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Abstract

Non-small cell lung cancer (NSCLC) is characterized by relatively rapid response to systemic treatments yet inevitable
resistance and predisposed to distant metastasis. We thus aimed at performing sequencing analysis to determine genomic
events and underlying mechanisms concerning drug resistance in NSCLC. We performed targeted sequencing of 40
medication-relevant genes on plasma samples from 98 NSCLC patients and analyzed impact of genetic alterations on
clinical presentation as well as response to systemic treatments. Profiling of multi-omics data from 1024 NSCLC tissues in
public datasets was carried out for comparison and validation of identified molecular events implicated in resistance. A
genetic association of CYP2D6 deletion with drug resistance was identified through circulating tumor DNA (ctDNA) profiling
and response assessment. FCGR3A amplification was potentially involved in resistance to EGFR inhibitors. We further
verified our findings in tissue samples and focused on potential resistance mechanisms, which uncovered that depleted
CYP2D6 affected a set of genes involved in EMT, oncogenic signaling as well as inflammatory pathways.
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Tumor microenvironment analysis revealed that NSCLC with CYP2D6 loss manifested increased levels of
immunomodulatory gene expressions, PD-L1 expression, relatively high mutational burden and lymphocyte infiltration.
DNA methylation alterations were also found to be correlated with mRNA expressions and copy numbers of CYP2D6. Finally,
MEK inhibitors were identified by CMap as the prospective therapeutic drugs for CYP2D6 deletion. These analyses identified
novel resistance mechanisms to systemic NSCLC treatments and had significant implications for the development of new
treatment strategies.
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INTRODUCTION
Lung cancer, a serious global health issue, has an estimated
40.9 million disability-adjusted life-years in 2017, imposing a
prominent social and economic burden on human beings [1].
As the most prevalent form of lung cancer (accounting for
approximately 87%) [2], non-small cell lung carcinoma (NSCLC)
is frequently diagnosed with advanced stage and predisposed
to distant metastasis. While systemic NSCLC treatments
including standard platinum-based chemotherapy, tyrosine
kinase inhibitor (TKI) therapies targeting oncogenic alterations
of EGFR, ALK, RET or ROS1 and combinatorial therapies have
improved the management of NSCLC patients, most inevitably
experienced drug resistance and poor overall survival (OS) after
an initial response. It is thus an urgent need to investigate
potential biological mechanisms responsible for resistance to
further determine novel therapeutic targets, which is beneficial
for overcoming drug resistance and making optimal treatment
decision.

The development and progression of NSCLC are complex
processes affected by a number of genomic elements, such as
genetic variance, transcriptional dysregulation [3] and immuno-
suppression [4], as revealed in multiple studies. Several recurrent
somatic mutations, gene fusions as well as important amplified
genes, such as EGFR, MET, TERT and deleted genes including
CDKN2A have recently been nominated to be driver events and
therapeutically tractable targets for NSCLC in comprehensive
targeted sequencing and whole-exome sequencing (WES) stud-
ies [5–8]. In spite of many identified driver variations for targeted
therapies, a large proportion of NSCLC patients do not carry
such frequent genetic aberrations. In addition, resistance almost
invariably occurred in a majority of patients after receiving exist-
ing treatments [9]. KRAS and NRAS mutations were mentioned
as resistance mechanisms to BRAF/MEK inhibitors in patients
with BRAF-mutant NSCLC [10, 11]. EGFR C797S was identified
in NSCLC patients with acquired resistance after 3rd-generation
EGFR TKIs [12–14], and the drug-resistant patterns also appear
to differ in them [15, 16]. These studies indicated a critical need
to detect additional drivers for developing novel therapeutics or
modifying response to existing drugs.

Thompson et al. demonstrated that circulating tumor DNA
(ctDNA) next-generation sequencing (NGS) can be utilized
for detecting therapeutically targetable drive and resistance
mutations in NSCLC patients by comparing ctDNA with tissue
sequencing [17]. Particularly for patients with unusable or
insufficient tumor tissue, ctDNA detection may be the first
choice to detect driving and resistant mutations, especially
for EGFR variants [15, 17]. More recently, a variety of studies
have used panels of commonly mutated driver genes to detect
multiple genomic alterations that might be linked with activity
of certain approved treatments or clinical trial [18–20]. And
genetic test on genes that harbor drug sensitivity implications

could also be helpful for optimizing drug therapy. In this current
study, utilizing a noninvasive approach of liquid biopsies, a
panel that comprised of 40 clinical medication–relevant genes
was sequenced on plasma samples, and we further evaluated
ctDNA profile of 98 NSCLC patients with comprehensive data
on clinical features, treatments and follow-ups collected.
Additionally, 1024 NSCLC tissues from The Cancer Genome
Atlas (TCGA) were included, and we performed integrative
analyses of WES, RNA-sequencing (RNA-seq), proteomic and
epigenetic profile as well as clinicopathological characteristics.
We focused on describing and analyzing clinical and genetic
characterization of NSCLC, and assessing drug responsiveness
or adaptive resistance on systemic treatments. This study aimed
at determining prospective biological mechanisms entailed in
drug resistance and identifying novel molecular signatures for
NSCLC patients. The results uncovered a deleted gene, CYP2D6,
as well as its impact on clinical outcome. Further, the potentially
activated downstream signaling pathways and immune tumor
microenvironment (TME) were revealed for NSCLC patients with
CYP2D6 copy number loss. Eventually, therapeutic compounds
were selected to identify potential drug targets and molecular
mechanisms that might contribute to developing new and more
effective therapeutic approaches.

MATERIALS AND METHODS
NSCLC patient samples

As for training cohort, a total of 98 histologically proven
NSCLC patients who underwent systemic treatment between
17 November 2014 and 30 June 2019 were recruited from the
Chongqing University Cancer Hospital (Chongqing, China), and
from whom blood draws were collected and assayed. Liquid
biopsies were obtained at diagnosis and/or at radiological
progression, whose ctDNA analyses were conducted blind to
clinicopathological information. Staging and restaging were
evaluated according to tumor imaging review (including CT
and MRI scans in all patients) and following 8th edition of
lung cancer staging defined by AJCC staging system. Treatment
outcome followed Response Evaluation Criteria in Solid Tumors
Version 1.1 (RECIST V1.1). Details on baseline characteristics and
treatment modalities were retrieved through patients’ medical
records at the end of follow-up. This study was approved by
the Medical Ethics Committee of the Hospital. Written informed
consent from all patients was obtained for plasma specimen
collection and data analysis. The cutoff date for patient follow-
up was 12 September 2020. In validation cohort, tumor tissue
samples of 1024 NSCLC patients from public TCGA database
were included. The clinical characteristics and survival data of
TCGA cohort were downloaded from https://gdc.xenahubs.ne
t. Besides, the detailed drug information for 323 TCGA NSCLC
patients was available at https://portal.gdc.cancer.gov/.
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DNA extraction and target deep sequencing

BD Vacutainer R K2 EDTA tubes were used to collect peripheral
blood, and the supernatant was immediately centrifuged at
2000 × g for 10 min. Then, the supernatant plasma was collected
after centrifugation at 8000 × g for 10 min, and it would be
stored at −80◦C if the plasma couldn’t be used immediately.
Whole blood DNA was extracted from plasma with TIANamp
Genomic DNA Kit (TIANGEN, Beijing, China) according to
manufacturer’s protocols. Purified DNA was qualified by Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA) and quantified using Qubit 2.0 Flurometer following
the manufacturer’s recommendations. Samples that passed
DNA quality check (ctDNA ≥ 50 ng) were further processed for
DNA sequencing. Sequencing libraries were prepared using the
NEBNext DNA Library Prep Reagent Set (New England BioLabs,
Ipswich, MA, USA). All exons of the 40 genes relating to clinical
medication and gene fusion-involved introns of ALK, RET and
ROS1 were captured using Agilent SureSelect XT (Agilent, Santa
Clara, CA, USA). The libraries were sequenced using paired-end
150-bp reads on the Illumina NovaSeq 6000 and Hiseq X Ten
platform (Illumina, San Diego, California, USA). The targeted
average sequencing depth for blood control and cell-free DNA
(cfDNA) samples was ∼100× and 3000×, respectively. The 40-
gene panel included genes related to the efficacy of targeted
therapy (EGFR, KRAS, NRAS, HRAS, PIK3CA, ALK, ROS1, BRAF,
ERBB2, RET, MET, FGFR1, FGFR2, AKT1, PTEN, SMO, KIT, PDGFRA,
DDR2, GNA11, TSC1, MAP2K1, GNAQ) and chemotherapy (C8orf34,
CBR3, CYP2D6, DPYD, ERCC1, FCGR3A, GSTP1, MTHFR, MTRR, SOD2,
TP53, TPMT, UGT1A1, UGT1A9, UMPS, XPC, XRCC1). All types of
genomic variations including SNVs, indels and SCNA could be
detected for these 40 genes.

Sequence data processing, somatic mutation calling
and annotation

We firstly assessed quality control for FASTQ files using
FastQC (version 0.11.9) (http://www.bioinformatics.babraham.a
c.uk/projects/fastqc/) and Samtools (version 1.9) [21]. Low-
quality samples (total read counts <0.5 million, percentage
of properly paired reads <95% and percentage of on-target
reads <99.5%) were removed. FASTQ files were mapped to the
human reference genome (version 38, hg38) using BWA-men
(version 0.7.15) [22] with parameters -t 8 -T 0. Local realignment
around indels and base quality recalibration of BAM files were
performed with Genome Analysis Toolkit (GATK, version 4.0.4.0)
[23]. We applied MuTect2 (version 4.1.0.0) [24] with default
settings to detect somatic single nucleotide variants (SNVs)
and small indels in a tumor-only mode (by generating a panel
of normals [PoN] with eight unmatched normal samples). We
applied FilterMutectCalls with default parameters on Mutect2
for selecting the most reliable variant calls. We annotated
somatic variants using ANNOVAR [25], and functional impact
prediction of mutations was carried out by the Variant Effect
Predictor (VEP) from Ensembl. For both somatic SNVs and indels,
the minimum variant allelic fraction was set to 0.4%. Also,
indels that were annotated in genome repeat regions were
removed. In addition, possible germline variants present in
dbSNP database and common variants with AF over 5% reported
by the 1000 Genomes Project (1000G) and the Exome Aggregation
Consortium (ExAC) database [26, 27] were further filtered out.
Besides, somatic mutation data (WES data) of TCGA that we
employed for analysis consisted of somatic variant calls (using
MuTect2 variant calling pipeline) in TCGA-LUAD (n = 514) and

TCGA-LUSC (n = 491) cohorts, and was retrieved from the UCSC
Xena database (https://gdc.xenahubs.net). Furthermore, tumor
mutation burden was evaluated by computing nonsynonymous
somatic alterations in coding region for each tumor sample.

Copy number alteration calling and gene
fusion analysis

For cfDNA samples, CNVkit (version 0.9.7) was applied for iden-
tifying somatic copy number alterations (SCNAs) in the aligned
sequence reads (sorted BAM files) [28]. Using the circular binary
segmentation algorithm (CBS), we inferred the discrete copy
number segments. Genomic Identification of Significant Targets
in Cancer (GISTIC, version 2.0.23) [29] was then utilized for
detection of genes targeted by SCNAs and producing gene-level
estimates. Moreover, GeneFuse (version 0.6.1) [30] was employed
for detection of gene fusions using the fusion file containing
experimentally verified cancer-related fusion genes from COS-
MIC database. For another, the copy number profile of TCGA
NSCLC tissue samples (n = 1017) we used in this study was gistic2
estimate combined from TCGA-LUAD and TCGA-LUSC datasets
(Affymetrix SNP 6.0 array data), which was available at https://
gdc.xenahubs.net.

GISTIC2 real-valued copy number aberrance described in a
gene-level of table (‘all_data_by_gene.txt’) was used for imple-
menting unsupervised hierarchical clustering analysis of SCNA
at 40 genes, generating the heatmap of SCNAs and performing
subsequent correlation analysis. Based on continuous GISTIC2
SCNA data, amplifications and deletions for genes were defined
as log2[(table-value + 2)/2] > 0.1 and < −0.1, respectively.

RNA-seq data and reverse phase protein array profiling

RNA sequencing (RNA-seq) level 3 expression data (normalized
read counts) of 1019 TCGA NSCLC tissues were obtained from
https://tcga.xenahubs.net. The edgeR package was utilized
for mRNA expression data analysis. Gene-level CPM values
were calculated and log2 transformed by edgeR package,
and then employed for subsequent analysis. Differentially
expressed genes between two NSCLC subgroups divided
according to genetic variation status were identified by the
limma package using a threshold of adjusted P < 0.05 and
|log2 fold change| > 1. Functional enrichment analysis was
conducted by the clusterprofiler package [31] for identifying
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
that were enriched for differentially expressed genes (DEGs).
The significantly enriched pathways with P value < 0.05 were
filtered out and then visualized by GOplot package. To further
assess protein levels of NSCLC samples, we downloaded protein
expression profile (reverse phase protein array [RPPA] data)
of TCGA cohort (including 362 LUAD and 325 LUSC samples)
from MD Anderson (http://app1.bioinformatics.mdanderson.
org/tcpa/_design/basic/index.html).

Methylation data analysis and cell-type
fraction estimation

DNA methylation level 3 data of TCGA lung cohort (Illumina
Infinium HM450K Array) were retrieved from https://tcga.xena
hubs.net. DNA methylation levels were measured by beta values
for each CpG probe, which ranged from 0 (completely unmethy-
lated) to 1 (completely methylated). TCGA DNA methylation
profile was parsed by limma function from the limma pack-
age to identify significant differentially methylated positions

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4 Luo et al.

(DMPs) between 830 TCGA NSCLC tumors and 75 normal lungs.
We defined DMPs as those containing CpGs that yielded a Ben-
jamini–Hochberg (BH) adjusted P < 0.05 and without ‘NA’ for the
average beta in each group. The 450 k data were annotated by
R package ‘IlluminaHumanMethylation450kanno.ilmn12.hg19’.
On the basis of TCGA DNA methylation data, a primary reference
containing fibroblasts and epithelials, and a secondary reference
that includes seven immune cell types (B-cells, NK cells, CD4+
and CD8+ T-cells, monocytes, neutrophils and eosinophils), the
HEpiDISH method from the R package ‘EpiDISH’ was applied to
infer individual cell type proportions for NSCLC patients. In addi-
tion, relative abundance of lymphocytes were also estimated
based on gene expression profiles of TCGA NSCLC tissues using
xCell package [32].

Gene set enrichment analysis

Based on mRNA expression data of TCGA cohort, using R pack-
age ‘clusterprofiler’ [31], we associated a set of 50 hallmark
signatures with the identified genetic variation by performing
Gene Set Enrichment Analysis (GSEA). Spearman’s correlation
coefficients were calculated between the target gene and other
genes, which were then used for GSEA to identify biological
pathways most related to the gene alteration. Gene signatures
with adjusted P < 0.05 were considered significantly enriched.
The reference gene sets were downloaded from the Molecular
Signature Database (MSigDB): http://software. broadinstitute.o
rg/gsea/msigdb/index.jsp.

Potential drug targets prediction

The Connectivity Map (CMap) online tool (https://clue.io/) [33]
of Broad Institute (https://portals.broadinstitute.org/cmap/) was
employed for predicting candidate compounds that might be
activate or inhibit pathways associated with a given biological
state according to the similarity with gene expression changes
from 9 cancer cell lines induced by 2429 compounds. The DEGs
between two genetic variation subgroups of NSCLC patients
were split into up-regulated and down-regulated genes and
then uploaded separately to interrogate the CMap touchstone
database. Connectivity scores (ranging from −100 to 100) that
assigned on those compounds described the similarity of
molecular aberrations with gene expression signatures of this
database. And more positive and negative scores corresponded
to the compounds that gave rise to more similar and opposing
expression changes, respectively, with a connectivity score
smaller than −95 suggesting inhibition of potential drugs for
genetic alterations.

Statistical analysis

All statistical analyses were performed with R software (ver-
sion 3.6.2). Unsupervised hierarchical clustering and heatmaps
of SCNA were conducted and visualized by R package ‘Com-
plexHeatmap’. Visualization and summarization for MAF files
were implemented by package ‘maftools’. The detailed trans-
lational effect of genetic mutations was visualized by lollipop-
diagrams using R package ‘g3viz’. Wilcoxon rank sum test, Chi-
squared (χ2) test or Fisher exact test and Spearman’s correla-
tion analysis were used for assessing associations of clinical
characteristics, DNA methylation, mRNA expression and pro-
tein abundance with gene variations, which were implemented
and visualized by ggplot2, ggstatsplot and ggpubr packages.
For evaluating implications of genetic aberrations on systemic

treatment (including chemotherapy and/or targeted molecular
therapy) and drug resistance, we conducted survival analysis on
both NSCLC cohorts. Overall survival (OS) was defined as date of
treatment initiation to date of death or last follow-up. Time to
disease progression (TTP) was defined as time from treatment
initiation to the disease progression or end of current follow-
up. Kaplan–Meier curve analyses and log-rank tests were per-
formed by package ‘survminer’. Clinicopathological parameters
and identified gene variations were combined in a multivariable
Cox proportional hazards regression model for survival analy-
sis by the survival package. For all statistical tests, two-tailed
P < 0.05 denoted statistical significance, which is indicated by ∗,
P < 0.05, ∗∗, P < 0.01, ∗∗∗, P < 0.001, ∗∗∗∗, P < 0.0001.

RESULT
Patients and clinical characteristics

Blood samples from 98 NSCLC patients included in CQ cohort
were evaluated for ctDNA profiling. The corresponding clini-
copathological characteristics were described in Table 1. Of 98
NSCLC patients, 19 without detailed therapeutic information
were excluded for response assessment. All remaining patients
but six who received radiation therapy alone underwent sys-
temic NSCLC treatment, such as platinum-based chemotherapy
and/or TKI therapies, bevacizumab combined with chemother-
apy and so on. According to tumor response evaluation by clin-
ical imaging, among these patients, 55 developed progressive
disease (PD) after systemic therapy initiation, while 2 patients
had a partial response (PR) and 22 exhibited stable disease (SD).

For TCGA cohort, a total of 1024 NSCLC tissue samples
were involved in the analysis, with detailed clinical features
summarized in Table S1, available online at https://academic.ou
p.com/bib. With respect to treatment modalities received for
these cases, first-line medication data of 323 NSCLC patients
were extracted and sorted for this study. All except three
patients that were recruited in clinical trial of antigen-specific
cancer immunotherapy (ASCI) received systemic first-line
therapy. Among these cases, 298 underwent chemotherapy
(including platinum-based doublets, taxol analogues and so on),
12 received EGFR-TKI therapy and 10 patients were treated with
the combination of targeted agents (bevacizumab or erlotinib)
and chemotherapeutic drugs. Of 320 patients who underwent
systemic treatment, 136 cases developed PD, 36 and 6 showed
SD and PR, respectively, and 142 achieved complete response
(CR) as the best outcome.

Genomic alterations in ctDNA and tumor tissue
specimens from NSCLC patients

We sequenced 40 genes of interest from liquid biopsies of
CQ cohort to assess molecular aberrations of NSCLC patients
in targeted NGS. Meanwhile, genomic variations of TCGA
cohort were also evaluated using somatic variants and SCNAs
identified by the GDC variant calling and copy number variation
analysis pipelines. The genomic landscapes of detected somatic
mutations in two cohorts were presented in Figure 1A and
Figure S1A, available online at https://academic.oup.com/bi
b, which showed that TP53, EGFR, ALK, RET and ROS1 were
the most frequently altered genes (top 10) in both cohorts.
Interestingly, we found novel mutation subtypes of RET and
ROS1 in CQ cohort that differed from those in TCGA cohort.
Among them, the most common SNV was RET A999V mutation
(n = 4), and it had not been previously reported in studies

http://software
broadinstitute.org/gsea/msigdb/index.jsp
broadinstitute.org/gsea/msigdb/index.jsp
https://clue.io/
https://portals.broadinstitute.org/cmap/
https://academic.oup.com/bib
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https://academic.oup.com/bib
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Table 1. Clinicopathological features and treatment modalities of
98 patients in CQ cohort

Characteristics Number (%)

Sex
Female 37 (38%)
Male 61 (62%)

Age
<65 41 (42%)
≥65 57 (58%)

Pack-years smoked
<30 67 (68%)
≥30 31 (32%)

Histology
Adenocarcinoma 88 (90%)
Large cell neuroendocrine carcinoma 1 (1%)
Squamous cell carcinoma 9 (9%)

Stage
II 1 (1%)
III 11 (11%)
IV 86 (88%)

T stage
T1/T2 40 (41%)
T3/T4 51 (52%)
Tx 7 (7%)

N stage
N0 15 (15%)
N1 ∼ N3 80 (82%)
Nx 3 (3%)

M stage
M0 11 (11%)
M1 86 (88%)
Mx 1 (1%)

Therapy types
Chemotherapy 18 (18%)
Radiation 6 (6%)
Targeted molecular therapy 34 (35%)
Targeted molecular + chemotherapy 21 (21%)
Unknown 19 (19%)

Targeted molecular therapy
A, EGFR-TKI 1 (1%)
EGFR-TKI 27 (28%)
Cri 1 (1%)
A 5 (5%)

Targeted molecular + chemotherapy
Pem, C, EGFR-TKI 8 (8%)
Tax, C, EGFR-TKI 3 (3%)
Tax, C, Pem, EGFR-TKI 3 (3%)
Tax, C, Pem, A 1 (1%)
Pem, C, A 1 (1%)
Tax, C, Cri 1 (1%)
Pem, C, B 3 (3%)
Tax, C, B 1 (1%)

Chemotherapy
C 1 (1%)
Pem 1 (1%)
Pem, C 5 (5%)
Tax, C 8 (8%)
Tax, C, Pem 3 (4%)

Others
Unknown 25 (26%)

TTP status
PD 55 (56%)
PR 2 (2%)

(Continued)

Table 1. Continued

Characteristics Number (%)

SD 22 (22%)
Unknown 19 (19%)

OS status
Alive 44 (45%)
Dead 52 (53%)
Unknown 2 (2%)

Note: Therapeutic drugs used here were anlotinib (A), crizotinib (Cri), gefi-
tinib/erlotinib/icotinib/osimertinib (EGFR-TKI), pemetrexed (Pem), nedaplat-
in/cisplatin/carboplatin (C), paclitaxel/docetaxel (Tax) and bevacizumab/en-
dostar (B)

of lung cancer (Figure S1B available online at https://acade
mic.oup.com/bib). While in TCGA NSCLC tissues, multiple
different variants were spread over the whole RET and ROS1
length, and no hotspot mutants could be detected (Figure S1B
available online at https://academic.oup.com/bib). Unsupervised
clustering was performed on 98 cfDNA samples using SCNAs
that were estimated through GISTIC2, which demonstrated
frequent chromosome aberrations, including losses in 1p, 17p
and 19p and gains in 1q, 5p and 7p (Figure 1B). The detected
fusion events (Table S2 available online at https://academic.ou
p.com/bib) were also indicated in Figure 1B. The copy number
analysis on TCGA tissue samples replicated aforementioned
aneuploid events, including recurrent copy number gains at
MTRR (5p15.31), FCGR3A (1q23.3) and EGFR (7p11.2) and losses at
TP53 (17p13.1) and GNA11 (19p13.3) (Figure S2 available online
at https://academic.oup.com/bib).

Associations of molecular aberrations with clinical
features and their impact on outcome of NSCLC
patients receiving systemic therapy

We then assessed the relationship between the identified
genetic variations and clinical characteristics of NSCLC patients.
In CQ cohort, amplifications at MTRR and FCGR3A were observed
for NSCLC cases with lymphatic metastasis, and the DPYD copy
number and ROS1 mutation were prominently correlated with
tumor size (Figure 2A). For TCGA patients, significant FCGR3A
and MET amplifications, GNA11 and CYP2D6 deletions were
detected in NSCLC samples at advanced stage (Figure 2B). The
copy number of FCGR3A, CYP2D6 and GNA11 was also found
to be higher or lower in NSCLC cases with distant metastasis
than those without (Figure 2B). Additionally, the amplification of
EGFR and MET was significantly related to lymphatic metastasis
(Figure 2B). We then linked identified molecular alterations
to treatment response of patients who underwent between
first and third lines of chemotherapies and/or TKIs. And
notably, SCNAs of DPYD, CYP2D6 and GNA11 were observed
to associate with response to systemic therapies in TCGA cohort
(Figure 2C).

Next, we sought to evaluate the impact of genetic aberrations
on TTP and OS of NSCLC. Intriguingly, the depleted SCNA
at CYP2D6 in CQ cohort (6/73, 8.22%) and TCGA cohort
(100/319, 31.35%) was found to significantly correlate with
tumor progression (Figure 2C), suggesting that deleted CYP2D6
might contribute to drug resistance in NSCLC. In addition,
the NRAS mutation (n = 2) detected in CQ NSCLC patients
also suggested rapid progression under systemic therapies
(Figure 2C). What is more, CYP2D6 deletion and ROS1 mutation
(n = 14) identified in CQ cohort showed noticeable correlation to

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 1. (A) The landscape of somatic mutations detected in 98 plasma samples. (B) Unsupervised clustering of SCNAs as determined by GISTIC2 analysis on 98 cfDNA

samples. Clinical and molecular features include pack-years smoked, histology, stage, distant metastasis and gene fusions. Copy number gains are colored in orange

and losses in light blue.

poor OS (Figure 2C). Further, a multivariable Cox regression was
then performed for adjusting potential compounding factors.
As a result, CYP2D6 deletion harbored remarkable effect on
inferior outcomes for NSCLC patients and independent of other
clinicopathological covariates. Particularly, relative to patients
in CYP2D6 normal/amplification group, hazard ratios for tumors
with CYP2D6 deletion were 4.24 (P = 0.033, CI95% 1.12–15.98,

TTP) and 3.76 (P = 0.048, CI95% 1.01–13.98, OS) (Figure 3). Of
note, a subset of patients receiving EGFR inhibitors, even third-
generation of TKI, continued to experience short survivals
despite the demonstration of initial promising response rate.
We thus concentrated more on molecular events underlying
EGFR-TKIs’ resistance in CQ cohort. Among these patients
analyzed, 30 EGFR-mutant cases (with classic and/or rare EGFR
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Figure 2. Selected clinical features associated with the implicated molecular alterations in CQ cohort (A) and TCGA cohort (B). (C) The detected copy numbers of

DPYD, CYP2D6 and GNA11 at progression disease (PD) and nonprogression disease (non-PD) for TCGA (top left). Kaplan–Meier survival curves showing TTP analysis

for CYP2D6 deletion in TCGA (top right) and CQ cohort (bottom left) as well as NRAS mutation in CQ cohort (bottom left); OS analysis for CYP2D6 deletion and ROS1

mutation (bottom right) in CQ cohort. Del: deletion; Nor/Amp: normal/amplification; Mut: mutant; Wt: wild-type.

mutations) were treated with first-/second-/third-generation
EGFR-TKIs (Table S3 available online at https://academic.oup.co
m/bib). And FCGR3A amplification (4/30, 13.33%) was observed to
be implicated in EGFR-TKI resistance (Figure S3 available online
at https://academic.oup.com/bib).

Molecular mechanism of CYP2D6 deletion in NSCLC
Noting that a strong correlation between CYP2D6 deletion and
drug resistance was observed in both cohorts as mentioned
above, we performed further molecular profiling to explore the
underlying mechanism hidden behind current associations. By

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 3. Multivariate Cox regression analyses of TTP (A) and OS (B) for CQ cohort with combinations of detected genetic variations and clinicopathological factors.

TTP: time to disease progression; OS: overall survival; Nor/Amp: normal/amplification; Del: deletion.

integrating transcriptomic data of TCGA NSCLC, we explored
the effects of CYP2D6 deletion on gene expression. KEGG
enrichment analysis demonstrated several signaling pathways
that had relatively strong relation with DEGs between CYP2D6-
depleted and CYP2D6-wild/CYP2D6-amplified samples, includ-
ing ‘PI3K-Akt signaling pathway’, ‘MAPK signaling pathway’,
‘metabolism of xenobiotics by cytochrome P450’, ‘Hippo
signaling pathway’ and ‘Ras signaling pathway’ (Figure S4

available online at https://academic.oup.com/bib). Additionally,
we found that CYP2D6 expression level in SCNA deletion group
was markedly lower than that in normal/amplification group
(Figure 4A). GSEA revealed significant enrichment of epithelial–
mesenchymal transition (EMT) markers and gene signatures
relating to cell proliferation, such as MYC, G2M checkpoint,
tumor necrosis factor alpha (TNF-α), transforming factor-β (TGF-
β), KRAS signaling up as well as PI3K/AKT/MTOR signaling in

https://academic.oup.com/bib
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depleted CYP2D6 (Figure 4B and C). We then examined relevant
protein expression levels in key pathways based on TCGA RPPA
data. The deleted CYP2D6 displayed notable mTOR pathway
activation given significant correlations between SCNA loss
and STK11-inactivating mutation, low LKB1 abundance as
well as inactivation of AMPK (Figure 4C). Moreover, high levels
of P38MAPK, p-P90RSK, p-MEK1 and p-JNK were detected in
decreased copy number of CYP2D6 (Figure 4C), indicating its
higher MAPK pathway activity [6].

In addition to oncogenic signaling pathways mentioned
above, immune-regulatory gene markers were also prominently
enriched in CYP2D6 deletion subgroup (Figure 4B and D). We
thus evaluated CYP2D6 SCNA loss for NSCLC in the context
of immune tumor microenvironment (TME). To investigate its
effect on TME, we analyzed the correlations between SCNA
of CYP2D6 and mRNA expression of 58 immunomodulatory
genes (Table S4 available online at https://academic.oup.co
m/bib) based on TCGA NSCLC database. And we found that,
the increased expression levels of 48 genes were significantly
correlated to CYP2D6 copy number loss (Figure 4E), implicating
activation of immunity within samples that harbored deleted
CYP2D6. Besides, NSCLC patients with higher frequency of
CYP2D6 deletion manifested higher levels of LCK, PD-L1 and
CD26 protein expression (Figure 4F). Since the lymphocyte
infiltration was reported as a crucial TME variable in tumor
immune response [28], we linked the SCNA of CYP2D6 to
estimated immune cell fraction. Our results showed that CYP2D6
deletion significantly associated with high proportions of CD8+
T cells and natural killer T cells (Figure 4G). Furthermore,
dramatically higher TMB was also detected in CYP2D6 deletion
group versus normal/amplification group (Figure 4H).

Given that DNA methylation loss had been proposed to asso-
ciate with chromosome instability and predict poor responses to
immunotherapy [34], we next inspected the methylation level of
CYP2D6 in TCGA NSCLC samples. Four significant differentially
methylated CpG probes nearby CYP2D6 (cg04692870, cg07016288,
cg20046859, cg20195005) were identified in tumors when com-
pared with normal samples. Interestingly, the mean methylation
level for four DMPs was found to correlate highly with mRNA
expression as well as the copy number of CYP2D6 (Figure 4F).
Positive relationships between CYP2D6 methylation and abun-
dance of B cells, CD4+ T cells, NK cells and monocytes were also
observed in TCGA NSCLC samples (Figure 4F), demonstrating
augmented lymphocytes infiltration and improved immuno-
genicity in tumors with high CYP2D6 methylation levels.

Identification of potential inhibitors targeting
CYP2D6 deletion

By querying CMap touchstone database, we sought to search
for candidate therapeutic compounds that might be involved in
pathways related to SCNA loss of CYP2D6. The identified com-
pounds with negative connectivity scores below −95 were shown
in Table 2. Inhibitors of MEK, IKK, PDGFR receptor and JNK were
the most representative pharmaceutical perturbagens among
predicted drugs. And five perturbagens (U-0126, selumetinib,
PD-0325901, PD-184352, AS-703026) shared the mode-of-action
as MEK inhibition, suggesting prospective compounds inducing
antagonistic effect on CYP2D6 deletion.

DISCUSSION
Systemic NSCLC treatments targeting oncogenic variations
achieved enormous success due to their high sensitivity and
superior efficacy, especially various TKI inhibitors, whereas

for the vast majority of patients, sustained clinical response
developed inevitably into disease progression. Although the
introduction of immunotherapy had shifted the therapeutic
paradigms, durable benefit was limited to a small number of
NSCLC patients. On account of substantial heterogeneity in
genomic alteration of NSCLC, investigation into additional driver
events and emerging mechanisms of therapeutic resistance is
warranted for development of more effective treatments.

In an era of growing importance in liquid biopsy, clinically
relevant insights into genomic variations were obtained through
targeted NGS on ctDNA. Recent studies have proposed that
plasma ctDNA was quite useful for evaluating biological
complexity of cancer formation and maintenance as well as
monitoring response to targeted therapy in NSCLC [35, 36]. In this
study, we exploited the liquid biopsy approach to sequence 98
NSCLC samples from CQ cohort and assessed tumor responses
or progression on systemic treatment after drug exposure. In
addition, utilizing 1024 tissue samples from TCGA database, we
characterized the genomic landscape of NSCLC and identified
genetic abnormalities that were indicative of poor response to
systemic NSCLC therapy. CYP2D6, the key molecule identified
in this study, is one of the cytochrome P450 superfamily of
genes that play critical role in drug metabolism and has been
regarded valuable for guiding clinical drug selections. The
genetic polymorphism in CYP2D6 was revealed to be associated
with the increased risk of recurrence or death for breast cancer
patients receiving tamoxifen treatment [37, 38]. The structural
variation of CYP2D6 has also been reported in previous studies,
with CYP2D6 deletion being referred to as CYP2D6∗5 that led
to a poor metabolizer [39, 40], whereas its influence on drug
resistance of NSCLC is not yet described. Here, we found that
both blood and tissue samples with SCNA loss of CYP2D6
exhibited shorter TTP when received systemic treatments. By
integrating multi-omics data of TCGA tumors, potential molec-
ular mechanisms for CYP2D6 deletion was further investigated.
Functional enrichment analysis showed DEGs associated with
CYP2D6 depletion in NSCLC were enriched in oncogenic and
drug-metabolizing pathways, implying that CYP2D6 played a
pivotal role in the development of cancer and drug resistance
[41]. Interestingly, copy number deletion strikingly correlated
with decreased mRNA expression of CYP2D6, on which our
analysis revealed EMT and oncogenicity-associated signaling
(exemplarily, TNF-α, TGF-β, KRAS and PI3K/AKT/MTOR) as
well as inflammatory pathways were involved in and likely to
result in resistance clones and poor prognosis. The proteomes
data also demonstrated activation of related pathways in
tumors with deleted CYP2D6. Further, we observed CYP2D6
loss was significantly associated with high expressions of
immunomodulatory gene signatures and enriched compositions
of immune cells in TME. More intriguingly, CYP2D6 deletion was
also responsible for increased TMB as well as PD-L1 expression
levels. It’s well-established that elevated PD-L1 expression,
tumor-infiltrating lymphocytes and relatively higher TMB were
predictive factors to the identification of responders to PD-1
blockade [42, 43]. Our findings above suggested a possibility
that CYP2D6 copy number loss underlay resistance mechanisms
through affecting oncogenic signaling including PI3K and MAPK
activation. Besides, CYP2D6 depletion was associated with
antitumor immune activity and involved in regulating immune
biomarkers, which induced a responsive TME with adaptive
immune resistance and improved immunity, and such tumors
were thus expected to be more susceptible to immunotherapy
and render durable clinical benefit.

It’s noteworthy that DNA methylation status related remark-
ably to both mRNA expressions and SCNAs of CYP2D6. As

https://academic.oup.com/bib
https://academic.oup.com/bib


10 Luo et al.

Figure 4. (A) The SCNA of CYP2D6 significantly associated with mRNA expression. (B) The top 10 of prominently enriched pathways for CYP2D6 loss (sorted by

normalized enrichment score). (C) Top, three representative GSEA plots for carcinogenesis pathways that were significantly enriched (adjusted P < 0.01). Bottom left,

copy number of CYP2D6 related to mutational status of STK11; Bottom right, proteomic analysis showing correlation between CYP2D6 SCNA and the abundance

of relevant proteins involving MTOR and MAPK pathways. (D) Three representative GSEA plots for immunomodulatory pathways that correlated with CYP2D6 loss

(adjusted P < 0.01). (E) Associations of CYP2D6 SCNA with mRNA expression of 48 immune-related genes. CYP2D6 deletion correlated to PD-L1, LCK, CD26 protein

expressions (F), lymphocyte abundance (G) and TMB (H). (I) Relationships between methylation levels and mRNA expressions (left) as well as copy number of CYP2D6

(middle). Tumors with hypermethylated CYP2D6 presenting higher fractions of immune cells (right). Del: deletion; Nor/Amp: normal/amplification; SCNA: somatic copy

number alteration; Met: methylation.

was reported, in most tumor types, global methylation levels
highly correlated with chromosomal SCNAs, and demethylation
that was caused by mitotic cell division suppressed immune
gene expressions, decreased tumor immunity and promoted

immune evasion [34]. CYP2D6 methylation also displayed
significant associations with higher immune cell fractions, indi-
cating preexisting immunity within CYP2D6 hypermethylation
NSCLC tissues. CMap analysis identified potential therapeutic
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Table 2. Significant therapeutic drugs predicted by CMap

Drug name Description Target CMap Score

Nafadotride Dopamine receptor antagonist DRD3, DRD2, HTR1A −99.22
U-0126 MEK inhibitor AKT1, CHEK1, GSK3B, JAK2, LCK,

MAP2K1, MAP2K2, MAP2K7,
MAPK1, MAPK11, MAPK12,
MAPK14, MAPK8, PRKCA, RAF1,
ROCK1, RPS6KB1, SGK1

−98.63

Selumetinib MEK inhibitor MAP2K1, MAP2K2 −98.22
BMS-345541 IKK inhibitor IKBKB, CHUK −98.07
Linifanib PDGFR receptor inhibitor CSF1R, KDR, PDGFRB, FLT1, FLT3,

FLT4, CSF1, KIT, PDGFRA, RET, TEK
−97.67

PD-0325901 MEK inhibitor MAP2K1, MAP2K2 −97.36
PD-184352 MEK inhibitor MAP2K1, MAP2K2, MAP3K1,

MAP3K2
−97.22

ZG-10 JNK inhibitor MAPK8 −96.85
AS-703026 MEK inhibitor MAP2K1, MAP2K2 −96.11

compounds that were efficacious for drug resistance of patients
with CYP2D6 deletion. Specific targeted agents were predicted
to act on several signaling pathways, which include MAPK
and PDGFR, with MEK inhibitors well-represented among these
drugs. These results suggested by CMap database were in line
with our observations for pathway enrichment of CYP2D6 loss.
As was reported, the combination of MEK inhibitors with other
drugs, such as EGFR-TKIs, BRAF inhibitors, immune checkpoint
inhibitors or chemotherapy drugs, pronouncedly increases
the therapeutic effects and causes delay on occurrence of
resistance for patients with lung cancer [44]. Our study implied
that systemic treatments plus MEK inhibitors were promising
strategies that can improve the clinical efficacy for NSCLC
patients harboring CYP2D6 deletion.

Of note, our analysis on CQ cohort also uncovered FCGR3A
amplification was predicative of resistance to EGFR-TKI
treatments. Copy number alterations in FCGR3A contributed
to pathogenesis of a number of disorders [45], and amplified
FCGR3A was reported to correlate with the risk of gout [46]. To the
best of our knowledge, this is the first report of FCGR3A ampli-
fication entailed in resistance to EGFR-TKIs. Nevertheless, it
still remains unclear how this genomic alteration interacts with
EGFR inhibitors. Our study also had several limitations. Firstly,
targeted NGS on ctDNA using limited panel (40-gene panel)
could not detect additional pivotal coexisting alterations, and
plasma NGS had less detection sensitivity compared with tissue
biopsy. Moreover, sample size of CQ cohort analyzed here was
small; besides, robust treatment information was retrospective
and available for the relatively small number of patients, which
conferred limited statistical power on associations of genomic
events with clinical phenotypes as well as prognostic predictive
effect. Lastly, multidimensional analysis was restricted to data
from TCGA portal as multi-omics data analysis was highly costly
and difficult to achieve in clinical practice. Also, no laboratory
experimental validation of the identified biological mechanisms
that engender drug resistance was performed. Overall, in spite
of aforementioned drawbacks, our study revealed previously
undiscovered molecular mechanisms involving resistance
to systemic NSCLC treatments by utilizing the noninvasive
approach of plasma genotyping, which was further supported
in tissues from public datasets. These findings might act as a
foundation and advocate for development of novel therapeutic
strategies in NSCLC. It’s conceivable that promising combination

therapies based on molecularly targeted therapy and even
possibly coupled with immunotherapy will overcome resistance
and generate remarkable clinical benefit.

Key Points
• Identification of novel molecular events predicting

NSCLC therapeutic response through liquid biopsy–
based NGS and tissue-based WES.

• Multidimensional analysis on CYP2D6 gene revealed
the copy number loss potentially affected oncogenic
pathways and immune response in NSCLC, which
might be responsible for resistance to systemic treat-
ment.

• Discovery of the genomic feature (FCGR3A ampli-
fication) potentially involved in resistance to EGFR
inhibitors by ctDNA profiling in NSCLC.

Data Availability

Data resource Source Identifier

TCGA clinical and
survival information,
somatic mutation
and copy number
data

UCSC Xena
database

https://gdc.xenahubs.
net

TCGA RNA-seq and
DNA methylation
data

UCSC Xena
database

https://tcga.xenahubs.
net

Drug information for
TCGA NSCLC

Genomic Data
Commons

https://portal.gdc.
cancer.gov/

RPPA data for TCGA
NSCLC

RPPA Core Facility,
MD Anderson
Cancer Center

http://app1.
bioinformat-
ics.mdanderson.org/
tcpa/_design/basic/
index.html

Raw sequence data
for CQ NSCLC

NCBI Sequence
Read Archive
database

https://trace.ncbi.
nlm.nih.gov/Traces/
study/?acc=SRP310820
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Supplementary data are available online at Briefings in
Bioinformatics.
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