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Abstract

Drug combinations have exhibited promising therapeutic effects in treating cancer patients with less toxicity and adverse
side effects. However, it is infeasible to experimentally screen the enormous search space of all possible drug combinations.
Therefore, developing computational models to efficiently and accurately identify potential anti-cancer synergistic drug
combinations has attracted a lot of attention from the scientific community. Hypothesis-driven explicit mathematical
methods or network pharmacology models have been popular in the last decade and have been comprehensively reviewed
in previous surveys. With the surge of artificial intelligence and greater availability of large-scale datasets, machine learning
especially deep learning methods are gaining popularity in the field of computational models for anti-cancer drug synergy
prediction. Machine learning-based methods can be derived without strong assumptions about underlying mechanisms and
have achieved state-of-the-art prediction performances, promoting much greater growth of the field. Here, we present a
structured overview of available large-scale databases and machine learning especially deep learning methods in
computational predictive models for anti-cancer drug synergy prediction. We provide a unified framework for machine
learning models and detail existing model architectures as well as their contributions and limitations, shedding light into
the future design of computational models. Besides, unbiased experiments are conducted to provide in-depth comparisons
between reviewed papers in terms of their prediction performance.
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Introduction
The superior efficacy of combination compared to monothera-
pies in patients with cancer has led to their greater popularity
[1]. Drug combinations can potentially be used in lower doses
and reduce toxicity and adverse side effects [2]. For example, tar-
geting MEK and BRAF as two components of mitogen-activated
protein kinase pathway in patients with melanomas harboring
BRAF V600E mutations leads to less toxic effect and resis-
tance compared to single-drug therapy [3, 4]. Currently, most
effective anti-cancer drug combinations are developed through
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intensive trial and error without consideration of mechanisms
of action, and the experimental screening of synergistic drug
combinations requires prohibitively enormous search space. The
development of reliable computational models for predicting
anti-cancer drug synergy is therefore desirable. Currently,
there are no existing published reviews on summarizing
anti-cancer drug synergy prediction methods. Therefore, we
aim to provide a comprehensive review focusing on the
discussion of anti-cancer drug synergy prediction methods
that will help both cancer biologists and computational
biologists.

https://academic.oup.com/
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Predicting drug synergy in general (not specific to cancers)
has been studied for a long time and shares similarities with
anti-cancer drug synergy prediction. Several reviews have intro-
duced recent advances in computational approaches to the iden-
tification of synergistic drug combinations in general. Given
huge amounts of available literature, it is necessary to briefly
introduce some core methods used in general drug synergy
prediction tasks, as computational models for predicting cancer-
specific drug synergy typically stem from those general methods
with special considerations on cancer-related characteristics. In
one recent review, Li et al. primarily summarized biomolecular
network-based models and categorized them into unsupervised,
semi-supervised and supervised groups according to whether
labeled known drug combinations were used to guide their
construction [5]. Ryall and Tan described system biology-based
predictive methods, especially those modeling signaling net-
works [6], and Bulusu’s team reviewed a subset of computational
methods that included mathematical and gene expression- and
pathway-based approaches [7]. Tonekaboni’s research group pro-
vided a comprehensive study of computational approaches for
combination therapies [8], discussing quantification methods
and methodologies for optimal designs of combinatorial treat-
ment assays in addition to three categories of predictive models,
including mathematical and machine learning methods as well
as stochastic search algorithms.

Those four reviews mainly summarized hypothesis-driven
explicit mathematical methods or network pharmacology mod-
els, popular in the last decade and notable for their involvement
of signaling networks and perturbation data to elucidate under-
lying mechanisms in a network perspective. In general, these
models simultaneously modulate multiple proteins in a network
to replicate the effects of a drug action [9]. Differential equation
models are utilized to derive network dynamics from molecular
profiles of perturbed cellular systems [10, 11], aiming to predict
quantitative outcomes of combinatorial perturbations. However,
the requirement for perturbation experiments to construct these
two models limits the possibility of their large-scale applica-
tion. Avoiding perturbation profiles, Flobak’s group proposed an
algorithm to build a logical model based on known signaling
pathways and baseline AGS gastric cancer cell line profiles that
could be used to simulate the effects of individual drugs and drug
combinations for the identification of potential synergistic drug
combinations [12].

Instead of building signaling networks from perturbation
data to make predictions, some investigators have sought to
predict drug synergy directly from the network topology or sub-
networks affected by drug targets. Based on the assumption
that the effects of drug combinations should depend on the
interaction of their targets in a network, Yin et al. modeled the
effects of drug combinations along with their targets interact-
ing in a network to elucidate the relationships between the
network topology and drug combination effects [13]. Molecular
interaction networks from protein–protein interactions (PPIs)
and protein–DNA interactions [14], from gene modules [15] and
from drug–target interactions (DTIs) [16] are also constructed to
be used for predicting synergistic drug combinations.

These hypothesis-driven explicit mathematical methods or
network pharmacology models have been popular in the last
decade and have greatly advanced the development of predictive
approaches for combination therapies, both for general drug
combinations and anti-cancer drug combinations. However, sev-
eral factors may limit their utility, including the small size and
accuracy of the datasets used in their construction, the possi-
ble choice of an errant hypothesis to guide construction, their

inability to model multiple cancer types to assess drug synergy
and the absence of standard guidance to process transcriptional
expression data. The construction of explicit mathematical or
network pharmacology modes often starts with a reasonable
hypothesis of drug synergy that could, in fact, be completely
incorrect. Thus, a hypothesis-free model might be preferable,
especially when modeling large-scale complex datasets [17]. Fur-
thermore, the typical optimization of these models using a single
cancer type and their inability to model multiple types simul-
taneously limits their utility in studying relationships among
different cancer types in terms of drug synergy. Finally, these
models commonly use drug-treated transcriptional expression
data for such information as the mechanism of drug action
underlying a biological signaling pathway. However, the absence
of a standard rule to process the transcriptional expression data
leads to the selection of various significant differential expres-
sion genes among individual researchers and the construction of
different networks and difficulty in final interpretation [5]. These
limitations of explicit mathematical and network pharmacology
models suggest the need for better computational models to
identify anti-cancer synergistic anti-cancer drug combinations.

In recent years, the greater availability of large-scale datasets
and exponential growth in computing power have led to the
increased popularity of machine learning methods in many
areas of computational biology and bioinformatics. Machine
learning involves the study of a set of algorithms designed to
allow automatic discernment, or learning, of knowledge from
data that can then be accurately generalized to new, unseen data
[18]. Machine learning methods are a great choice in computa-
tional biology because they can derive predictive models without
requiring strong assumptions about underlying mechanisms,
and they have proven successful in numerous fields, including
image classification [19], speech recognition [20] and protein
function prediction [21]. Deep learning methods, a subfield of
machine learning, also benefit from the increasing number of
available public datasets. Their ability to learn abstract represen-
tations from high-dimensional data is useful in solving complex
tasks, and they are widely used to improve predictive perfor-
mance. These techniques have enabled unprecedented break-
throughs in many areas, including image processing, speech
recognition and text classification, performing as well as or
better than human experts [22].

The increasing publication of large-scale anti-cancer drug
combination screening datasets enables the development of
reliable machine learning or deep learning methods for the pre-
diction of anti-cancer drug synergy and promotes much greater
growth of the field. In this review, we focus primarily on machine
learning-based models, especially supervised models, which uti-
lize labeled known drug combinations to guide the model’s
learning process. We categorize the models as either traditional
machine learning methods or deep learning methods, discussing
their architecture and features as described in each publication
and detailing their contributions and possible limitations. We
also conducted unbiased experiments to compare the prediction
performance between reviewed methods, providing in-depth
performance analysis to guide the future design of predictive
models.

Large-scale public anti-cancer drug
combination datasets
The number of large-scale anti-cancer drug combination
datasets that promote the development of machine learning
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Table 1. Existing large-scale anti-cancer drug combination screening datasets

Source Number of
cell lines

Number of
tissues

Number of
drugs

Number of
combinations

Number of
data

Experimental
design

Synergy
metric

AstraZeneca-Sanger
DREAM

85 6 118 910 11 576 5 × 5 Loewe score

Merck & Co. 39 6 38 583 23 062 4 × 4 Loewe score
NCI-ALMANAC 60 10 104 5232 304 549 3 × 3 or 5 × 3 ComboScore

The first four columns record the unique number of cell lines, tissues, single drugs and drug combinations included in the dataset. ‘Number of data’ records the sample
size of each dataset. ‘Experimental design’ indicates the dosing regimen used by each dataset in the experiments. ‘Synergy metric’ indicates how each dataset defines
synergism. NCI, National Cancer Institute.

models has grown greatly in recent years because of the rapid
development of high-throughput screening (HTS). Table 1 and
the following paragraphs detail the three largest. In 2015,
AstraZeneca, the well-known pharmaceutical enterprise, part-
nered with several institutes to launch the AstraZeneca-Sanger
Drug Combination Prediction Challenge in DREAM (dialog for
reverse engineering assessments and methods) community
to assist the evaluation of computational strategies for the
prediction of anti-cancer synergistic drug pairs and biomarkers
[23]. They released 11 576 experiments from 910 combinations
involving 118 drugs and 85 cell lines, establishing the largest drug
combination dataset at that time and enabling the development
of dozens of machine learning-based prediction models. In 2016,
Merck & Co. published a large-scale oncology screen comprising
23 062 samples using a 4-by-4 dosing regimen [2]. This dataset
involves 583 combinations in 39 diverse cancer cell lines and
38 unique drugs. They also performed separate single-agent
screenings using eight concentrations with six replicates, which
allowed definition of the edges of the combination surface by
interpolation and led to a 5-by-5 concentration matrix for each
sample. In 2017, the National Cancer Institute (NCI) of the United
States introduced ALMANAC (a large matrix of anti-neoplastic
agent combinations), the largest publicly available cancer drug
combination dataset, containing synergy measurements of
pair-wise combinations of 104 Food and Drug Administration
(FDA)-approved drugs in 60 cancer cell lines from the NCI-60
panel [24]. For inclusion in the database, they first screened
the drugs in single doses in all 60 cell lines to efficiently
identify compounds with anti-proliferative activity and then
screened only the drugs with above-threshold effects to obtain
full dose–response matrices. In total, NCI-ALMANAC includes
data of 304 549 samples covering 5232 drug combinations
in 10 tissues, aggregating synergy data from three screening
centers under two different experimental protocols (3-by-3 and
5-by-3). They measured the synergy state using ComboScore,
a modification of Bliss independence, in which more positive
ComboScore values correspond with more synergistic drug
pairs.

A comprehensive database is urgently needed that collects
and integrates the many small datasets and extensive HTS
data that have become increasingly available. Such a database
will benefit both the experimental screening and construction
of computational models of anti-cancer drug combinations.
DrugComb is an integrative portal of anti-cancer drug combi-
nation data in which the results of drug combination screening
studies are accumulated, standardized and harmonized [25].
DrugComb has collected 437 923 combinations across 93 cancer
cell lines from dozens of datasets and continues to increase the
sample size by way of crowdsourcing. In the web server, four
commonly used reference models for measuring synergy—Bliss

independence, highest single agent (HSA), Loewe additivity and
zero interaction potency (ZIP)—are calculated and displayed
[26–28]. They also provide various visualization tools for data
analysis. DrugCombDB, another comprehensive database of
anti-cancer drug combinations, aims to integrate various
data sources, including HTS assays, manual curations from
the literature, FDA Orange Book entries and failed drug
combinations [29]. This database has the largest number of
drug combinations to date, including 448 555 drug combinations
covering 2887 unique drugs and 124 human cancer cell lines.
These comprehensive integrated databases provide valuable
resources for the construction of highly reliable machine
learning models and facilitate the discovery of novel synergistic
drug combinations for cancer therapy.

Machine learning basics
Basically, a machine learning algorithm can learn from data
it is given, discerning a relationship between the features of
input data and output targets. Most machine learning algorithms
involve some combination of four components—a dataset, cost
function, optimization procedure and model [22]. The relative
independent functioning of each component in the machine
learning recipe allows for their interchange and therefore a
wide variety of algorithms. The cost function typically includes
at least one term that causes the learning process to perform
statistical estimation and may also include regularization terms
to improve the generalization of the model. The most common
cost function, negative log-likelihood, allows for the estimation
of maximum likelihood. Gradient descent is a commonly used
algorithm for optimization, especially when the model is not in
linear form, such as is the case with deep-learning models.

In a machine learning paradigm, feature selection is essential
to guarantee successful model building. Because the goal is to
learn meaningful relationships between input features and out-
put targets, the selected features should be intrinsically related
to the target so that the learned model can make accurate novel
predictions about the unseen data. For the task of predicting syn-
ergy among anti-cancer drug combinations in cell lines, input
normally consists of both cell line and drug features that are
predictive of drug synergy. Gene expression, mutation and copy
number variation (CNV) are the three most popular cell line
features, and methylation, gene essentiality and monotherapy
or pathway information in the model have also been considered
to improve prediction. Drug features can be roughly divided
into three categories, structural features (various types of fin-
gerprints), drug-target information and other properties, such
as physicochemical properties, side effects, MACCS keys and
binary toxicophore indicators. The machine learning framework
represents the drug features in two common ways, either by
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linking of the raw features of two candidate drugs as input into
the model or by predetermining pair-wise similarities between
two drugs regarding various types of features and using these
processed features as input.

Output target can be a continuous synergy score or a bina-
rized label that indicates whether there is synergy. Existing
studies differ mainly in their choices of machine learning models
and drug and cell line features. Some models consider drug
synergy prediction as a regression problem, directly predicting
raw synergy scores, and others regard it as a classification task,
first binarizing synergy scores based on pre-defined thresholds.

Machine learning methods
Random forest

In this section, we discuss existing works that utilize traditional
machine learning methods (non-deep learning methods). The
detailed summary of all existing methods is described in Table 2.
In 2017, Li’s research team proposed a random forest model
to predict synergistic anti-cancer drug combinations based on
drug-target networks and drug-induced gene expression pro-
files [30]. They manually designed 18 features that included
similarities among drug chemical structures, drug-target net-
work and drug pharmacogenomics. They utilized the random
forest algorithm to select best combination of features that were
used to construct a prediction model and identified 28 poten-
tially synergistic anti-cancer drug combinations. Their use of
drug-induced gene expression profiles to identify differentially
expressed genes for prediction was particularly noteworthy. Pro-
files of gene expression following treatment with different doses
of drugs can reflect the biological response to drug treatment to
provide further evidence of the mechanisms of drug action used
for predicting drug synergy.

However, the high cost of large-scale datasets can prevent
the use of information regarding drug-induced gene expression.
Therefore, Li’s group proposed a novel network propagation
method based on gene–gene network and drug-target informa-
tion to simulate post-treatment molecular features [31]. They
integrated prior knowledge of drug pharmacokinetics (drug tar-
gets) and biological knowledge of gene–gene interactions into
the baseline molecular profiles (gene expression, mutation, CNV,
methylation) to simulate post-treatment features and gener-
ate informative features. More specifically, they utilized a net-
work propagation method to modify baseline molecular profiles,
where drug-target genes became zero and non-target genes
were affected proportionally to the probabilities of their con-
nections to the target genes for expression, methylation and
CNV profiles. To improve prediction performance further, in
addition to these modified molecular features, they considered
monotherapy information as the input feature and utilized ran-
dom forest as the classifier. This method achieved the best
performance in all sub-challenges among the 160 competing
teams in the AstraZeneca-Sanger Drug Combination Prediction
DREAM Challenge [23]. They also showed that molecular and
monotherapy features are complementary in predicting drug
synergy, whereas monotherapy shows more importance when
making predictions.

EXtreme Gradient Boosting

When dealing with intrinsically complex problems like the
prediction of anti-cancer drug synergy, ensemble methods are
popular because of their non-linear characteristics and good

generalization ability. EXtreme Gradient Boosting (XGBoost), one
of the most powerful ensemble methods, has been widely used
to solve complex biological problems, including the prediction
of drug synergy. Janizek’s team introduced TreeCombo, an
XGBoost-based approach to predict the synergy of novel drug
combinations [32]. They included gene expression values as cell
line features and drug fingerprints as well as binary toxicophore
status as drug features and demonstrated that 83 of the 100
features exhibiting the highest importance values with respect
to the prediction of synergy were drug-based features, thus
implying the greater importance of drug than cell line features
in the prediction.

Celebi et al. also proposed an XGBoost-based method to pre-
dict synergistic anti-cancer drug combinations and included
much richer features to improve prediction accuracy and inter-
pretability [33]. They considered multi-omics data to enrich the
feature space, including gene expression, mutation and CNV. To
reduce the extremely large number of gene expression features,
they employed weighted gene co-expression network analysis to
identify systems-level gene modules and used mean expression
values of the 53 identified modules as features. They also filtered
out mutations not present in the Kyoto Encyclopedia of Genes
and Genomes cancer pathways and CNVs not significantly cor-
related with expression values across all cell lines. For drug fea-
tures, they considered drug-target information, targeted path-
ways and drug fingerprints. They also included monotherapy
information to provide additional knowledge for drug synergy
prediction. Analysis of the predictions of this XGBoost-based
model revealed such key regulators of tumorigenesis as TNFA
and BRAF to be frequent targets in synergistic interactions and
MYC to be frequently duplicated.

Sidorov et al. utilized XGBoost totally differently, training one
unique model for each cell line (cell line specific) rather than
a single model for all cell lines together [34]. Their reasoning
assumed the presence of large inter-center batch effects in NCI-
ALMANAC datasets. In this cell line-specific setting, no cell line
features were required to distinguish among different cell lines.
For drug features, they considered comprehensive information,
including fingerprints, MACCS keys, ISIDA/SIRMS fragments and
physicochemical properties, and they estimated reliability to
identify combinations that were reliable as well as synergistic
to further narrow their candidates. They found that reliability
reduction permitted up to 50% reduction in the root-mean-
square error depending on the cell line, a particularly exciting
observation with regard to virtual screening problems where
only a small subset of the predictions can be tested in vitro.

Extremely randomized tree

The extremely randomized tree (ERT) algorithm, another
popular type of ensemble method, adds one further step
of randomization than the random forest algorithm. The
extreme randomness is introduced by the random subsampling
of samples and features and random selection of features
during branching. The randomness helps reduce variance
to make the model more robust in dealing with noisy data,
especially HTS data. Jeon’s group presented a novel ERT-based
drug combination discovery algorithm using various genomic
information, drug targets and pharmacological information [35].
Genomic information included gene expression, mutation and
CNV, and they selected only genes in cancer-related pathways
to greatly reduce the feature dimension. Monotherapy and
synthetic lethality information was also incorporated to improve
prediction. They achieved a correlation coefficient of 0.738
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between the predicted synergy scores and actual observations.
Using the ERT model, they also generated synergistic rules from
the frequent paths, and these rules can be further tested for
biomarkers of drug combination therapies.

Gilvary’s research team proposed a multi-task framework
to study drug combination synergy in cells and in the clinic
[36]. Assuming that each synergy metric may identify different
types of synergistic combinations, they trained five models using
different drug synergy measures (HSA, Bliss, Loewe, ZIP and
ALMANAC score). Each model was a multi-task ERT framework
in which each cancer cell line was considered as one task. No cell
line features were required because the training process for each
cell line was independent. The authors manually designed mul-
tiple pair-wise similarity features, including compound struc-
ture, side effects, drug targets, gene ontology and others, which
were based on Pearson’s correlation efficient and Jaccard and
Dice similarity indices. They discovered that synergistic drug
combinations exhibit lower distance between drug targets in the
gene network compared to antagonistic drug pairs. The authors
also found that each drug synergy metric identified unique syn-
ergistic drug pairs with distinct underlying joint mechanisms of
action, which may shed light on the future design of a consistent
drug synergy measure.

Logistic regression

Gene expression profiles, together with mutation and CNV, were
always the first choice among cell line features for all the above-
mentioned methods. However, gene essentiality, measured by
clustered regularly interspaced short palindromic repeats or
short-hairpin RNA, may also contribute to drug synergy predic-
tion and merits investigation. Li et al. recently presented a study
of how gene essentiality and pathway-level scores improve drug
synergy prediction [37]. They employed logistic regression to test
the statistical significance of each gene and pathway feature,
comparing between gene expression and gene essentiality, and
between targets and non-targets in their contribution to the pre-
diction. They concluded that gene expression and essentiality
exhibited different mechanisms and should be considered in
combination rather than individually to improve the drug syn-
ergy prediction. Their team also observed that pathway features
outperformed genes in the prediction, indicating that systems
biology features can be used to boost prediction performance.

Tensor factorization

To capture the high-order interactions between drug combina-
tions in different cell lines and at different doses, Julkenen’s
group proposed a matrix factorization method (comboFM) to
model the multi-way interactions between two drugs, cell lines
and dose–response matrices as fifth-order tensor data [38]. Com-
boFM can also integrate auxiliary drug and cell lines features,
such as the molecular fingerprints of drugs and gene expres-
sion profiles of cancer cell lines, to aid prediction. Different
from the above-mentioned machine learning models, comboFM
first models drug combination effects at the level of the dose–
response matrices and then quantifies the overall level of syn-
ergy of the combinations. Leveraging all the information con-
tained in the dose–response matrices enables the learning of a
more comprehensive view of the synergistic drug combination
landscapes.

Deep learning methods
Feed-forward neural networks

The availability of large amounts of data and increasing compu-
tation power encourages and facilitates the utilization of deep
learning methods to tackle the challenge of predicting anti-
cancer drug synergy. DeepSynergy, the first deep learning-based
model proposed to predict drug synergy, employed a three-
layer feed-forward neural network architecture [39]. This model
considered only gene expression as the cell line feature and
three types of chemical descriptors (ECFP_6 fingerprints, physic-
ochemical properties and binary toxicophore features) as drug
features. It combined information about cell lines and drug com-
binations in its hidden layers to construct a combined hidden
representation that eventually led to the accurate prediction of
drug synergies. The far superior performance of DeepSynergy
when compared with other traditional machine learning meth-
ods in a cross-validation setting indicates that deep learning is
an ideal tool for solving the problem of drug synergy prediction.

Since the publication of DeepSynergy in 2018, several deep
learning-based methods with similar architecture (feed-forward
neural network) have been proposed. Feed forward is the most
basic type of deep neural network, consisting of sequentially
layered interconnected compute units (neurons). It can discover
complex abstract structures in large datasets, employing a
backpropagation algorithm to indicate how a machine should
change the internal parameters it uses to compute the hidden
representation in each layer from the representation in the
previous layer [22]. Xia et al. presented a novel deep learning
model to predict tumor cell line responses to drug combinations
[40]. They considered gene expression, microRNA expression
and protein abundance as cell line features and 30 categories of
molecular descriptors and two types of fingerprints generated by
Dragon software as drug features. Different from DeepSynergy,
the researchers’ model first applied feature-encoding sub-
models to encode new vector representations for each feature
type separately and then used the concatenation of these
encoded features as input into a four-layer fully connected
neural network model. Because the two drugs were symmetric,
they shared the parameters of the encoding sub-model. The
authors showed that the addition of the drug descriptors as
features would improve the coefficient of determination, R2, by
0.81, highlighting the informative value of drug features in the
prediction of anti-cancer drug synergy.

Though the powerful representation capacity of deep neural
networks supports their outstanding performance, the huge
amounts of features and parameters in the existing architecture
make it difficult to train and explain the model. To tackle this
challenge, Zhang’s research team introduced DeepSignalingSyn-
ergy, a novel simplified deep learning model to predict drug
combination synergy in tumor cells [41]. Compared with existing
methods that utilize a large number of chemical structure and
genomics features in densely connected layers, construction of
their model uses only a small set of informative cancer signaling
pathways, thereby mimicking the integration of multi-omics
data and drug features in a more biologically meaningful man-
ner. In the first layer, they used gene expression, CNV and binary
indicators of drug targets. In the second layer, each neuron
corresponds with one signaling pathway, and the neurons in the
first layer are connected to the neurons in the second layer only
when the specific gene is included in the corresponding path-
way. This results in a sparsely connected architecture, and the
greatly reduced number of parameters needed for training leads
to better generalization and interpretability. The authors also
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used a layer-wise relevance propagation approach to investigate
the importance of individual signaling pathways for prediction
and showed that it was feasible to predict drug synergy based on
a small set of informative signaling pathways.

Sun’s group proposed a deep tensor factorization (DTF) algo-
rithm for predicting anti-cancer drug synergy, which integrated
a tensor factorization method and feed-forward deep neural
network [42]. Unlike the previously mentioned machine learning
methods, DTF used no cell line or drug features. Instead, DTF
considered drug synergy data as multi-way data that can be best
represented as a tensor. Tensor decomposition methods can be
utilized to capture latent relationships between variables. DTF
first used a constraint programming weighted optimization (CP-
WOPT) algorithm to decompose tensors with missing entries
and then used the results as input features to train a deep neural
network model that predicts drug synergy. Performance was
comparable between DTF and DeepSynergy, and DTF required
far fewer training samples. However, this model’s practical use is
limited by its need for retraining by the addition of new entries
to the tensor whenever a new drug or cell line needs to be
considered.

Autoencoder

Besides basic feed-forward deep neural networks, autoencoder
is another type of deep learning architecture that is used exten-
sively to reduce the feature dimension by learning informa-
tive latent representations. Autoencoder is mainly designed to
encode input features into a compressed and meaningful repre-
sentation and then decode them back so that the reconstructed
input is as similar as possible to the original [43]. Zhang’s team
proposed AuDNNsynergy, a novel deep learning model with
autoencoders that integrates multi-omics and chemical struc-
ture data to predict drug synergy [44]. They separately trained
three autoencoders for gene expression, mutation and CNV fea-
tures using data of The Cancer Genome Atlas (TCGA) to transfer
the knowledge embedded in the large-scale genomics data of
the TCGA samples. The gene expression, mutation and CNV
features of the cell line were then encoded using these trained
autoencoders and were concatenated to be used as input for the
prediction model. AuDNNsynergy used a feed-forward neural
network as its prediction module and considered drug finger-
prints and physicochemical properties as the input drug features
as well as encoded multi-omics cell line features. The key con-
tribution and innovation of this model is its combined use of
a transfer learning approach with autoencoders to leverage the
rich information contained in larger datasets.

Kim et al. also utilized transfer learning techniques to develop
an autoencoder-based drug synergy prediction model to aid the
study of data-poor tissues [45]. They aimed to utilize information
from data-rich tissues that share some biological commonal-
ity in terms of gene expression with the understudied tissues
and that might therefore respond similarly to drugs. The pro-
posed architecture was an end-to-end multi-modal deep learn-
ing model consisting of feature-encoding (autoencoder) and pre-
diction (feed-forward neural network) modules. In their feature-
encoding module, cell line and drug encoders took raw features
as input and output hidden representations. They considered
gene expression and tissue/cancer type as cell line features and
drug fingerprints, SMILES (simplified molecular input line entry
system) representation, and drug-targeted genes as drug fea-
tures. They employed a multi-layer feed-forward neural network
in their prediction module that was similar to that of AuDNNsyn-
ergy. The model was pre-trained using data-rich tissues to enable

transfer of knowledge and then applied to predict drug synergy
in understudied tissues. The main contribution of this study
was to utilize transfer learning to investigate understudied but
critical tissues for the highly accurate prediction of drug synergy.

Other architectures

Some other types of deep learning architecture have also been
utilized to study anti-cancer drug synergy prediction. In order to
integrate information from Ontology Fingerprints, gene expres-
sion and pathway information together, Chen et al. presented
a stacked restricted Boltzmann machine (RBM) to predict the
synergy of drugs [46]. The ability of the stacked RBM to com-
bining unsupervised and supervised learning makes this deep
belief networks favorable for the integration. The authors con-
sidered Ontology Fingerprints in this work which reflects liter-
ature information that could further improve drug synergy pre-
diction. They created a RBM model for each cell line separately,
and the input for each neuron of the RBM model is a quantified
interaction of two drug-targeted genes.

In recent years, graph neural networks (GNNs) have become
more and more popular for solving graph-related problems, and
they have performed very well in many areas, including many
applications in computational biology [47]. Because drug synergy
prediction tasks can be modeled as link prediction problems in
a drug–drug interaction network, Jiang et al. proposed a graph
convolutional network (GCN) model to predict synergistic drug
combinations in particular cancer cell lines [48]. For each cell
line, they constructed a heterogeneous network consisting of
three different types of subnetworks, a drug–drug synergy (DDS)
network, DTI network and PPI network. The DDS network was
based on the binarized synergy scores in the training set, and the
researchers were trying to predict the missing edges of the DDS
network that were contained in the test set. The GCN encoder
was used to encode the heterogeneous network into a hidden
embedding that was then decoded to infer potential synergistic
drug pairs (edges in DDS network). This GCN-based model has
been shown to achieve state-of-the-art performance and out-
perform DeepSynergy. However, the training of this model with
very limited data regarding drug–protein interaction could have
produced bias and thereby affected their prediction results.

Model comparisons
Prediction performances reported by each model in the original
paper usually cannot be used to directly compare among models,
as they typically utilized data from different databases or applied
different filtering criteria. Therefore, in order to provide insight-
ful information in terms of prediction capacity among reviewed
models, we decided to conduct unbiased experiments using the
same set of data for all models. We used NCI-ALMANAC dataset
as the anti-cancer drug synergy data source [24]. NCI-ALMANAC
contains data for 60 cell lines, and we only considered drugs
with at least one target gene (68 drugs). In total, 130 182 sam-
ples were used for conducting comparisons. All NCI-60 cell line
features (expression, mutation, CNV, etc.) were downloaded from
CellMinerCDB [49]. Drug targets information were obtained from
DrugBank [50], while drug molecular attributes were calculated
using RDKit package in Python. We selected eight representative
models to make comparisons, not including cell line-specific
models or models based on tensor factorization. Hyperparam-
eters used in these models were determined by 5-fold cross-
validation. Since most of these models do not provide their
source code, we implemented these models from scratch in
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Table 3. Model prediction performance comparison results in terms
of ROC-AUC and AUPR

Model Algorithm ROC-AUC AUPR

32 XGBOOST 0.883 ± 0.005 0.357 ± 0.008
33 XGBOOST 0.891 ± 0.004 0.370 ± 0.014
35 ERT 0.849 ± 0.007 0.244 ± 0.013
37 Logistic Regression 0.846 ± 0.008 0.188 ± 0.007
39 Feed-forward neural

network
0.913 ± 0.005 0.396 ± 0.015

40 Feed-forward neural
network

0.915 ± 0.004 0.429 ± 0.019

44 Autoencoder 0.891 ± 0.005 0.356 ± 0.018
45 End-to-end neural

network
0.913 ± 0.005 0.423 ± 0.021

‘Model’ column indicates the reference number of the model in the main text.
The results in ‘ROC-AUC’ and ‘AUPR’ are in the form of mean ± SD from five
repeated experiments. Highlighted rows are top-performing methods.

Python. Data were randomly split into 80% training set and 20%
test set and were repeated five times to evaluate the model per-
formance. All the simulations were carried out on a Linux system
with Dual Intel Xeon 8268s CPU and Dual NVIDIA Volta V100 GPU.
We used two evaluation metrics to compare the performance:
area under the receiver operating characteristic curve (ROC-AUC)
and area under the precision-recall curve (AUPR). It has been
proved that AUPR is more informative than ROC-AUC when the
labels are highly imbalance [51], which is our case. The detailed
comparison results are shown in Table 3.

Deep learning methods outperform traditional machine
learning methods

As we can see from the results in Table 3, among four tradi-
tional machine learning models and four deep learning models,
almost all deep learning models outperform every traditional
machine learning model in terms of both ROC-AUC and AUPR.
Only XGBOOST algorithm can achieve comparable performance
with deep learning models while ERT and logistic regression are
a lot worse than deep learning models. The reason why deep
learning methods outperform traditional machine learnings is
that deep learning methods have greater ability to learn abstract
representations from high-dimensional data, especially given
large amounts of data. It can be imagined that with more and
more data become available, the performance gap between deep
learning methods and traditional machine learning methods
will get wider.

How model processes features is more important than
features themselves

Comparing between model [32] and model [33] where same
model architectures are used while different input features are
considered, we can notice little performance differences. How-
ever, using almost the same input features, the XGBOOST model
outperforms the logistic regression model by a large margin in
terms of AUPR, as logistic regression can only handle linear rela-
tionships between input features and labels while XGBOOST can
deal with more complex non-linear relationships. This indicates
the importance of the capacity of the model in processing input
features when predicting anti-cancer drug synergy.

As for deep learning models, model [40] and model [45]
achieve the best prediction performances. These two models
both utilize feature encoding sub-modules to encode different

types of input features separately (although they use different
sets of input features), while DeepSynergy [39] first combines all
types of input features and encodes them simultaneously. As for
the autoencoder model [44], different from above three super-
vised models, it first utilizes unsupervised learning method
(autoencoder) to obtain hidden representations and then uses
the hidden representations as input features to a supervised
neural network model. These four models differ greatly in the
way the input features are processed, and we can conclude
that defining sub-modules to process different types of features
separately can help obtain the best performance when building
deep learning models for anti-cancer drug synergy prediction.
It is indicated that the way model processes features is more
important than features themselves when it comes to the model
prediction performance.

Discussion
Machine learning methods have been proven as powerful tools
to tackle anti-cancer drug synergy prediction problems, espe-
cially as the availability of datasets has grown. They are able
to derive predictive models without requiring strong assump-
tions about the mechanisms underlying the synergy. Given that
simple linear models cannot accurately represent the complex
nature of anti-cancer drug synergy, most published machine
learning-based frameworks have employed ensemble or deep
learning methods. XGBoost, ERT and random forest are popular
traditional machine learning models, and feed-forward neural
networks and autoencoder methods are favored deep learning
models. These machine learning models have strongly outper-
formed such classic models as network pharmacology models
with regard to prediction to enable the accurate prioritization of
synergistic drug combination screenings.

Analysis of feature importance reveals potential
underlying mechanisms

Machine learning methods can provide prediction results and
elucidate feature contributions to facilitate interpretation.
Though deep learning has been criticized for its black box
nature, techniques such as the integrated gradients method have
been proposed to explain the importance of input features [52].
Those genes or pathways assigned high importance values may
indicate potential underlying mechanisms of drug synergy that
can be further investigated. Comparison with cell line features
has demonstrated the greater contribution of drug features to
synergy prediction [32]. This may be attributable to the cell
line features not being informative for drug synergy prediction
or their not being used or encoded correctly utilizing current
methods. Designing more effective and informative cell line
features would be a key to further improve the performance of
the prediction model.

Interactions between cell line and drug features

Most existing machine learning methods utilize cell line and
drug features independently. However, all the original molecular
cell line features, gene expression, mutation, CNV and methy-
lation, are cell line specific and thus identical for samples from
the same cell line but treated with different drug combinations,
introducing redundant information. Apparently, different drugs
play different roles in functional pathways, so the interaction
between baseline molecular features and drug features can pro-
duce different post-treatment genomic information, and these
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interaction features can provide much more meaningful infor-
mation for prediction. Typically, it is difficult to obtain perturba-
tion profiles for a large-scale pool of drug combinations. There-
fore, these interaction features should be designed carefully, by
either employing a network propagation algorithm to directly
simulate post-treatment profiles based on a gene–gene network
[31] or by calculating informative statistics based on both drug-
target information and cell line-specific expression values [30,
46]. The fifth column of Table 2 summarizes whether the model
utilized interaction features.

Curse of dimensionality

Existing machine learning models for predicting drug synergy
use a large number of genomics and chemical features together,
with input features numbering up to 10 000 or more. However,
data sparsity and multicollinearity involving excessive numbers
of features may greatly affect learning efficiency [53]. Besides,
in a previously published review paper by DREAM Challenge
[23], by comparing all submitted algorithms, they found that
aggressive pre-filtering strategies have been successfully used
to limit model complexity and improve model generalizability.
Several approaches have been used to reduce the number of
input dimensions, including filtering out genes with low vari-
ances [32] or considering only genes in cancer-related pathways
[33, 35], differentially expressed genes [30] or active genes [46].
Another way to tackle this curse of dimensionality is to employ
autoencoder models that can learn informative representations
of lower dimension [44, 45], but the difficulty of interpreting the
latent representations obtained by autoencoders does not favor
this method for the assessment of biology-related tasks.

Future directions

Pioneering efforts have been made to develop machine learning
models for the prediction of anti-cancer drug synergy, but some
limitations remain to be addressed. The design of more system
biology features that consider both drug target information and
molecular profiles would improve prediction performance and
biological interpretability. For example, instead of pathway-level
analysis, simulation of the effects of drugs on cells at the sub-
pathway level might provide more edifying and refined informa-
tion to reflect the underlying signaling mechanisms. In addition,
the design of frameworks that combine network pharmacology
models, which explain mechanisms well, and machine learning
models could aid prediction performance and interpretability.
GNNs have the potential to integrate these two types of method-
ologies and merit further investigation, given its powerful ability
to represent complex biological networks and its intrinsic nature
of neural network models. Although all reviewed papers are
proposed to study combinations of two drugs, it can be easy to
extend existing machine learning methods to study combina-
tions of multiple drugs. Taking DeepSynergy as an example, now
the input features will be the concatenation of multiple drug
features plus the cell line features instead of the concatenation
of two drug features plus cell line features. However, in order for
a specific multiple drug combinations synergy prediction model
[54], special attention should be given to the model design such
as solving the problem of symmetry and curse of dimensionality,
which worth future investigations.

Another limitation of current models is the lack of ability
to making concentration-dependent predictions. Most of the
models use the average synergy scores under different concen-
trations as the target variable for the model training, losing

concentration-specific information. However, it is important to
know the combination efficacy specifically when each drug is
administered at its clinically relevant concentration [55, 56].
There are two methods designed for predicting pre-clinical drug
combination effects incorporating concentration information
when developing models. IDACombo is an IDA-based method to
predict the efficacy of drug combinations using monotherapy
data based on the assumption that the expected effect of a
combination of non-interacting drugs is simply the effect of the
single most effective drug in the combination [57]. ComboFM
is a novel machine learning framework for systematic mod-
eling of drug-dose combination effects by factorizing higher-
order tensors indexed by drugs, drug concentrations and cell
lines [38]. More efforts should be made to study how to predict
concentration-specific anti-cancer drug synergy.

Furthermore, the development of reliable machine learn-
ing models always suffers from insufficient training data. Lack
of knowledge about drug combinations makes it difficult to
gain new knowledge and make predictions. Using computa-
tional techniques to increase sample size is more efficient and
less time-consuming and expensive than generating more data
samples from experimental screening. One method to increase
sample size and gain knowledge for drug synergy prediction
would be to borrow information from the abundance of available
drug sensitivity data. Multi-task or transfer learning can borrow
information from the training signals of these data, which worth
further investigation.

Key Points
• Greater availability of large-scale datasets and expo-

nential growth in computing power have led to the
increased popularity of machine learning methods.

• The choices of cancer cell line features and drug
features are essential factors in developing machine
learning models for anti-cancer drug synergy predic-
tion.

• Machine learning methods are preferred in anti-
cancer drug synergy prediction due to their
hypothesis-free nature and outstanding predictive
power.

• Ensemble methods and deep learning methods are the
most popular machine learning algorithms in predict-
ing anti-cancer drug synergy.

Availability of data and materials

The data and code used for comparison in this article are
publicly available in Github, at https://github.com/kunjiefa
n/anticancer-drug-synergy-prediction.
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