sleep, provides a quantitative
assessment of the severity of the disorder, with no clear
threshold above which different biological processes occur
(although thresholds are used for clinical decision-making
and health insurance reimbursement). Association analysis
with continuous exposures provides different challenges than
those traditionally encountered. The distribution of such
exposures may have strong effects on the association analysis
results, regardless of the underlying associations, due to
the combination of skewed exposure distributions and the
distribution of RNA-seq read count data, which are generally
over-dispersed with occasional extreme values. As observational
study data analyses may include covariates, statistical methods
from experimental studies (e.g. exact tests) cannot be applied.

In this article, we compare the DESeq2, edgeR and limma-
voom analysis approaches for differential expression analysis,
with linear regression-based approaches that do not use the
empirical Bayes approach for estimating variance parameters
across the transcriptome. We study the computation of P-values
using resampling of phenotype residuals, while preserving the
structure of the data. This addresses the limitation of permu-
tation noted by others in the context of differential expression
analysis of RNA-seq [22], where permutation may not be tuned
to test a specific null hypothesis because in its standard form it
‘breaks’ all relationships between the permuted variable and the
rest of the dataset. Finally, we study the use of empirical P-values
that tune the original P-values based on the residual resampling
scheme. Throughout, we use a dataset with SDB phenotypes and
RNA-seq from the Multi-Ethnic Study of Atherosclerosis (MESA)
as a case study. We demonstrate the statistical implications of
performing association analysis of RNA-seq with continuous,
non-normal exposures, compare analysis methods and develop
recommendations.

Methods
The Multi-Ethnic Study of Atherosclerosis

MESA is a longitudinal cohort study, established in 2000, that
prospectively collected risk factors for development of subclin-
ical and clinical cardiovascular disease among participants in
six field centers across the United States (Baltimore City and
Baltimore County, MD; Chicago, IL; Forsyth County, NC; Los Ange-
les County, CA; Northern Manhattan and the Bronx, NY; and St.
Paul, MN). RNA was extracted from whole blood drawn in Exam
5 (2010-2012). RNA-seq was measured via the Trans-Omics in
Precision Medicine (TOPMed) program. The current analysis con-
siders N =462 individuals who participated in an ancillary sleep
study shortly after Exam 5, in 2010-2013 [26, 27]. Sleep data were
collected using standardized full in-home level-2 polysomnog-
raphy (Compumedics Somte Systems, Abbotsville, Australia), as
described before [27]. Of the 462 participants in the current
analysis, there were 98 African-Americans (AA), 200 European-
Americans (EA) and 164 Hispanic-Americans (HA). RNA sequenc-
ing in MESA is briefly described in the Supplementary Mate-
rials available online at https://academic.oup.com/bib. See the
Availability section for information about obtaining the MESA
dataset.

SDB measures

As examples for continuous exposures from population-based
studies, we took three SDB measures: (i) the AHI, defined as the
number of apnea (breathing cessation) and hypopnea (at least
30% reduction of breath volume, accompanied by 3% or higher
reduction of oxyhemoglobin saturation compared with the base-
line saturation) per 1 h of sleep; (ii) minimum oxyhemoglobin
saturation during sleep (MinO2) and (iii) average oxyhemoglobin
saturation during sleep (Avg02). We chose these traits because
they are clinically relevant, often used in sleep research studies,
and represent exposures that may alter gene expression (via
hypoxemia and sympathetic activation). The AHI had the least
skewed distribution of the considered phenotypes, and AvgO2
had the longest ‘tail’ of small values in the residual distribution.
Residuals were obtained by regression the sleep measures on
age, sex, body mass index (BMI), study center and self-reported
race/ethnic group.
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Compared tests of associations between exposure
and transcripts

We compared the standard packages DESeq2, edgeR, limma and
linear regression-based approaches, in which we always applied
log transformation on the transcript counts, and then applied
linear regression. Because some of the observed transcript count
values are zero, which cannot be log transformed, we compared a
few approaches for replacing zero values. For a given transcript
j, denote the minimum observed transcript level that is higher
than zero by m; = min{tp,...,t, : t; > O fori = 1,...,n}. We
compared the following approaches, applied on each transcript
j,j=1,...,k separately:

1. SubHalfMin: Replace zero values with %
2. AddHalfMin: Replace all values t; by t; + %
3. AddHalf: Replace all values t; by t; + 3.

Conceptual framework for studying analysis
approaches

To study performance of various analysis approaches, we
performed simulation studies. Simulation study 1 was used
to assess type 1 error across methods when using output
P-values, and when using ‘empirical P-values’, which are P-
values that account for true distribution of the P-values under
the null hypothesis of no association between the exposure
and RNA-seq and are described later. Simulation study 2 was
used to assess power in transcriptome-wide analysis settings,
when using methods that control the type 1 error according
to simulation study 1. In addition, we performed a simulation
study (see Supplementary Materials available online at https://a
cademic.oup.com/bib) to assess power for testing of individual
transcript according to various distributional characteristics of
transcript counts. The goal was to identify approaches for filter-
ing transcripts for association analysis that will optimize power.
All simulations used a ‘residual permutation’ approach (below).
The reported criteria for declaring differentially expressed
transcripts were false discovery rate (FDR) controlling P-values
<0.05 based on the Benjamini-Hochberg (BH) procedure, and
based on the local FDR procedure implemented in the gvalue
R package, family-wise error rate (FWER) controlling P-values
<0.05 based on the Holms procedure, and an arbitrary threshold
of P-value < 107>,

Residual permutation approach for simulations and for
empirical P-value computation

To generate realistic simulation studies in which: (i) the data
structure, including the exposure, covariates and outcome dis-
tributions; and (ii) their relationships, aside from the exposure-
outcome association, are the same as in the real data, we used a
residual permutation approach. We regressed each sleep expo-
sure of interest X on the covariates C and estimated their effect
«. We then obtained residuals, defined as:

e =X—Ca.

To study type 1 error, we permuted these residuals at random
to obtain perm(e), and generated a sleep exposure unassociated
with any of the RNA-seq measures by:

X = Ca + perm (e) .
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We repeated this procedure 1000 times for evaluating type
1 error control. We generated simulated data under four power
simulations in a similar approach, with the difference that we
forced a specific correlation value between the simulated sleep
exposure and a specific transcript. To this end, for a given
transcript j measured on individuals i = 1,...,n, we computed
the rank of each individual: ry(ty), ..., 7a(t). To set a correlation
p between the simulated X, and transcript jwe sampled p x n
(rounded) indices from 1, ..., n, corresponding to p x n individuals
for which we forced their ranks in the permuted residual values,
now denoted by perm(e),, to be the same as their ranks in
the transcript values (note that the transcript values are never
changed). For the rest of the individuals, the permuted residuals
are completely random. When multiple individuals have the
same transcript counts (i.e. their ranks are tied), we randomly
assign their ranks. For example, if 100 people have zero counts
for a given transcript, each of these individuals will be equally
likely to have the rank of 1, 2, ..., or 100. The code for generating
this residual permutation approach is provided in a dedicated
GitHub repository https: //github.com/nkurniansyah/Olivia.

Empirical P-values to account for the null distribution
of P-values

We used the residual permutation approach, under the null
hypothesis, to generate a null distribution of P-values and to
compute empirical P-values. When the distribution of P-values
under the null hypothesis is unknown, and specifically when it is
not uniform, their values are not reliable for hypothesis testing.
Alternative approaches compute ‘empirical P-values’ with the
goal of generating an appropriate P-value distribution, i.e. in
which an empirical P-value P, satisfies Pr(P, < 0.05|Hp) = 0.05
(see Supplementary Materials available online at https://acade
mic.oup.com/bib).

For computing empirical P-values, we used a relatively small
number of residual permutations (in comparison to the num-
ber of permutations used for computing permutation P-values)
followed by transcriptome-wide association studies. We used
the results of these transcriptome-wide tests under permutation
to compute the null distribution of P-values, which was then
used to compute the empirical P-values. We compared two types
of empirical P-values: quantile empirical P-values, and Storey
empirical P-values implemented in the qvalue R package [28].
The quantile empirical P-value approach was inspired by previ-
ously proposed procedures based on permutation [29] of pheno-
types (rather than residuals). It estimates the null distribution of
P-values non-parametrically, and the quantile empirical P-value
is the quantile of the raw P-value in this distribution. The Storey
empirical P-values uses the null distribution of the test statistics
to identify whether a transcript is likely sampled from the null
or a non-null distribution. Both implementations assume that
the empirical null distribution is the same for all transcripts. We
used 100 residual permutations to compute test statistics and
P-values under the null and compared the empirical P-values to
standard permutation P-values.

Resampling approach for binary exposure phenotypes

We compared the analysis of a continuous exposure to that of a
dichotomized variable. Instead of a sleep measure, we used BMI,
because it is known to have large impact of gene expression and
is therefore a powerful phenotype for such a comparison. BMI
was dichotomized to ‘obese’ if BMI > 30 kg/m? and nonobese
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otherwise. Because obesity is binary and, therefore, the resid-
ual permutation approach is not appropriate as proposed for
continuous variables, we generated a binomial obesity variable
based on BMI probability given covariates. Given a logistic model
logit[p(obesity; = 1)] = c]«, we estimated the covariates’ asso-
ciation parameters & and obtained estimated probabilities for
obesity for each personi=1,...,n by p(obesity; = 1) = expit(cTa).
Based on these estimated outcome probabilities, we sampled
random obesity statuses as binomial variables.

Association analysis with SDB phenotypes

Once final recommendations were developed, we implemented
the proposed pipeline to study the association of AHI, MinO2
and AvgO2 jointly on RNA-seq in MESA. The associations were
studied jointly for the three phenotypes: we used the multivari-
ate Wald test [30] to obtain raw P-values and applied residual
permutation on the three phenotypes jointly to obtain empirical
P-values. We used the FGSEA R package [31] to apply gene set
enrichment analysis on the results.

Results

MESA participant characteristics are provided in the Supple-
mentary Table S1. The distributions of the raw phenotypes
AHI, MinO2 and Avg02, and their residuals after regression on
covariates are provided in Figure 1, demonstrating the high non-
normality. Simulations were performed after normalizing the
RNA-seq data so that each library has the same size (prior to
filtering), which we set to the median observed value (i.e. median
normalization) in the raw reads, or 23 210 672. Results for some
of the settings in simulation study 1 under TMM and size factor
normalizations are provided in the Supplementary Materials
available online at https://academic.oup.com/bib.

Simulation study 1: type 1 error analysis

After normalization, we applied filters to remove lowly
expressed transcripts. There were 58 311 transcripts. After
applying filters requiring that the (a) maximum read count is
>10 and that (b) the proportion of individuals with zero counts
for a transcript across the sample is not higher than 0.75 (see
Supplementary Materials available online at https://academi
c.oup.com/bib for more information on filters), 23 004 transcripts
were available for the simulation study. We used residual
permutation to generate simulated SDB phenotypes that are not
associated with the transcripts, but maintain the same correla-
tion structure with the transcript and covariates. We generated
100 datasets with simulated SDB phenotypes, and performed
analyses. Complete results showing the average number of false
positive detection based on the existing packages limma, edgeR
and DESeq2, as well as the three linear regression analyses
described here, are provided in Supplementary Figures S3-S5.
These results include comparisons of raw P-values, the proposed
quantile empirical P-values, and the empirical P-values provided
in the gvalue R package [28] and for the three SDB phenotypes.
We found that the number of false positives vary with the
exposure phenotypes, with analyses of MinO2 (Figure 2) gener-
ally resulting in more false positive detections than analyses of
the AHI, with intermediate numbers for AvgO2 (see Supplemen-
tary Figures S3-S5 available online at https://academic.oup.com/
bib). Figure 2 compares the average number of falsely discovered
transcript associations when using simulated sleep phenotypes
mimicking MinO2 using the residual permutation approach by

focusing on limma, edgeR, DESeq2 and linear regression applied
on log2 of expression counts with SubHalfMin. For each method,
type I error was determined using raw P-values and Storey
empirical P-values, with significance thresholds based on BH
FDR, local FDR (qvalue package) and Holms FWER. Empirical
P-values usually reduced the number of false detections,
with the method in the gqvalue package being usually more
conservative than the quantile-based empirical P-values
method. Compared with linear regression-based approaches,
DESeq2, edgeR and limma-voom had many false detections
when using the raw P-values, even after applying multiple
testing corrections. The three linear regression-based methods
described here were quite similar, with the AddHalf approach
often resulting in slightly more false detections. Based on these
results, we chose to move forward for the next set of simulations
with linear regression with SubHalfMin for handling of zero
counts. In the Supplementary Materials, we report a study of
false positive detections of this approach in smaller sample
sizes (down to N =30). The results were similar.

Simulation study 2: power analysis

We performed simulations that mimic transcriptome-wide
analysis to assess power. Based on simulations comparing power
by transcript distributional characteristics (see Supplementary
Materials section ‘Study of filtering based on distributional
characteristics of transcripts’), we only considered 19 742
transcripts for which no >50% of the sample had zero counts.
We chose two transcripts, and for each of these and each of the
sleep phenotypes, we performed 100 simulations in which we
used the residual permutation approach to generate association
between the sleep phenotype and the transcript with correlation
p = 0.3. We performed transcriptome-wide association analysis
using DESeq2, edgeR and linear regression with SubHalfMin
transformation (limma-voom was not used, given its high rate
of false positive detections in some of the settings in simulation
study 1). For power, we always used empirical P-values (both
types) and determined whether the specific transcript of interest
passed the significance threshold based on FDR-adjusted [32]
empirical P-value <0.05. Power was defined as the proportion
of the simulations in which the associations was significant,
and was consistently higher for the linear regression-based
approach compared with DESeq2 or edgeR. For linear regression,
the quantile empirical P-values performed essentially the same
as Storey empirical P-values, whereas Storey empirical P-values
resulted in substantially higher statistical power when using
DESeq2 and edgeR. We illustrate power comparisons in Figure 3
using Storey empirical P-values. Power comparisons using
quantile empirical P-values are provided in the Supplementary
Figure S9.

Proposed analysis approach

Based on the above simulation studies, we developed an ana-
lytic pipeline as depicted in Figure 4: (i) the raw read count are
normalized; (ii) filters are applied to remove lowly expressed
transcripts and those for which the statistical power is low,
as determined by simulations; (iii) AddHalfMin transformation
is applied for each transcript separately, then log transforma-
tion is applied on all transcripts; (iv) association analyses are
performed using linear regression to compute effect sizes and
P-values; (v) permutations are computed 100 times on exposure
residuals after regressing on covariates, to generate simulated
phenotypes that maintain the data structure; (vi) each of 100


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data

Benchmarking association analyses of continuous exposures | 5

AvgO2 Residual AvgO2
0.3
0.24
0.24
0.14 0.1
0.04 0.0 1
85 90 95 -4 4
MinO2 Residual MinO2
0.08 4
0.08 1
0.06 4
0.06 1
=
2 0.04 1
e U J
[0} 0.04
©
0.02 0.02 4
0.00 1 0.00 1
50 60 70 80 90 -40 -20 0
AHI Residual AHI
0.03 4 0.03 1
0.02 4 0.02 A
0.01 4 0.01 1
0.00 4 0.00 1
T T T T T T T T
0 25 50 75 100 -25 0 25 50
value

Figure 1. Distributions of the three sleep-disordered breathing exposure phenotypes used as case studies in this article. The left column provides the empirical density
functions of the raw phenotypes, the right column provides the empirical density functions of their residuals after regressing on age, sex, BMI, self-reported race/ethnic

group and study center.

vectors of simulated traits are analyzed using the same approach
as the raw trait, generating P-values; (vii) P-values from the
analysis of the 100 simulated phenotypes are combined to gen-
erate an empirical null distribution of P-values, that are used
to generate empirical P-values for the raw phenotype using the
qvalue package and (viii) multiple testing correction is applied
on the empirical P-values. This pipeline is implemented in the R
package Olivia and a corresponding Shiny app.

Comparison of analysis of continuous BMI with
analysis of dichotomous obesity status

We compared the differential expression of transcripts in analy-
sis of BMI and obesity. Residual permutation procedure was used
and quantile-empirical P-values generated for both analyses. A
total of 925 MESA individuals had BMI measure available and, for
analysis, at least 50% nonzero transcripts were required. For obe-
sity, several nonzero transcript thresholds were examined: 50%,
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Figure 2. Average number of false positive transcript associations detected by various methods used in simulation study 1 and computed over 100 repetitions. We
used the residual permutation approach to mimic the MESA dataset with the sleep phenotype MinO2. The methods reported here are linear regression (applied on
log2-transformed transcript counts, with zero values replaced with SubHalfMin); DESeq2, edgeR and limmavoom. The left column provides results when using raw
P-values, the middle corresponds to use of quantile empirical P-values and the right corresponds to Storey empirical P-values. We report false positive detections as
those with BH FDR-adjusted P-value <0.05, Local FDR <0.05 (qvalue package) and with Holms FWER adjusted P-values <0.05. Error bars reflect the mean + standard

error. In Supplementary Figures S3-S5, we provide complete results, including for additional sleep phenotypes: AHI and AvgO2.

40% and 30%. The results were similar for all thresholds, result-
ing in many more identified transcript associations (446 versus
251) with continuous BMI compared with using a dichotomous

trait (Supplementary Figure S10).

Computing time comparison

The computing time for transcriptome-wide association study
was obtained for analyses using DESeq2, edgeR and our
linear regression implementation. Using our linear regression
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Figure 3. Estimated power for detecting a transcript simulated as associated with the three sleep traits when using Storey empirical P-values, and association is
determined significant if its BH FDR-adjusted P-value is <0.05. The transcripts were randomly selected out of available transcripts (after filtering of transcripts with
50% or higher zero counts across the sample). We compared linear regression, DESeq2, and edgeR in transcriptome-wide association analysis for each of the sleep
phenotypes. For each transcript used in simulations, we show both power and the box plot of its distribution in the sample after Median normalization.

implementation on a single core, a single transcriptome-wide
association study applied on ~19 K transcripts and N=462
individuals took less than a minute; when 100 transcriptome-
wide association studies applied to residual permutations were
included to compute empirical P-values, the time reached 7 min,
and the maximum memory used was 1.3GB. In comparison,
DESeq2 took 53.5 min and edgeR took 18.8 min for a single
transcriptome-wide association study. The maximum memory
used for DESeq2 and edgeR was similar at 3.1GB.

Association analysis with SDB phenotypes

We used the proposed pipeline to study the association of SDB
phenotypes with RNA-seq. Results are provided in Supplemen-
tary Tables S2 and S3 available online at https://academic.oup.co
m/bib. In brief, none of the genes passed the FDR P-value <0.05
level. The top two associations were with platelet derived growth
factor C (PDGFC) gene and with Kruppel like factor 11 (KLF11)
gene (both had FDR empirical P-value =0.07). In gene set enrich-
ment analysis, 21 Hallmark pathways [33] were significantly
enriched (FDR P-value < 0.05). Reassuringly, the strongest associ-
ation was with the hypoxia pathway (FDR P-value=6.12 x 107°).
Other top pathways were of inflammatory response and heme
metabolism, in agreement with past work in MESA [34].

The Olivia R package and shiny app

We developed the R package Olivia implementing the proposed
procedure. Olivia is also implemented as an R Shiny app [35],

which further uses the FGSEA R package [31] to perform gene
set enrichment analysis based on the results. The package and
instructions for activating and using the shiny app are available
in the GitHub repository https: //github.com/nkurniansyah/Oli
via. The package also provides tests of multiple exposure vari-
ables at the same time, which applies the multivariate-Wald test,
and an efficient implementation of a permutation test when
considering a single transcript, rather than a transcriptome-
wide analysis. Finally, the repository includes code used for
simulations.

Discussion

We systematically assessed the approaches for studying the
association of gene expression, estimated using RNA sequenc-
ing, with continuous and non-normally distributed exposure
phenotypes. We found that linear regression-based analysis per-
forms well for continuous phenotype associations, and is com-
putationally highly efficient. We used a residual permutation
approach to study the distribution of P-values under the null of
no association between the phenotypes and RNA-seq, and used
this approach to further study power, and to compute empirical
P-values. Notably, the residual permutation approach allows for
the dataset to have the same correlation structures and associa-
tions between the phenotypes and the transcripts and covari-
ates, while eliminating the transcript-phenotype associations.
We implemented this approach in an R package and developed
an R shiny app, to make our pipeline easily accessible to the
research community.


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
github.com/nkurniansyah/Olivia
github.com/nkurniansyah/Olivia

8 | Soferetal.

Raw data
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expressed transcripts

$
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(log + subHalfMin)
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Test associations and
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Compute raw
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Compute empirical
p-value distribution

Compute empirical
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Apply multiple
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Figure 4. Analysis pipeline for association transcriptome-wide association anal-
ysis of continuous exposure phenotypes. The raw data are normalized using
library-size normalization, followed by filtering of transcripts, transformation
of transcript expression values, then single-transcript testing to obtain raw P-
values. In parallel, residual permutation is applied under the null 100 times, and
P-values are used to construct an empirical P-value distribution under the null,
and to compute empirical P-values. Finally, the quantile empirical P-values are
corrected for multiple testing.

Recently, van Rooij, Mandaviya [36] also performed a
benchmarking study comparing analysis approaches for
transcriptome-wide analysis of RNA-seq in population-based
studies, including when using continuous phenotypes in asso-
ciation testing. Although we used similar statistical methods to
theirs, we took a different analytical approach. Van Roojj et al.
used multiple datasets to apply association analysis between a
phenotype and transcripts, and assessed replication between
analyses. We, on the other hand, leveraged simulations to
generate data under a known association structure. In addition,
we were motivated by a specific problem: highly non-normal
sleep exposure measures, often leading to suboptimal control
of type 1 error. Thus, it was critical to assess control of false
discovery under the null hypothesis of no association between
the phenotypes and RNA-seq. Notably, sleep phenotypes are
less often available and there are no other large observational
studies datasets to our knowledge with both RNA-seq measures
and similar SDB phenotypes. Some of our findings are similar
to those of van Rooij et al.: they also recommend using linear

regression analysis, and they also found that using a continuous
phenotype is generally more powerful than dichotomizing it
(in agreement with what is known from statistical literature).
Similarly, they found that normalization method had very little
effect on the results. However, they recommend testing all
genes, while we recommend filtering transcripts with at least
50% zero counts, based on our power simulations. Additional
future work is needed to evaluate various filtering criteria with
relation to the phenotype distribution, and to develop methods
that allow for flexible, nonlinear modeling of the association
between phenotype and gene expression while remaining
computationally efficient to allow for permutation analysis.

We propose to compute P-values under the null hypothe-
sis of no association between the transcript and the exposure
phenotype by permuting residuals of the exposure phenotype
after regressing on covariates, and restructuring the exposure by
summing the permuted residuals with the estimated mean, and
thus maintain the overall data structure except for the exposure-
outcome association of interest. Outside the gene expression
literature, others have proposed to permute residuals rather
than the outcome. For example, previous permutation methods
proposed to permute residuals of the outcome after regressing
on covariates [37], or to permute the residuals of the exposure
phenotypes without constructing a new exposure phenotype by
summing the permuted residuals with the estimated mean [38].
It will be interesting to perform a more comprehensive study
of statistical permutation approaches for RNA-seq association
analyses, as well as studying them in the context of mixed
models.

We recommend using empirical P-values, which require
100 residual permutations, and therefore, performing 101
transcriptome-wide association analyses instead of one. Consid-
ering Supplementary Figures S3-S5 available online at https://
academic.oup.com/bib, one can see that in most settings, linear
regression methods do not have many false positive detections
even when raw P-values are used. However, we chose to be
more conservative by strongly protecting the analysis from
false positive detections. Importantly, the linear regression
analysis with empirical P-values had higher power than the
other common approaches (DESeq2 and edgeR), indicating
simultaneous improvement in controlling false positives and
increasing power. Unfortunately, we cannot effectively estimate
the FDR in these simulations. FDR is defined as the proportion of
false discoveries out of all discovered (significant) associations.
In simulation study 1, none of the transcripts were associated
with the outcomes, so that any estimated FDR would be 100%.
Under the alternative, one can suggest to use the number of
wrongly discovered associations to estimate the FDR. However,
many transcripts are highly correlated with the one simulated to
be associated with the exposures, and are therefore associated
with the exposure by design, and thus the number of transcripts
falsely detected as associated with the exposure cannot be easily
determined.

The empirical P-values procedure uses P-values from the
entire tested transcriptome to compute the empirical null
distribution. This encapsulates the assumption that the null
distribution of P-values is the same for all transcripts, which is
generally a limitation, but has been shown to be often acceptable
since it will lead to less power, rather than increasing the
number of false detections [39, 40]. An approach that does
not require this assumption estimates the null distribution for
P-value for each transcript separately, which is a standard per-
mutation approach. We investigated this issue by comparing the
quantile empirical P-values with the permutation P-values
that use 100 000 residual permutations to estimate the null


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab194#supplementary-data
https://academic.oup.com/bib

distribution of the P-value of each transcript separately (see
Supplementary Figure S2 available online at https://academi
c.oup.com/bib). The two P-value distributions are very similar.
Therefore, a computationally expensive permutation approach,
as well as other approaches proposed by investigators, such
as estimating null distributions across sets of transcripts with
similar properties [39, 41], are likely unnecessary and not
superior to the computationally efficient empirical P-values
method. Another approach for estimating the null distribution
of P-values uses the primary results, without any permutation
[42, 43]. These approaches also use the assumption that the
null P-value distribution is the same across transcripts (i.e. a
shared null distribution exists). Given the computationally fast
implementation of the transcriptome-wide association study,
we believe that using residual permutation is beneficial because
it allows for a more precise quantification of the null P-value
distribution.

Batch effects are important to account for in studies of RNA-
seq. Here, we did not study their effect on the performance of
association analysis methods because it was beyond the scope
of our investigation. van Rooij, Mandaviya [36] in their bench-
marking study focusing on replication across cohorts, compared
a few approaches for adjusting for technical covariates, includ-
ing estimating and adjusting for latent confounders [44]. They
concluded that inclusion of more technical adjusting covariates,
including hidden confounders, increases the rate of replication
between studies.

To summarize, we highlighted the problem of high false
positive findings in RNA-seq data when studying the association
of continuous exposure phenotypes that are highly non-normal.
We developed a computationally efficient pipeline to address
the false positive detection problem, and studied strategies to
optimize statistical power. Our approach will be particularly
useful for epidemiological studies with RNA-seq data that were
not designed as disease-focused case-control studies.

Key Points

® Association analysis between a highly non-normal
continuous exposure variable and RNA-seq may
results in many false positive associations, whereas
many P-values are smaller than they should be.

® Standard permutation procedures to recompute P-
values are not appropriate for observational studies
because the correlation structure between the covari-
ates and the permuted variable are ‘broken’ following
permutation.

® We compared approaches for association analysis
combined with a ‘residual permutation’ schemed (per-
muting phenotype residuals obtained after regression
on covariates) to recompute P-values.

® Regression-based analysis is highly computationally
efficient and powerful for RNA-seq association anal-
ysis with continuous exposure variables.

® We provide recommendations and an R package
Olivia for implementing the recommended analysis
procedure.

Availability

MESA data are available through application to dbGaP. Phe-
notypes are available in MESA study accession phs000209.-
v13.p3, and RNA-seq data has been deposited and will
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become available through the TOPMed-MESA study acces-
sion phs001416.v2.p1.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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