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Abstract

Major histocompatibility complex (MHC) possesses important research value in the treatment of complex human diseases.
A plethora of computational tools has been developed to predict MHC class I binders. Here, we comprehensively reviewed 27
up-to-date MHC I binding prediction tools developed over the last decade, thoroughly evaluating feature representation
methods, prediction algorithms and model training strategies on a benchmark dataset from Immune Epitope Database.
A common limitation was identified during the review that all existing tools can only handle a fixed peptide sequence
length. To overcome this limitation, we developed a bilateral and variable long short-term memory (BVLSTM)-based
approach, named BVLSTM-MHC. It is the first variable-length MHC class I binding predictor. In comparison to the 10
mainstream prediction tools on an independent validation dataset, BVLSTM-MHC achieved the best performance in six out
of eight evaluated metrics. A web server based on the BVLSTM-MHC model was developed to enable accurate and efficient
MHC class I binder prediction in human, mouse, macaque and chimpanzee.
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Introduction
Major histocompatibility complex (MHC) is a set of genes coding
for cell surface proteins essential for immune surveillance. Due
to variation in function, molecular structure and distribution,
MHC molecules are classified into MHC class I, MHC class II
and MHC class III. MHC class I proteins are transported to the
cell surface in almost all cells and they display an antigen to
provide signals for cytotoxic T lymphocytes including cluster of
differentiation (CD8+). Found on the special antigen-presenting
immune cells including macrophages, dendritic cells and B cells,
MHC class II proteins typically bind with CD4+ receptors on
the helper T cells to clear exogenous antigens. MHC class III
genes are interspaced with class I and II genes on the short arm
of chromosome 6, but their proteins play different physiologic
roles. Of the three MHC classes, class I received the most atten-
tion in biomedical research due to its universality. For example,
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reduction in MCH class I is associated with poor prognosis
[1]. Recently, a study [2] showed that tumors can escape T-cell
responses by losing MHC class I proteins. MHC genes are highly
polymorphic, and a particular variant of an MHC gene/protein is
usually termed an MHC allele. Each MHC class contains multiple
alleles. For example, in MHC class I, groups of human leukocyte
antigen (HLA) A, B and C are defined, and each group is com-
posed of multiple alleles. To determine the binding between an
antigenic peptide and an MHC protein, researchers usually use
such gold standard methods as enzyme-linked immunosorbent
spot, intracellular cytokine staining, competitive binding assays,
the direct binding assay and the real-time kinetic binding assay.
Beyond these experimental methods, computational algorithms
can help with inferring the binding affinity between an MHC and
a potential antigen. In particular, computational approaches can
efficiently prioritize plausible candidates for an optimal study
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Figure 1. Usage frequency of major MHC binding databases to miscellaneous prediction tools.

design, thus alleviating both time and financial burden of the
major wet-lab validation experiments. Based on known MHC-
binding sequences accumulated from decades of experimental
validation efforts, around 30 MHC binding prediction tools have
been developed to predict new binding sequences of MHC pro-
teins. A majority of these tools [3–6] focused on MHC class I,
because it has more specific properties than class II in most
molecular processes, including cancer vaccines [7], cytosolic
double-stranded DNA (dsDNA) in rat thyroid epithelial cells [8]
and peptide fragments of the foreign protein [9].

Here, we review numerous MHC binding prediction tools
and outline various aspects entailed in these computational
approaches, including database sources, feature representation,
machine learning strategies, etc. Our review is centered on MHC
class I and it achieves a wide coverage by encompassing 13
MHC binding databases and 27 prediction tools. Moreover, we
classified existing methods into two broad classes, machine
learning and heuristic score. While reviewing the existing MHC
class I binding tools, we identified a shared methodological
limitation that all current approaches are limited to tackling
a fixed peptide sequence length. To overcome this limitation,
we developed a novel recurrent neural network solution based
on bilateral and variable long short-term memory (BVLSTM),
which achieves MHC class I prediction of variable peptide length.
The implemented software product, with a specific application
named BVLSTM-MHC. In the later portion of this review, we
introduce the design of BVLSTM-MHC and demonstrate its supe-
rior performance in relation to existent MHC class I binding
prediction tools.

Existing approaches
MHC binding databases

Experimentally verified MHC binding peptides were curated
into databases. Over the last three decades, 13 MHC binding
databases have been developed (Table 1). As of March 2021, nine

databases are still functional, including two that had changed
the hosting domain names. Two databases, Immune Epitope
Database (IEDB) and Immuno Polymorphism Database of MHC
(IPD-MHC), published updates within the prior 12 months. In
terms of data quantity, the IEDB [10] hosts the largest collection
of MHC-binding peptides with more than 900 000 peptides, fol-
lowed by MHCBN [11] with 25 860 peptides. All existing databases
focus on MHC class I and II binder, except for IMGT/MHC.
And all databases mostly curate human data. These databases
of experimentally verified MHC-binding sequences provide a
foundation for the development of computational methods
to predict an affinity score between a novel peptide and an
MHC allele. Over the years, many MHC binding prediction tools
have been developed based on data from these MHC binding
databases. In following section, we focus on 27 mainstream
prediction tools. The reliance on respective databases by various
MHC class I binding prediction tools is illustrated in Figure 1.
The largest database IEDB [10] has been used most frequently to
MHC class I prediction tools, contributing to the development of
19 tools.

Strategies for existing MHC class I prediction methods

There are two major strategies for MHC binding prediction:
machine learning and calculation score. Machine learning-based
methods usually follow the following three steps: 1) feature
representation; 2) training; and 3) evaluation. Calculation score
based methods replace the training step with a scoring model.
In this review, we discuss 27 MHC class I binding prediction
methods. These methods’ classifications are available in
Table 2.

Feature representation

Feature representation is a technique to digitally code properties
of an amino acid sequence as an MHC binding target. Over the
last three decades, many feature representation methods have



Predicting MHC class I binder 3

Table 1. MHC binding databases

Database Address Online Last
update

Entries Species Class

IEDB [10] http://www.iedb.org/ Yes 2019 >900,000 Human, Mouse and
Chimpanzee et al.

I, II

IPD-MHC [12] https://www.ebi.ac.uk/ipd/mhc/ Yes 2019 — Canines, Felines et al. I, II
IPD-IMGT/HLA [13] https://www.ebi.ac.uk/ipd/imgt/hla/ Yes 2019 — Human I, II
SYFPEITHI [14] http://www.syfpeithi.de/ Yes 2012 >7000 Human I, II
EPIMHC [15] http://imed.med.ucm.es/epimhc/ Yes 2009 4875 Human I, II
MHCBN [11] http://crdd.osdd.net/raghava/mhcbn/ Yes 2009 25,860 Human, Mouse, rat

et al.
I, II

AntiJen [16] http://www.ddg-pharmfac.net/antijen/A
ntiJen/antijenhomepage.htm

Yes 2005 15,454 Human, Mouse, Rat
et al

I, II

Bcipep [17] https://webs.iiitd.edu.in/raghava/bcipep/ Yes 2005 1230 Human, Mice et al I
MPID-T [18] http://variome.bic.nus.edu.sg/mpidt/inde

x.html
Yes 2005 187 Human,Rat, Murine I, II

MPID [19] http://variome.bic.nus.edu.sg/mpid/ No 2003 86 Uknown I, II
JenPep [20] http://www.jenner.ac.uk/JenPep No 2002 12,336 Human I, II
FIMM [21] http://sdmc.krdl.org.sg:8080/fimm No 2002 1591 Human I
MHCpep [22] http://wehih.wehi.edu.au/mhcpep/ftp. No 1994 >4000 Human, Mouse, rat,

et al.
I, II

been developed for predicting MHC binders. Here we discuss
nine feature representation methods. Foremost, BLOcks SUb-
stitution Matrix (BLOSUM) [28, 34, 36–39, 41, 43] and position-
specific scoring matrix (PSSM) [30, 34, 35, 44, 47–49] have been
popular choices. With L denoting the length of the peptide in
question, BLOSUM is a 20 (amino acid)×L matrix that represents
substitution frequency between each pair of amino acids. PSSM
is a similar 20 (amino acid)×L matrix that captures evolutionary
conservation within amino acid pairs. The runtime of PSSM
is substantially longer than BLOSUM because the PSSM needs
to be extracted by comparing a database with large protein
sequence. Stabilized matrix method (SMM) has been used in
PickPocket [27] to construct the PSSM with shortened runtime.
PickPocket incorporates information of the MHC molecule per
se into the representation of the binders. Another widely used
sequence representation method is one-hot encoding [50], which
transforms a peptide sequence into a 20 (amino acid) × L binary
matrix with one row denoting each amino acid. Another com-
mon method is quantitative matrix (QM), which considers the
contribution of each amino acid in a peptide sequence [29]. QM
can be obtained from BIMAS [51] server by inputting amino acid
sequences.

In addition to the four aforementioned conventional meth-
ods, other approaches have also been developed. For example,
several studies proposed to use protein structure to model
MHC class I binders. For example, Altuvia et al. [52] developed
the first computational method based on protein structure to
uncover MHC class I binders. Subsequently, Altuvia et al. [53]
further improved the structure-based method to distinguish
candidate peptides that bind to hydrophobic binding pockets
of MHC molecules. Schueler-Furman et al. [54] extended the
structure-based computational method to a wider range of
MHC class I alleles. Other noticeable methods followed these
pioneer works. Han et al. [26] merged information of the HLA
molecule and the length of the target peptide into a 34 × 9
matrix, where 9 is the length of peptide and 34 is HLA-I contact
residues proposed in NetMHCpan [38]. Kim et al. [25] developed
the peptide:MHC binding energy covariance (PMBEC) matrix
based on physicochemical properties (aromatic, hydrophobic
and acidic etc.) to represent peptide sequence. Vang et al. [40]

developed the HLA-Vec method to map amino acids to a 15-
dimensional vector space to represent a peptide sequence. Bui
et al. [55] constructed a 20 (amino acid) × L average relative bind-
ing coefficient matrix depending on geometric average binding
affinity, or half maximal inhibitory concentration (IC50) of
peptides.

Feature representation is a necessary component of MHC
binding prediction tools. In one prediction tool, one or multiple
feature presentation methods can be applied. In an evaluation
study in 2003, Nielsen et al. [37] applied information from two
feature presentation methods to predict MHC T-cell class I
epitope and accordingly demonstrated that multiple sources of
information can improve performance. Subsequent prediction
tools generally exercised this concept. For example, DeepLigand
[4] and NetMHCpan [38] used the combination of one-hot
encoding and BLOSUM. ProPred1 [23] applied two types of
QM from BIMAS. NetMHCpan 4.0 [43] combined BLOSUM and
length of peptide flanking regions. Zhao et al. [46] combined
BLOSUM and physicochemical properties. Nielsen et al. [37]
integrated information from one-hot encoding, BLOSUM and
Hidden Markov models (HMM). The incorporation of various
feature representation methods into various binding prediction
tools is illustrated in Figure 2.

Score based methods

Heuristic score-based methods [14, 23, 30, 34] came as classical
approaches to predicting MHC binding. They calculate a quasi-
probability affinity score for a peptide as a potential MHC binder,
using three strategies: 1) sequence similarity [56, 57]; 2) motif
incorporation [14, 58]; 3) matrix formulation [23, 34]. In the end,
an affinity score or probability is used to decide binding potential
with a threshold.

Sequence similarity based methods summarize the amino
acid composition of known MHC binding peptides into a
sequence profile, and then compute a MHC binding probability
index for a new peptide [57]. Similar to sequence similarity-
based methods, motif-based methods first construct a score
motif based on known MHC binding peptides, then a new peptide
is compared to the motif to obtain binding affinity score. The
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https://www.ebi.ac.uk/ipd/imgt/hla/
http://www.syfpeithi.de/
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http://crdd.osdd.net/raghava/mhcbn/
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
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Figure 2. Usage frequency of feature representation methods to MHC prediction tools.

score motif generally assumes integer values, with a bigger
number for a higher occurrence frequency of the amino acid.
To construct motifs from known sequences, existing methods
all require the peptides to have an equal length. For example,
SYFPEITHI [14] constructs a 20 (amino acid) × 9 motif pattern,
by combining the information from MHC ligands, where 9 is
the fixed peptide length. Here the motif score ranges from 1 to
10. Similarly, Sette et al. [58] constructed a 20 (amino acid) × 6
substitution motif, where 6 represents the length of the core
region of peptides. Here the motif score ranges from 1 to 3, with
a smaller number indicating substitutions with drastic effects
on IAd binding.

Lastly, matrix-based methods differ from sequence similarity-
based and motif-based methods by constructing a 20 (amino
acid)×L matrix for a new peptide instead of known MHC binding
peptides. For example, PSSMHCpan model [34] calculates a score
to represent binding affinity based on PSSM. ProPred1 [23] uses
QM to compute the score. Bui et al. [55] propose an average
relative binding matrix to compute the score. All these methods
proceed to convert the scores to quasi-IC50 values for making a
binary decision with 500 as a typical threshold for IC50.

Traditional machine learning based methods

Traditional machine learning methods are frequently applied to
develop MHC binding prediction tools. For example, SVMHC [24]
encodes peptide sequence with one-hot encoding and uses sup-
port vector machine to predict MHC class I binding peptides. Liu
et al. [59] applied physicochemical properties to a support vector
machine regression model to construct the SVRMHC model for
predicting binding affinity on mouse MHC I molecules. Kevin
et al. [31], Javadi et al. [32] and Wilson et al. [5] used random
forest (RF) model to predict immunogenic peptides, where a
peptide sequence is encoded mainly through physicochemical
properties. To improve the performance of MHC binding predic-
tion, SMMPMBEC [25] applies a Bayesian framework to work with
the peptide MHC binding energy covariance (PMBEC) similarity
matrix.

Network-based machine learning has also been applied in
MHC prediction. Luo et al. [60] constructed a network between
HLA molecules and peptides, and thereby devised Nebula,
a neighbor-edges-based and unbiased leverage algorithm, to

discover new HLA–peptide binding. Later, Luo et al. [61] improved
Nebula model to a derivative named sNebula.

Yet another category of machine learning methods fre-
quently applied in MHC binding prediction is Artificial Neural
Networks (ANN). In 2008, Lin et al. [62] demonstrated that
ANN has better performance than score-based methods by
comparatively evaluating 30 methods. Since then, multiple
ANN-based tools have been developed. For example, NetMHC-
3.0 [35] establishes a high-performance ANN web server for
predicting peptide binders. NetMHCpan tools [38, 39, 43, 63]
and MHCflurry [45] also used ANN to predict MHC binders,
achieving excellent performance on multiple species. To prevent
overfitting, NetMHCpan explored multiple ANN models with
different number of neuron nodes and culminated on the
optimal model with the highest area under the curve (AUC) or
Pearson correlation coefficient (PCC) in 5-fold cross-validation.
To improve the predicting performance of ANN, Nielsen et al. [37]
and Zhang et al. [64] combined HMM and ANN to distinguish the
MHC binding peptides. The dissection of MHC prediction tools
by traditional machine learning models is illustrated in Figure 3.

Deep learning methods

Convolutional neural networks (CNN) [26, 40, 46] and Deep Resid-
ual Network [4] are two widely used deep learning models for
predicting MHC binders. For example, HLA-CNN [40] and Con-
vMHC [26] use a CNN architecture and fully connected layers
to predict MHC class I binders. DeepSeqPan [65] is a CNN based
multi-task tool to calculate an IC50 affinity value and a binding
probability simultaneously, which derive its feature information
from the paired peptide and HLA molecule. Another CNN-based
tool CNN-NF [46] is composed of two activation layers, two pool
layers, one flatten layer and one full connection layer. DeepLi-
gand [4] applies Deep Residual Network to construct an affinity
prediction module and a peptide embedding module and then
uses a fully connected layer to connect the two sub-modules for
prediction.

Machine learning training strategy

Based on the sequence length of MHC binders, training strategies
of machine learning methods can be classified into three cate-
gories of distinct training strategies: 1) One-to-One [14, 23, 24, 28,
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Figure 3. Usage frequency of machine learning models to MHC prediction tools.

62, 66, 67], 2) One-to-Many [34, 38, 40–42, 49] and 3) Many-to-Many
[45, 46] (Figure 4).

The One-to-One strategy limits the model to training pep-
tides with the sample length. Thus, models of this type can only
predict peptides of the same length as the model. Multiple mod-
els are necessary to predict peptides of various lengths. The most
popular length choice for the One-to-One strategy is 9-mer [68],
because in most cases binding affinity is measured for 9-mer
peptides. The One-to-Many strategy was developed to overcome
the challenge of length dependency. In 2008, Lundegaard et al.
[44] proposed a strategy to encode 8-mer and10-mer peptides in
addition to 9-mer peptides by considering insertion and deletion
of amino acids. Subsequent tools [3, 34–36, 38, 39] extended
the same idea to 11-mer peptides. Insertion and deletion of
amino acids in One-to-Many and Many-to-Many strategies are
illustrated in Figure 5.

Even though the One-to-Many strategy can be used to predict
MHC binders with different amino acids, the models are trained
on 9-mer peptides only. In addition, One-to-Many is limited
to a maximum length of 11. The Many-to-Many strategy is a
relatively novel approach. The MHCflurry [45] model proposed
by O’Donnell et al. in 2018 encodes peptides of up to 15 amino
acids as 15-mer sequences by inserting ‘X’ character, and uses
15-mer BLOSUM matrix to train the model. When inserting the
‘X’ characters, MHCflurry requires that no ‘X’ can be inserted into
the first and last four amino acids of the peptide (Figure 5). Zhao
et al. [46] applied the same principle as MHCflurry but trained the
model with the CNN-NF algorithm. The Many-to-Many strategy
has strength in that it allows the training of a single model
for peptides of various lengths. Although these strategies to
accommodate variable lengths have achieved good performance
to predict MHC binders, the insertion or deletion of amino acids
in peptide sequence can potentially alter the primary structure
and thus lead to loss of information. It is worthwhile to train a
length-independent model, which preserves peptide sequence
structure. With this objective in mind, we developed BVLSTM-
MHC, a bilateral and variable recurrent neural network-based
method to overcome this limitation.

Evaluation parameters

In this review, we evaluated BVLSTM-MHC and existent MHC
class I prediction tools using performance metrics including
accuracy (ACC), Matthews correlation coefficient (MCC), preci-
sion, specificity, F1, sensitivity (also known as Recall), PCC area
under the precision-recall curve (AUPR) and area under the
receiver-operating-characteristic curve (AUC) [31]. The calcula-
tion of ACC, precision, specificity, sensitivity, F1 and MCC is
described in Equations 1–6, where TP represents the number
of true positive predictions, TN represents the number of true
negative predictions, FP represents the number of false-positive
predictions and FN represents the number of false-negative
predictions.

ACC = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Specificity = TP
TN + FP

(3)

Sensitivity = TP
TP + FN

(4)

F1 = 2 × (
Precision × Sensitivity

)

(
Precision + Sensitivity

) (5)

MCC = TP × TN − FP × FN√
(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)

(6)

BVLSTM for MHC binder prediction
Datasets

Peptide–MHC binding relations from IEDB were extracted to train
BVLSTM-MHC. Benchmark data, including 117 alleles of four
species (Mouse, Human, Macaque and Chimpanzee), were also
downloaded from IEDB. The sequence length of the IEDB entries
ranges from 8 to 18 amino acids. An independent validation
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Figure 4. Categorization of MHC prediction tools into three training strategies.

Figure 5. Changing length of peptides in One-to-Many and Many-to-Many strategies. For One-to-Many, 8-mer, 10-mer and 11-mer peptides are changed to 9-mer peptide

by inserting ‘X’ character and deleting amino acid. For Many-to-Many, 8–12-mer peptides are changed to 15-mer peptide by inserting ‘X’ character.

dataset, consisting of 42 MHC binders and 179 non-binders, was
extracted from MHCBN [11]. Organization of positive examples
(binders) and negative examples (binders) for MHC allele classes

of four species is shown in Table 3 and Supplementary Figure 1,
where species-omitted notations HLA-A, HLA-B and HLA-C all
relate to human.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab216#supplementary-data
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Table 3. Details of training data from IEDB and validation data from MHCBN

dataset Species MHC Allele
class

Number
of Alleles

9-mer binders 9-mer
non-binder

non-9-mer
binders

non-9-mer
non-binder

IEDB
dataset

Mouse H-2 6 1375 3165 1343 3899
Human HLA-A 37 19,716 52,835 8438 16,640

HLA-B 39 9367 36,256 2317 7510
HLA-C 9 871 1163 8 162

Macaque Mamu-A
Mamu-B

18 2716 3568 2256 5486

Chimpanzee Patr-A Patr-B 8 514 1440 544 1204
Total 117 34,559 98,427 14,906 34,901

MHCBN
dataset

Human HLA-A 10 13 106 10 30
HLA-B 5 8 22 11 21
Total 15 21 128 21 51

BVLSTM-MHC model

Here, we develop a recurrent neural network framework
of strong scalability, BVLSTM-MHC, to predict MIC class I
binders (Figure 6). MHC binders are first transformed into a
20 (amino acid) × L matrix with one-hot encoding, where L
is the number of amino acids of MHC binder. Then, one-hot
encoding matrix and BLOSUM are combined to a 20×L matrix to
represent the peptide sequence. BLOSUM is used to initialize 20
convolution kernels. This process is shown in the section of the
feature extraction layer in Figure 6. Then, the merged matrix is
put into BVLSTM Encode Model, which is composed of two sets
of LSTM. In the BVLSTM Encode Model, LSTM block dynamically
changes with the sequence length. One set of LSTM processes
the input matrix from left to right and the other set of LSTM
processes the input matrix from right to left. This processing
mechanism makes handling peptides of different lengths in
one same model possible. Then, two fully-connected layers with
64 and 1 neurons, respectively, are used to handle the output
vector of BVLSTM model. Finally, the Sigmoid function is used
to normalize the output value to the predicted probability. All
allele models shared these two fully-connected layers. In the
training process, a dropout layer is applied to avoid over-fitting.
The mean squared error is applied as the loss function. In the
final models, the learning rate and the parameter of the dropout
layer were set at 10−4 and 0.8, respectively, while a survey of a
wide range of learning rates and dropout rates layer were shown
in Supplementary Figure 2.

Evaluation of four feature representation methods

Four feature representation approaches, one-hot encoding,
PSSM, 57 physicochemical properties [69], and the combination
of the three were compared with the IEDB dataset. PSSM was
extracted by NCBI blast-2.2.29 on UniProt [70] database. ANN
and RF were performed to analyze the four approaches on 9-
mer peptides using five-fold cross-validation. Hidden neurons
in ANN were set to 15 and the number of tree in RF was set to 500.
PCC and AUC were used to assess the performance and results
were shown in Figure 7. Data of 117 alleles were classified into
six categories: HLA-A, HLA-B, HLA-C, Chimpanzee, Mouse and
Macaque, where the first three categories belonged to Human.
For ANN, the feature representation method PSSM achieved
the highest medians for AUC and PCC in three categories.
The combination of three individual methods achieved the
best medians for AUC and PCC on the category of HLA-C,
and One-hot encoding achieved the best medians of AUC

and PCC for the categories of HLA-B and Chimpanzee. For
RF, PSSM achieved the highest medians of AUC and PCC in
five categories. The combination of three individual methods
achieved the best performance of the median of AUC and
PCC on the category of Chimpanzee and Mouse, respectively.
Overall, PSSM had the best performance. Our analysis results
also demonstrated that RF had higher AUCs and PCCs than ANN
(Figure 7). This may be due to the fact that we used a fixed
number of hidden neurons, as opposed to a variable number of
hidden neurons.

Evaluation of four recurrent neural network models

We compared the performance of BVLSTM with three RNN mod-
els: bilateral variable gated recurrent units (BVGRU), LSTM and
GRU. BVLSTM and BVGRU are bilateral variable-length models.
LSTM and GRU are single-direction, fixed-length models. Four
models were trained on 85 human alleles with 9-mer peptides.
Bilateral Variable models performed better than LSTM and GRU
models (Figure 8A). BVLSTM obtained the highest medians for
AUC and PCC on HLA-A and HLA-B categories and the highest
medians for AUPR on the HLA-A category. These results indicate
that BVLSTM is a potentially optimal approach for predicting
MHC binder peptides.

Cross-validation performance of BVLSTM-MHC

The IEDB dataset was split into 10 portions: seven were used for
training, one was used as validation to select the optimal model,
and the rest two were used for final testing. After five-fold cross-
validation and validation, the final test results were as follows.
Of the 117 alleles, 77 had AUC higher than 0.8 (62 human, 10
macaque, 3 mouse and 2 chimpanzee) (Figure 8B and Supple-
mentary Table 1). For human HLA-A and HLA-B datasets, the
medians of AUC were greater than 0.9 on both test datasets. The
medians of AUC were above 0.8 for mouse, chimpanzee and HLA-
C. AUCs of peptides with different lengths (8–18mers) were cal-
culated to evaluate the variable-length performance of BVLSTM-
MHC (Figure 8C and Supplementary Table 1). For human HLA-A
and HLA-B, the median AUCs were greater than 0.9 regardless of
peptide length. For HLA-C, mouse and chimpanzee, the median
AUC of variable length peptides were closer to 0.8.

Performance of BVLSTM-MHC in comparison
with existent MHC class I prediction methods

BVLSTM-MHC was compared to 10 popular MHC class I
predictors: ANN [44], comblibsidney2008 [71], NetMHCcons [42],

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab216#supplementary-data
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Figure 6. Schema of BVLSTM-MHC. Two major processes are detailed, namely feature representation and BVLSTM Encode model.

Figure 7. Distribution of AUCs and PCCs returned by four feature representation methods. The four methods include PSSM, one-hot encoding, 57 physicochemical

properties and combination of the former three (combination).
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Figure 8. Prediction performance of the BVLSTM-MHC model in cross-validation. (A) Distribution of various performance metrics (AUC, AUPR and PCC) for various

recurrent neural network models (BVGRU, BVLSTM, GRU and LSTM), stratified by MHC allele classes (HLA-A, HLA-B and HLA-C). (B) Distribution of AUC of the BVLSTM-

MHC model on the test dataset. Results for chimpanzee and HLA-C were not plotted due to limited data points. (C) Distribution of AUC of the BVLSTM-MHC model

on the test dataset, stratified by peptide length. Results for chimpanzee and HLA-C were not plotted due to limited data points. (D) Receiver-operating-characteristic

curves of BVLSTM together with another 10 competitors. AUC values were annotated to each method.

Table 4. Performance of BVLSTM-MHC along with ten existent MHC class I predictors on independent MHCBN dataset

Methods ACC AUC F1 MCC Specificity Sensitivity Precision AUPR # Postive
examples

# Negative
examples

ANN [44] 0.8827 0.9166 0.6866 0.6205 0.9507 0.6216 0.7667 0.7726 37 142
comblibsidney 2008 [71] 0.7419 0.1141 — 0.0000 1.0000 0.0000 0.0000 0.1591 16 46
NetMHCcons [42] 0.8883 0.9169 0.7222 0.6528 0.9366 0.7027 0.7429 0.8457 37 142
NetMHCpan [63] 0.8547 0.9024 0.5938 0.5173 0.9437 0.5135 0.7037 0.7471 37 142
NetMHCpan EL [43] 0.8156 0.8258 0.5075 0.3989 0.9085 0.4595 0.5667 0.5977 37 142
PickPocket [27] 0.8715 0.8429 0.6849 0.6043 0.9225 0.6757 0.6944 0.6378 37 142
SMM [72] 0.9268 0.9508 0.7692 0.7266 0.9635 0.7407 0.8000 0.8548 27 137
SMMPMBEC [25] 0.9146 0.9586 0.7308 0.6808 0.9562 0.7037 0.7600 0.8581 27 137
BVLSTM-MHC 0.9548 0.9512 0.8750 0.8490 0.9832 0.8333 0.9211 0.9112 42 179
CNN-NF [46] 0.8606 0.8513 0.6234 0.5449 0.8908 0.7059 0.5581 0.6383 34 174
MHCflurry [45] 0.7834 0.7526 0.4946 0.3633 0.8352 0.5610 0.4423 0.4569 41 176

NetMHCpan [63], NetMHCpan EL [43], PickPocket [27], SMM [72],
SMMPMBEC [25], CNN-NF [46] and MHCflurry [45] (Figure 8D).
MHCBN dataset was used as an independent evaluation. Eight
evaluation criteria (AUC, ACC, F1, MCC, specificity, sensitivity,
precision and AUPR) were computed. The overall results can be

viewed in Table 4 and the length specific results can be viewed
in Supplementary Table 2. SMMPMBEC and obtained the best
AUC (0.96), BVLSTM-MHC was closely behind with an AUC of
0.95. BVLSTM-MHC achieved the best performance for the other
six parameters.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab216#supplementary-data
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Figure 9. Binding prediction of BVLSTM-MHC is largely correlated with evolutionary conservation of amino acid positions. Using a 9-mer peptide of YMLDMTFPV

sequence and the motif of allele HLA-A∗02:19 as an example, we partially interpret the rationale of BVLSTM-MHC predicting MHC binding. For each position, we replace

the amino acid with an ‘X’ character designating an unknown amino acid, thus generating 9 modulated sequences (‘Sequence’ column). BVLSTM-MHC reported a new

binding probability score for each modulated sequence (‘Predicted Value’ column). The difference of MHC binding probability score between the original case and

the modulated case was obtained and regarded as the impact value of each individual amino acid position (‘Impact Value’ column). Of note, we indicated decreased

binding probability with red bars and increased binding probability with green bars. The two amino acid positions that displayed the highest impact values (the second

and ninth positions) were highlighted in red for their predicted values. Referring to the sequence logo of the binding motif (the rightmost column), it is evident that

BVLSTM-MHC model predicts binding propensity largely based on the evolutionary conservation of amino acid positions.

Association between BVLSTM-MHC
and positional conservation

Despite high performance, deep learning models are often crit-
icized for the lack of interpretability as a black box. Multiple
tools such as LIME [73], SHAP [74] and DeepLIFT [75] have been
designed to help understand the underlying mechanism of deep
learning models. Unfortunately, our BVLSTM-MHC models were
developed using a TensorFlow class that is not supported by
existing interpretation tools yet. Nevertheless, inspired by these
tools, we developed a strategy to interpret BVLSTM-MHC ratio-
nale. Using an exemplar 9-mer peptide and the BVLSTM-MHC
model for allele HLA-A∗02:19 as an example, we interpreted
the rationale of BVLSTM-MHC prediction (Figure 9). Given the
sequence logo for the motif of allele HLA-A∗02:19 (extracted by
ggseqlogo R package [76]), it was revealed that the impact of
each position captured by BVLSTM-MHC matches the position-
wise conservation level. This suggests that BVLSTM-MHC model
predicts binding propensity largely based on the evolutionary
conservation of amino acid positions.

BVLSTM-MHC webserver

Given all the above parameters and component optimization,
we developed an online server BVLSTM-MHC to perform MHC

binder prediction. Because we reserved only MHC alleles
showing an interim AUC of 0.8 or higher, the ultimate web server
spans four species (Human, mouse, macaque and chimpanzee)
and covers 77 MHC class I alleles in total. BVLSTM-MHC was
developed with R, PHP and Python languages, and it is accessible
at http://www.innovebioinfo.com/Proteomics/MHCBIB/MHCI.
php.

Discussion
MHC binding prediction is a crucial step for identifying potential
novel therapeutic strategies. Many tools have been developed
for this purpose. We introduced BVLSTM-MHC, a variable-length
BVLSTM RNN based method, to predict MHC class I binders. In
comparison to the 10 existent MHC class I binding prediction
tools, BVLSTM-MHC performed best in six of eight evaluation
parameters on an independent dataset. Most MHC class I pre-
dictors limited the maximum length of the peptides to 11 or
12, whereas BVLSTM-MHC currently extends maximum peptide
length to 30, and the built-in variable-length design spares users
the trouble to switch models of different length parameter.
BVLSTM-MHC performed the best overall in six of the eight per-
formance parameters when compared to 10 existing MHC class
I prediction tools. The reason for performance improvement is

http://www.innovebioinfo.com/Proteomics/MHCBIB/MHCI.php
http://www.innovebioinfo.com/Proteomics/MHCBIB/MHCI.php


12 Jiang et al.

probably attributed to the enlarged sample size and the ability
to handle variable length without modifying peptide sequences.
For the One-to-One model, it is necessary to build a prediction
model for each length, thus inevitably limiting the sample size
of each length-specific model. For the One-to-Many model, 9-
mer peptides are used to train a prediction model and peptides
with non-9-mer can be predicted by inserting ‘X’ character or
deleting amino acids in the peptide sequence. For the Many-
to-Many model, peptides of different lengths are all padded up
to a uniform 15-mer length by inserting ‘X’ characters. One-to-
Many and Many-to-Many models potentially alter the primary
structure thus leading to loss of information, because primary
structure determines tertiary structure to a large extent. Overall,
this work yielded a web server based on the BVLSTM-MHC
models, which can predict MHC class I binders of 77 alleles from
four species.

Key points
• We comprehensively summarized 13 MHC databases

and 27 prediction tools for MHC class I binding.
• We developed a variable-length MHC class I binding

prediction tool based on remaining original peptide
sequence, BVLSTM-MHC.

• BVLSTM-MHC performed best in six out of eight eval-
uated metrics when compared to the 10 mainstream
MHC class I binding predictors.

• We developed a web server based on BVLSTM-MHC
to predict human, mouse, macaque and chimpanzee
MHC Class I alleles.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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