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Abstract

Protein subcellular localization plays a crucial role in characterizing the function of proteins and understanding various
cellular processes. Therefore, accurate identification of protein subcellular location is an important yet challenging task.
Numerous computational methods have been proposed to predict the subcellular location of proteins. However, most
existing methods have limited capability in terms of the overall accuracy, time consumption and generalization power. To
address these problems, in this study, we developed a novel computational approach based on human protein atlas (HPA)
data, referred to as PScL-HDeep, for accurate and efficient image-based prediction of protein subcellular location in human
tissues. We extracted different handcrafted and deep learned (by employing pretrained deep learning model) features from
different viewpoints of the image. The step-wise discriminant analysis (SDA) algorithm was applied to generate the optimal
feature set from each original raw feature set. To further obtain a more informative feature subset, support vector
machine–based recursive feature elimination with correlation bias reduction (SVM-RFE + CBR) feature selection algorithm
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was applied to the integrated feature set. Finally, the classification models, namely support vector machine with radial basis
function (SVM-RBF) and support vector machine with linear kernel (SVM-LNR), were learned on the final selected feature
set. To evaluate the performance of the proposed method, a new gold standard benchmark training dataset was constructed
from the HPA databank. PScL-HDeep achieved the maximum performance on 10-fold cross validation test on this dataset
and showed a better efficacy over existing predictors. Furthermore, we also illustrated the generalization ability of the
proposed method by conducting a stringent independent validation test.
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Introduction
The biological reproductive system is composed of unique sys-
tems of organs involved in reproduction or more simply creat-
ing a new life. At the cellular level, the biological reproductive
system has many cells containing thousands of proteins, where
each cell is the smallest unit of life while proteins are the very
basic biological molecules in a cell [1]. Therefore, understanding
and exploring the natural function of these proteins at the
cellular level is a fundamental task in the research of proteomics.
It is broadly recognized that the particular function of protein is
closely related to its corresponding cellular compartments [2]. To
assure its normal functionalities, protein needs to interact with
its corresponding interacting molecules at the right location at
the right time. Aberrant localization of protein can cause loss
of biological functionalities, which may lead to serious diseases
like cancer [3, 4]. Thus, characterizing protein subcellular loca-
tion can provide important clues for understanding the mech-
anism of biological molecular interaction, identification of drug
discovery and genome annotation [5].

Traditional wet-lab experiments are expensive and time
consuming and cannot catch up with the increasing amount
of newly discovered proteins. As a useful complementation
to time-consuming and costly experimental methods, compu-
tational models are becoming the main focus in biomedical
research. The performance of these computational models is
increasing, and some models even outperformed human experts
[6, 7]. For example, since 2013, the HPA data source began
to use the TMAx-automated recognition software application
to facilitate the annotation. Besides, some databases such as
OMERO [8] and BisQue [9] have been developed that concurrently
store and annotate protein images. However, they are not
just bioimage databases but also encompass analysis software
as well.

Currently, there are many automated computational sys-
tems that have been deployed for accurate prediction of protein
subcellular location. All these models can be categorized as
either sequence-based [10–15] or image-based [2, 16–18], accord-
ing to the representation of the protein data. Both categories
(sequence-based and image-based) work on the idea of a two-
step framework: selecting the most proper features that repre-
sent the protein data and applying a trained machine learning
classifier for label decision [19].

Sequence-based methods can be applied to proteins that are
represented in 1-D amino acid sequence via a modern sequenc-
ing technology. However, the fact is that most of the current
machine learning approaches can handle vector-based samples
and not the sequence directly, making it a necessary but chal-
lenging step to represent a protein sequence with discrete model
or vector while still preserving the sequence information [20].
A variety of sequence encoding techniques, such as position-
specific scoring matrix [21] and pseudo–amino acid composition

[22], have been deployed to avoid complete sequence informa-
tion loss. Ever since, such sequence encoding methods have been
widely used in the field of bioinformatics and computational
biology [23–29].

With recent advances in automated microscopic imaging
technologies, increasing amounts of bioimaging data are
being rapidly generated and accumulated. On the other hand,
detection of protein translocation is difficult for sequence-
based approaches, which motivated researchers to devote
efforts to the development of two-dimensional (2D) image-
based pattern recognition methods. Accordingly, a number of
bioimage-based approaches have been recently developed for
the prediction of protein subcellular location. For example, Xu
et al. developed a multilabel predictor using global and local
descriptors extracted from protein images and applied support
vector machine (SVM) classifier using the one-vs-all strategy
[30]. Yang et al. employed Haralick texture features, local binary
patterns (LBP), local ternary patterns (LTP) and local quinary
patterns (LQP) with the SVM classifier [1]. In another work, Shao
et al. used the kernel combination strategy to combine global
DNA, Haralick features and local binary pattern and developed
a codeword matrix to predict protein subcellular localization
through the error-correcting output coding (ECOC) and SVM
[19]. More recently, the SAE-RF method was proposed by Liu
et al. [31]. They predicted protein subcellular localization using
stacked autoencoder and random forest through the fusion of
histogram characteristic, Gabor filters, gray level co-occurrence
matrix (GLCM), perception features, Haralick texture features,
local binary patterns and DNA features. They selected the
optimal feature set using the minimum Redundancy Maximum
Relevance (mRMR) feature selection method [32]. Supplementary
Table S1, available online at http://bib.oxfordjournals.org/, in
the SI Text S1 summarizes the existing methods. Considerable
achievement has been made so far in the area of protein
subcellular localization prediction. However, the performance
of the existing models is not satisfactory and there remains a
gap for further improvement.

Deep learning has recently emerged as a powerful and effec-
tive machine learning algorithm and achieved an outstand-
ing performance across many research areas including com-
puter vision and natural langue processing [33–38]. Although
it has been applied successfully to address various bioinfor-
matics problems, few studies have used convolutional neural
networks as a feature extractor up to now [33, 39–41]. Moreover,
fusion of multiple types of features in an appropriate way has
proven to be effective for improving the prediction of protein
subcellular localization [1, 30, 31, 42]. Some studies used either
stepwise discernment analysis (SDA) [43] or mRMR [32] to select
the optimal feature subsets. However, the effectiveness of the
selected features needs to be examined by training and testing
the classification model. Most of the bioimage-based protein
subcellular localization prediction methods do not use the idea
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Table 1. Statistical summary of the protein subcellular localization
dataset

Class label Subcellular localization Size

1 Cytoplasm 490
2 Endoplasmic reticulum 356
3 Golgi apparatus 366
4 Lysosome 242
5 Mitochondrion 391
6 Nucleus 515
7 Vesicles 516
Total 2876

of training and testing a classifier to select optimal feature set.
In this study, we develop a new computational framework to
address the above-mentioned shortfalls of the existing methods.
Our study is as structured as follows.

We constructed two datasets from the Human Protein
Atlas (HPA) (http://www.proteinatlas.org) data bank, namely
the benchmark training dataset and independent test dataset.
Deep features were learned from the original protein images,
while the handcrafted features were extracted from both DNA
and protein channel after linear color separation. In order to
identify the most optimal feature set, we proposed an effective
two-layer feature selection strategy where, in the first layer,
the SDA technology was applied to the individual feature set,
and in the second layer, SVM-RFE + CBR was applied to the
fused feature set. Then, the SVM prediction models based on
both the radial basis function (SVM-RBF) and linear kernel
(SVM-LNR) were constructed using the optimal feature set. Ten-
fold cross validation and independent tests were performed
to systematically examine the performance of the prediction
model, i.e. PScL-HDeep. The source code and datasets are
publicly available at http://csbio.njust.edu.cn/bioinf/psclhdee
p or https://github.com/csbio-njust-edu/PScL-HDeep.

Datasets and Methods
Datasets

Selection of appropriate datasets in statistical machine learning
is a significant step as it deals with the problem of learning
discriminative rules from the data. The Human Protein Atlas
(http://www.proteinatlas.org) database [44] contains immuno-
histochemistry (IHC) microscopy bioimages and is a bountiful
source of human proteome data. Therefore, in this study, we
constructed the benchmark bioimage datasets from the HPA
database (version 19) according to the confidence in two aspects:
the reliability score (enhanced, supported and approved only)
and the validation score (e.g. IH and western blot (WB) validation
scores). For more details about the reliability and validation
scores, please refer to the HPA website.

In the current work, the benchmark training dataset consists
of 2876 immunohistochemistry images based on the high vali-
dation score, enhanced and supported reliability score. All the
images belong to 23 proteins from 46 normal human tissues.
Each of the 2876 collected bioimages appeared in one of the
seven major subcellular locations: cytoplasm (Cytopl.), endo-
plasmic reticulum (ER), Golgi apparatus (Gol.), mitochondrion
(Mito.), lysosome (Lyso.), nucleus (Nucl.) and vesicles (Vesi.). A
statistical summary of the benchmark training dataset is pro-
vided in Table 1.

Similarly, we constructed the independent test dataset in the
same way as previously described in [31]. The dataset contained
107 IHC images of five proteins selected from the HPA database.
Each of the 107 IHC images belonged to one of the five protein
subcellular locations including Cytopl., ER, Gol., Lyso. and Nucl.

Image object separation

In this study, we used the HPA datasets as our benchmark
datasets. Each original image in the HPA database stored in the
RGB model is the fusion of two mixed staining protein and DNA.
The protein background is labeled with brown color, while the
DNA section is labeled with purple color. Since the main focus
of this study is to analyze the protein, it is necessary to segment
the protein from the DNA by some color separation procedures.
We employed the linear spectral separation (lin) scheme because
the two colors purple and brown are easily separable.

The linear spectral separation can be expressed mathemati-
cally as follows:

I = V × B (1)

where I is the original image sample from the HPA dataset; B is
the color base matrix that is obtained via calculation, while V
is the obtained vector after color separation that contains two
columns—one for protein and the other for DNA. The intensity
range for each channel in the vector V is normalized between 0
and 255 gray levels.

Besides, each HPA image is also composed of many cells
and separating these cells in a region of interest is recognized
as a very challenging task. Fortunately, the use of the mul-
ticell protein image gave promising classification accuracy [1,
18]. Inspired by the previous studies, we also use the multicell
protein images in this study.

Feature extraction

Feature extraction is considered as one of the most vital steps for
constructing accurate classification models. The classification
accuracy relies on the choice of the features used for model
training. Subcellular location features (SLFs) are the global fea-
ture vectors that describe the whole image. These features are
shown to be useful in the field of bioinformatics. However, they
ignore the local image features. Therefore, the global and local
feature descriptors can be used together to represent image as a
whole. In this study, we also used the combination of these two
strategies along with the deep learned features to form a super
vector for the classification task:

DNA distribution features

The significant dissimilarity between eukaryote and prokaryote
cells is the membrane-enclosed organelle nucleus. As human
belongs to the former, each bioimage will have DNA staining.
The DNA spatial distribution has been evidenced in previous
studies to be valuable for improving the classification accuracy
[18]. Thus, here we also extracted the following four types of
DNA-protein overlapping features:

(i) Ratio of the overall sum of pixel values in protein segment
to DNA segment

(ii) Ratio of those number of pixels in the protein segment that
co-localize with the DNA segment to the number of pixels
in the protein segment

http://www.proteinatlas.org
http://csbio.njust.edu.cn/bioinf/psclhdeep
http://csbio.njust.edu.cn/bioinf/psclhdeep
https://github.com/csbio-njust-edu/PScL-HDeep
http://www.proteinatlas.org
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(iii) Ratio of the overall sum of pixel values in the protein
segment that co-localize with the DNA region to the sum
of pixels in the protein segment

(iv) Average distance between the protein segments that over-
lap with the DNA region and the nearest nuclear pixel

Haralick texture features

After linear color separation, we extracted the Haralick tex-
ture features. These features were obtained through gray level
co-occurrence matrix (GLCM). The GLCM was obtained via N
number of gray levels in the image constructed on a fixed
angle θ and the measurement of the pixel distance d. In 2-
dimensional square pixel image, the Haralick texture features
can be extracted from the four directions of GLCM (i.e. horizontal
and vertical directions, left and right diagonal directions). The
total 13 texture features calculated from the GLCM in this study
included angular second moment, the contrast, correlation, the
sum of square, the inverse difference moment, the sum average,
the sum variance, the sum entropy, entropy, the differential vari-
ance, the difference entropy, the information measurement of
correlation 1 and the information measurement of correlation 2.
A total of 26 Haralick features were gained from the original pro-
tein channel (including 13 features from the averaged horizontal
and vertical directions, and other 13 from the averaged left and
right diagonal directions). Next, 810 (27 × 3 × 10) features were
extracted after decomposing the protein segmented image into
10 levels by discrete wavelet transform (DWT) using Daubechies
1 filter. ‘27’ indicate the 26-dimensional Haralick features and
1-dimensional energy feature obtained on each of the three
detailed coefficients sets at each decomposition level. Finally,
after integrating the previous 26 Haralick features, we obtained
836-dimensional Haralick texture features per image, referred to
as Har.

Local binary pattern (LBP)

The local features in the patches of protein image are difficult to
be reflected by global descriptors. Local descriptors, therefore,
can be used as a complement to the global features. LBP [45, 46]
is one such local descriptor that is simple yet efficient (simple
computation, insensitive to light intensity). Besides, the LBP
operator can be easily used in combination with other image
descriptors.

LBP calculates the gray values of the center pixel with the
gray values of the neighboring pixels and a given threshold. The
mathematical description of LBP is:

LBPM,R =
M−1∑
m=0

s(d)2m (2)

where d = qm − qc in the function s(d) is the difference between
the gray levels of the center pixel qc and the neighborhood pixel
qm. M is the neighboring pixels and R is the radius of the circular
region in the neighborhood. The function s(d) is expressed as:

s(d) = {1,d≥0
0,otherwise (3)

where d is set to 1 if the intensity value of the neighboring pixel
is larger than or equal to the threshold, and 0 otherwise.

The LBP features are described by a histogram of binary
patterns calculated over the neighborhood. In this work, 256

histograms of regions were calculated and accordingly 256-
dimensional LBP features were obtained based on M = 8 and
R = 1.

Completed local binary pattern

Completed Local Binary Pattern (CLBP) proposed in [47] calcu-
lates three components to represent the local region: the cen-
ter pixel, the different sign and the difference magnitude. The
operator CLBP_Center or CLBP_C is defined for the center pixel
that encodes the center pixel and converts to the binary code by
global thresholding. Mathematically, CLBP_C can be defined as:

CLBP_CM,R = t
(
qc, cl

)
t (x, c) = {1,x≥c

0,x<c (4)

where qc is the value of the center pixel and threshold cl is the
averaged gray level of the entire input image. M is the number of
the involved neighbors and R is the neighborhood radius.

The CLBP-Sign (CLBP_S) operator is defined for the different
sign and is the same as the LBP. The difference magnitude
component of CLBP is defined by the operator CLBP-Magnitude,
abbreviated as CLBP_M. CLBP_M is expressed as:

CLBP_MM,R =
M−1∑
m=0

t (nm, c) 2m (5)

where nm =| qm − qc |. The threshold c is set to the mean value
of nm from the entire image. M, R, qm, qc and t

(
x, c

)
are defined in

equations (2) and (4).
The two operators CLBP_S and CLBP_M are produced from the

Local Difference Sign-Magnitude Transform (LDSMT), which is
calculated based on the referenced pixel and all the pixels that
belong to the specified neighborhood.

All the three CLBP operators are in binary-encoded format
and thus they can be combined together to form a CLBP his-
togram. We concatenated all the three operators and obtained
the final 906 CLBP features based on the two configurations(
R = 1, M = 8

)
and

(
R = 2, M = 16

)
.

Rotation invariant co-occurrence of adjacent LBP

The LBP descriptor does not keep the spatial relationships
among binary patterns. Co-occurrence Among LBP (CoALBP)
[48] solves this problem by using four autocorrelation matrices.
Rotation Invariant Co-occurrence of Adjacent LBP (RICLBP) [49]
is the modified version of CoALBP, which ensures the rotation
invariance by attaching a label of rotation invariant to each
CLBP pair.

RICLBP uses two parameters: the scale of LBP radius and
the displacement among different LBP pairs. In our experiment,
three different parameter sets (1, 2), (2, 4) and (4, 8) were used
to extract three different feature vectors from the target protein
image. Each feature vector contained features with the dimen-
sion of NP

(
NP + 1

)
/2. NP is the number of possible LBPs, NP = 2M,

where M is the neighboring pixels in LBP. In our study, M is set to
4 (NP = 24 = 16), and therefore, a 136-dimensional feature vector
would be obtained for each parameter set. Finally, we integrated
all three extracted feature vectors into our final proposed feature
vector of 408 (136 × 3) dimension.
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Adaptive hybrid pattern

Here, the Adaptive Hybrid Pattern (AHP) [50] is used specifically
to overcome the LBP drawbacks: sensitivity to noise in quasiu-
niform regions and sensitivity to small variation in the target
input image caused by quantization thresholds that use exact
values. AHP presents Hybrid Texture Model (HTM) and Adaptive
Quantization Algorithm (AQA) to overcome the aforementioned
problems. HTM is composed of local microfeatures and global
spatial structure. AQA is designed to be adaptive to the contents
of local patches.

We extracted features from protein images using two quan-
tization levels 2 and 5 with two configurations

(
R = 1, M = 8

)
and

(
R = 2, M = 16

)
for the local patches’ radius R and number of

neighboring point M in each local patch. An 84-dimensional fea-
ture and a 336-dimensional feature were generated based on the
quantitation level 2 and 5, respectively. Finally, by serially inte-
grating these two feature sets, we obtained a 420-dimensional
feature vector that represents the protein image. Further details
on AHP parameters can be found in [32].

Histogram of oriented gradients

Histogram of oriented gradient (HOG) proposed in [51] divides
the image into small windows/cells and for each window the
HOG direction is compiled over the pixels of window. The his-
togram for each window is then evaluated and finally a descrip-
tor is obtained by concatenating these histograms.

HOG is computed in dense grid at a single-scaled cell level
without dominant orientation that makes it unique than the
Scale Invariant Feature Transform (SIFT) [52] descriptors. In our
experiment, we used the window size of 5 × 6 and extracted a
final feature vector with the dimension of 270 for the target
protein image.

Locally encoded transform feature histogram

Locally encoded transform feature histogram (LETRIST) pro-
posed by Song et al. [53] is a simple, low-dimensional yet efficient
descriptor to represent an image. The LETRIST descriptors
(referred to as LET in this study) encode the mutual information
within a target image across features and scale space.

First, transform features set that describes the local texture
structures and the correlation among them were constructed
and then quantized into texture codes. Next, the cross scale joint
coding was applied to these texture codes to construct three
histograms. Finally, these histograms were concatenated to gen-
erate the final 413-dimensional feature vector. The experimental
setup used here was the same as [35].

Deep learned features

Deep learning proposed by Hinton et al. [54] in 2006 has rev-
olutionized the area of machine learning and artificial intel-
ligence. Since then, numerous deep learning algorithms have
been applied. The key feature of deep learning algorithms lies
in their layered structure organized in hierarchy. Each layer
captures specific information. For example, the layers near the
input capture the low-level features, while the farthest layers,
for example, the layer close to classification layer, capture the
classification level information. As the layers get deeper, the
complexity of layers arises.

There are currently different deep learning architectures
available such as convolutional neural networks (CNN) [55–59],
recurrent neural network (RNN) [60–62] and deep belief networks
(DBN) [54, 63, 64]. In our work, we considered the pretrained CNN,

because an advantage of using a pretrained network is that CNN
does not need to be trained (a stage that is computationally very
costly to accomplish). Several bioimage-based studies [65–67]
have successfully applied VGG-19 as the feature extractor on
various datasets [66]. The reason is that VGG-19 is particularly
useful due to its feature representation in terms of the detection
or localization of specific contents in an input image. Further,
it can also mount convolutional filters with a smaller receptive
field (3 × 3) on top to increase the depth level. Therefore, in our
study, we also utilized the pretrained VGG-19 [37] for transfer
learning. We extracted the feature maps of deeper layers that
were used as the feature vector in our settings.

The flowchart of extracting deep learned features from the
VGG-19 is illustrated in Figure 1. As can be seen, there are five
blocks of convolutional layers followed by three fully connected
layers. The first two blocks have two convolutional layers, while
the last three blocks have four convolutional layers. Each block
of the convolutional layer is followed by a max-pooling layer.
The first two fully connected layers have 4096 channels, while
the last fully connected layer has 1000 channels. The detailed
architecture and parameters of pretrained VGG-19 are provided
in Supplementary Table S2, available online at http://bib.oxfo
rdjournals.org/, under Text S2 in SI.

In order to utilize CNN efficiently, some prior steps need to
be considered, including (1) all images need to be preprocessed
because CNN requires all images in equal size. As the VGG-19
needs all the images to have the size of 224×224, before inputting
the image to pretrained VGG-19, we resized the images to 224 ×
224; (2) In order to reduce the outlier effect, the images need to
be subtracted from the given image with CNN as suggested in
[68]. Accordingly, we also subtracted each image from the given
image with CNN.

Finally, after feeding the input image into pretrained VGG-
19, we extracted the feature maps from the first fully connected
layer with the dimension of 4096 to serve as the feature vector
for the input image, as shown in Figure 1. Since the deeper
inner layers provide high-dimensional feature maps, to avoid
the curse of dimensionality and reduce the computational time
required by classifier training, the feature vector needs to be
optimized and reduced in size. Therefore, we applied the SDA to
both reduce the dimension of the feature vector and to preserve
the unique characteristics of the features. We named such deep
learned features as Deep.

Features selection

Training a classifier with such a large dimension of feature
space is not effective; there may exist redundant, irrelevant
and noisy information that can potentially cause either over-
fitting or underfitting of the trained classifier. In this context,
an optimal subset of relevant features is essential to represent
the intrinsic variance among different classes. Therefore, feature
selection has become a common prerequisite in the design of the
prediction algorithm.

In order to reduce time complexity and enhance the predic-
tive power of our computational model for protein subcellular
localization prediction, we applied a two-layer feature selection
strategy comprising of SDA followed by SVM-RFE + CBR. The
details are provided below.

Stepwise discriminant analysis

SDA [43] is an efficient approach for dimension reduction. An
optimal subset of features is selected via iteratively identifying
which features maximize the criterion (Wilks’ �) in the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
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Figure 1. Deep learned feature extraction strategy using the VGG-19 deep learning architecture.

feature space that tightly separates the classes from each
other.

The Wilks’ � statistics is a probability distribution mathe-
matically defined as:

Λ(p) = det
(
W(X)

)
det

(
T(X)

) (6)

where X = [
x1, x2, x3, ..., xp−1, xp

]
denotes a vector of p features

that currently describes the target protein image. W(X) is the
within-class covariance matrix that is defined as

W
(
i, j

) =
c∑

r=1

nr∑
k=1

(
xirk − xir

) (
xjrk − xjr

)
i, j ∈ 1, 2, ...p (7)

and T(X) is the between-class covariance matrix that is
expressed mathematically as:

W
(
i, j

) =
c∑

r=1

nr∑
k=1

(
xirk − xi

) (
xjrk − xj

)
i, j ∈ 1, 2, ...p (8)

where i is the feature at the i-th position and j is the feature at
the j-th position, r represents one class in the total c classes, nr

is the total number of samples in class r. xirk and xjrk are the i-th
and j-th feature values for the sample k of class r. xir and xjr are
the means of the i-th and j-th features over the r-th class. xi and
xj are the means of the i-th and j-th features over all the classes.

The lower values obtained in � show the features with better
discriminative power among classes. To further increase the
discriminative ability by accommodating the stepwise process,
an additional feature xp+1 is added to X that describes the partial

Wilks’ (Λ
(
p + 1

)
) statistic:

Λ
(
p + 1

) = Λ
([

x1, x2, ..., xp, xp+1
])

Λ(p)
(9)

To quantify the discriminative power of the new feature, F-
statistic is employed to assign a statistical significance level to
the feature. The larger value of F-statistic means the particular
feature has a better discriminative power (Fenter or F+criterion)
and vice versa (Fremove or F−criterion). The F+ criterion is defined
as:

F+ =
(

n − c − p
c − 1

)
1 − Λ

(
p + 1

)
Λ

(
p + 1

) (10)

F− is defined as:

F− =
(

n − c − p + 1
c − 1

)
Λ(p) − 1 (11)

where n is the total number of features in all classes, c is the total
number of classes and p is the features currently analyzed.

In our model, we applied the SDA feature selection technique
to each feature set individually, i.e. Har, LBP, CLBP, RICLBP, AHP,
HOG, LET and Deep features. Fremove was calculated for each
feature. The feature that had the lowest Fremove value and signif-
icance level (P-value) greater than a preassigned threshold was
removed from the feature set. Note that this process was skipped
when removing the first feature.

After a feature was removed, W and T in equation (6) were
updated and then Fenter was calculated for the feature that was
not currently included in the set. The feature with the largest
Fenter value, which had the significance level less than a pre-
assigned threshold, was added to the set. The process stopped
when there were no features to be entered or removed. We set
the threshold value to 0.15.
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SVM-RFE + CBR

The performance of the classifier mainly depends on the input
feature set. In order to select the most optimal set for our
prediction algorithm, we applied an embedded feature selection
technique namely support vector machine-based recursive fea-
ture elimination method with correlation bias reduction (SVM-
RFE + CBR) [69] to the integrated features set obtained by serially
concatenating the individual subset of features obtained in the
‘Stepwise discriminant analysis’ section. Many existing stud-
ies [70–72] have used SVM-RFE [73] for multiclass classification
problems; however, when the feature set has highly correlated
features, the SVM-RFE ranking criteria for these features will be
biased. SVM-RFE + CBR uses the correlation bias reduction strat-
egy to reduce this correlation bias in SVM-RFE. It accommodates
both linear and nonlinear versions.

To extend the SVM-RFE + CBR algorithm from two-class
to multiclass problem, we adopted the one-versus-one (OVO)
strategy under which the features’ weights for each binary
subclass problem were calculated and then added together, in
order to determine the ranking criteria. We used nonlinear SVM-
RFE + CBR with the Gaussian radial basis function (RBF). After
gaining the ranked features as an output of SVM-RFE + CBR,
we then empirically selected the best subset of features based
on the SVM-RFE + CBR ranked features (see the section ‘SVM-
RFE + CBR can further improve the performance’). For more
details about SVM-RFE + CBR, please refer to the work in [69].

Prediction algorithm

Support vector machine (SVM), developed by Cortes and Vapnik
[74], has been successfully applied to numerous classification
and regression problems [75, 76]. Initially, SVM was used for
the two class classification problems and later extended to
multiclass problems, i.e. one-versus-all (OVA) and OVO. Since
then, it has been widely used for solving multiclass problems in
bioinformatics including protein subcellular location prediction
[1, 30].

Here in this study, we also implemented SVM by utilizing
the LIBSVM toolbox to construct the classifier. The LIBSVM [77]
version 3.24 (libsvm-3.24) was downloaded from http://www.
csie.ntu.edu.tw/~cjlin/libsvm/. We used RBF as the kernel func-
tion, whose two parameters regularization C = 27 and kernel
width γ = 2−6 were optimized using 10-fold cross validation and
grid search optimization. We adopted the OVO approach for our
multiclass classification.

Architecture of the proposed PScL-HDeep

Figure 2 shows a schematic overview of the proposed multiclass
prediction algorithm PScL-HDeep. For a given IHC input image
from the benchmark datasets, PScL-HDeep first decomposes
the images into DNA channel and protein channel using the
linear spectral separation program (segmentation phase) and
then extracts DNA, Har, LBP, LET, RICLBP, HOG, CLBP, AHP and
Deep feature sets by calling the corresponding feature extrac-
tion program (feature extraction phase). In the establishment
of the optimal feature subset, PScL-HDeep applies a two-layer
feature selection technique to the extracted features (2L feature
selection phase). In the first layer, the SDA is called to select
the reduced nonredundant optimal subset of features from all of
the extracted single feature sets except DNA features. A hybrid
features set is obtained after serially combining all the features.
SVM-RFE + CBR is used in the next layer to re-rank the features.
Consequently, the top ranked features are selected as the final

super feature set (optimal features) that represents each protein
image. In the training phase, the obtained super feature set is
directly input to SVM to train the model. In the testing phase,
after generating the final super feature set for the corresponding
IHC input image, the trained model can be used to classify it as
one of the seven subcellular locations (classification phase).

Performance evaluation

Different performance evaluation strategies are used to assess
the performance of the proposed PScL-HDeep method. Among
these, the k-fold cross validation and the independent tests are
the commonly used methods in the existing literature. There-
fore, we employed k-fold cross validation to evaluate the effec-
tiveness of the method. Besides, we also conducted experiments
on the independent test dataset to further assess the generaliza-
tion ability of PScL-HDeep.

As our problem is multiclass classification, to investigate
the effectiveness of PScL-HDeep, we calculated the meanAUC,
stdAUC and accuracy as the performance measures. meanAUC is
the mean value of the area under the ROC curves (AUC). A larger
meanAUC value indicates that the classification model has a
more robust performance. For example, when the meanAUC
score is 1, the classification model is perfect with 100% correct
predictions. stdAUC is the standard deviation of AUC, while
accuracy is the percentage of the number of labels correctly
predicted relative to the total number of labels being predicted.
The meanAUC and stdAUC were calculated based on the AUC
values of seven protein subcellular locations.

In addition, it is worth mentioning that we only conducted
experiments on the training dataset during the selection of the
optimal features and the parameter optimization for SVM.

Results and Discussion
Performance evaluation of individual features
and different classifiers

The success of a prediction algorithm relies on the choice of
an appropriate feature set. In this regard, we applied DNA, Har,
LBP, RICLBP, LET, AHP, CLBP and HOG feature descriptors along
with the Deep features to effectively capture the global and
local features from IHC images. We trained the models on each
handcrafted feature set to testify the above discussed features. In
this section, we trained random forest (RF) [78], linear SVM (SVM-
LNR) and radial basis function SVM (SVM-RBF). When the num-
ber of trees = 300 and maximum number of features in individual
tree = 80, the RF classifier achieved the best results. The optimal
regularization parameter C = 27 for the SVM-LNR was obtained in
the same way as the SVM-RBF classifier. We performed 10-fold
cross validation on the benchmark training dataset to evaluate
and examine the prediction performance of the three classifiers.
The classification success rates of these feature sets on RF, SVM-
LNR and SVM-RBF are illustrated in Figure 3 in terms of accuracy.
From the experimental results, we can see that the CLBP features
achieved the highest accuracy of 78.63% under the SVM-LNR
classifier, while the LBP and RICLBP features under the SVM-RBF
classifier were ranked the second and third with an accuracy of
78.55 and 78.44%, respectively. By examining the Har, AHP and
LET features, we found that they showed better performance on
the three classifiers while DNA and HOG achieved almost similar
success rates.

Similarly, the classification performance of the SVM-RBF,
SVM-LNR and RF classifiers was also examined. As a result, we

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2. Schematic workflow of the developed PScL-HDeep.

Figure 3. Performance comparison of eight types of pure individual features on three different classifiers.

found that the success rates of SVM-RBF and SVM-LNR classi-
fiers on the LBP, RICLBP, LET, HOG and AHP were higher than that
of the RF classifier. Although SVM-LNR achieved better classifi-
cation results on CLBP and AHP, however, the better classification
results of SVM-RBF on the DNA, Har, LBP, RICLBP, LET and HOG
descriptors showed the superiority of the SVM-RBF classifier
over SVM-LNR. The performance of SVM-LNR was better than
that of the RF classifier. Therefore, we used the SVM-RBF and
SVM-LNR in the following sections.

Improving the predictive performance by selecting
the optimal features via SDA
The original high-dimensional feature space potentially has
redundant and noisy information, which can degrade the per-
formance of a prediction model. To improve the performance
of the model by avoiding noisy and redundant information,
feature selection is performed to identify highly informative
and nonredundant features from the original feature set. The
feature subset obtained via the feature selection step can also
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Table 2. Performance results of models trained using individual features after the SDA feature selection

Feature set SVM-LNR SVM-RBF

Acc (%) meanAUC stdAUC Acc (%) meanAUC stdAUC

Har 72.29 0.9435 0.0179 74.27 0.9549 0.0154
LBP 76.32 0.9598 0.0162 81.15 0.9699 0.0093
RICLBP 80.81 0.9699 0.0119 82.93 0.9736 0.0108
LET 76.53 0.956 0.0116 81.82 0.9660 0.0097
HOG 39.11 0.7519 0.0536 40.33 0.7576 0.057
CLBP 80.88 0.9692 0.0093 82.02 0.9704 0.0099
AHP 74.76 0.9487 0.0181 73.3 0.9457 0.02

Figure 4. Performance comparison of individual features before and after the SDA feature selection.

significantly reduce the time complexity. That is why feature
selection is often practiced as a strategic step for data pre-
processing across many areas of pattern recognition, machine
learning and data mining.

For this purpose, we applied SDA to each individual feature
set except DNA. Each optimal set was then fed into the SVM-
RBF and SVM-LNR classifiers to testify the significance of fea-
ture selection. Empirically, we found that the accuracy of SVM-
RBF was increased by 10.95% on Har, 2.6% on LBP, 4.49% on
RICLBP, 7.79% on LET, 6.92% on CLBP, 0.73% on AHP and 1.11%
on HOG, respectively, with 10-fold cross validation. Similarly,
the accuracy of SVM-LNR on Har, LBP, RICLBP, LET, CLBP, AHP
and HOG was increased by 11.75, 1.74, 6.54, 3.41, 0.25, 0.18 and
1.04%, respectively. The accuracy (Acc%), meanAUC and stdAUC
of each individual feature set are reported in Table 2. For a fair
judgement, we also plotted bar graphs for the accuracy index of
the pure feature sets (i.e. ‘Before SDA’) and the feature sets with
the SDA feature selection (i.e. ‘After SDA’) in Figure 4.

Both the SVM-RBF and SVM-LNR classifiers showed the high-
est increase in the accuracy on the Har optimal feature set
compared to the Har pure feature set and the other feature
sets. Therefore, extensive comparison was further performed
between the Har pure feature set and the Har optimal feature set
using 10-fold cross validation. The performance was evaluated in
terms of receiver operating characteristic curve (ROC curve) and
the distribution of area under curve (AUC). Figure 5A and B pro-
vides the comparison of the ROC curves, while Figure 5C and D

shows the comparison of the AUC distribution without and
with the SDA feature selection, respectively, on the SVM-RBF
classifier. For example, the meanAUC of the model was increased
by 4.78%, while the error rate of stdAUC was decreased by
1.05% after selecting the optimal feature set via the SDA fea-
ture selection. In Figure 5C and D, the central line in the box
indicates the median, while the lower and the upper edges of
each box indicate the lower and upper quartiles, respectively.
The whiskers are the extreme limits for the points that are not
considered as outliers. Supplementary Figure S1, available online
at http://bib.oxfordjournals.org/, in the SI Text S4 compares the
confusion matrix graph of both feature sets under the SVM-
RBF model. Similarly, we also performed experiments under the
SVM-LNR classifier. The corresponding results are reported in
Supplementary Figures S2 and S3, available online at http://bi
b.oxfordjournals.org/, in the SI Text S4. In addition, it is worth
mentioning that the ROC curves used in this study that plot the
true positive rate against the false positive rate are multiclass
ROC curves based on the OVA strategy.

Integrating handcrafted and deep learned features
improved the performance

In the preceding sections of results and discussion, we evalu-
ated the predictive performance of the traditional single-view
features. This section focuses on performance evaluation of
multiview features.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 5. Performance comparison between the Har pure feature set and the Har optimal feature set under the SVM-RBF model: (A) ROC curves of the Har pure feature

set; (B) ROC curves after applying the SDA feature selection method; (C) Distribution of AUC values of the Har pure feature set and (D) Distribution of AUC values after

applying the SDA feature selection technique.

In comparison with single-view features, we found that the
classification performance of DNA and HOG features was poor
compared to the other traditional features. Therefore, we made
two combinations of the feature space from traditional fea-
tures:

• tradFus1 = Har + LBP + CLBP + RICLBP + LET + AHP
• tradFus2 = DNA + Har + LBP + CLBP + RICLBP + LET

+ HOG + AHP

Here ‘+’ sign means the simple serial combination. We then
tested each multiview feature set on the SVM-RBF and SVM-LNR
classifiers. The results of tradFus1 and tradFus2 are reported
in Table 3. The accuracy, meanAUC and stdAUC were used to
measure the performance. By feeding tradFus1 and tradFus2
to both SVM-RBF and SVM-LNR classifiers, the accuracy and
meanAUC of the tradFus2 on the SVM-RBF increased by 0.87
and 0.24%, respectively, compared to tradFus1. The stdAUC of

tradFus2 was 0.68%, which was decreased by 0.1% compared to
that of tradFus1, which was 0.78%.

Similarly, we also noticed that the SVM-LNR classifier
achieved a better performance on the tradFus2 compared to
tradFus1. The accuracy and meanAUC were increased by 0.45
and 0.09%, respectively. The stdAUC index for tradFus2 and
tradFus1 was 0.92%, which was similar.

By comparing SVM-RBF and SVM-LNR classifiers, the accu-
racy and meanAUC of the SVM-RBF classifier on the tradFus1
features set were increased by 1.7 and 0.46%, while the stdAUC
was 0.14% lower in comparison with the SVM-LNR classifier.
Besides, SVM-RBF also showed a better performance on the trad-
Fus2 feature set. Under the SVM-RBF, the accuracy and meanAUC
were 82.3 and 97.63%, respectively, which were increased by
2.12 and 0.61% than the SVM-LNR classifier. The stdAUC error
index was also lowered by 0.24% than the stdAUC index of
SVM-LNR.
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Table 3. Performance comparison of tradFus1, tradFus2, tradFus1 + Deep and tradFus2 + Deep on 10-fold cross validation using the benchmark
training dataset

Classifier Feature set Acc (%) meanAUC stdAUC

SVM-LNR tradFus1 79.73 0.9693 0.0092
tradFus2 80.18 0.9702 0.0092
tradFus1 + Deep 83.20 0.9711 0.0071
tradFus2 + Deep 84.21 0.9796 0.0064

SVM-RBF tradFus1 81.43 0.9739 0.0078
tradFus2 82.30 0.9763 0.0068
tradFus1 + Deep 83.93 0.9802 0.0059
tradFus2 + Deep 84.91 0.9813 0.0051

Based on the above experimental analysis, it can be con-
cluded that although the individual performance of DNA and
HOG is not convincing, it has improved the predictive perfor-
mance of the classifier when being combined with other features
due to their unique distributions.

We then considered deep learned features and combined
them with the tradFus1 and tradFus2 to generate:

• tradFus1 + Deep
• tradFus2 + Deep

The performance of both feature sets is also reported in
Table 3. As can be seen, tradFus2 + Deep achieved a better predic-
tive performance than tradFus1, tradFus2 and tradFus1 + Deep.
On SVM-RBF, the accuracy of tradFus2 + Deep was increased by
3.48, 2.61 and 0.98% in comparison with tradFus1, tradFus2 and
tradFus1 + Deep, respectively. Likewise, meanAUC was increased
by 0.83, 0.5 and 0.11% compared with that of tradFus1, trad-
Fus2 and tradFus1 + Deep, respectively. Besides, stdAUC was
also 0.27, 0.17 and 0.08% lower than tradFus1, tradFus2 and
tradFus1 + Deep, respectively.

On the SVM-LNR classifier, the accuracy of tradFus2 + Deep
was increased by 4.48, 4.03 and 1.01% compared with trad-
Fus1, tradFus2 and tradFus1 + Deep, respectively. Similarly,
the meanAUC of tradFus2 + Deep was 97.96%, which was
improved by 1.03, 0.94 and 0.05% than tradFus1, tradFus2 and
tradFus1 + Deep, respectively. Likewise, stdAUC was 0.64%,
which was 0.28, 0.28 and 0.07%, respectively, lower than tradFus1,
tradFus2 and tradFus1 + Deep.

Based on the performance comparison of four different fea-
ture combinations in Table 3, it can be established that trad-
Fus2 + Deep, which is the fusion of DNA, Har, LBP, CLBP, RICLBP,
LET, HOG, AHP and Deep feature sets, is superior to tradFus1,
tradFus2 and tradFus1 + Deep.

SVM-RFE + CBR can further improve the performance

In order to further improve the performance of our classification
algorithm and reduce the computational time, we applied the
SVM-RFE + CBR algorithm as the second-layer feature selection
to the combined feature space, which was obtained in the previ-
ous section through experimental analysis, i.e. tradFus2 + Deep.
The output of SVM-RFE + CBR is the ranked feature set as dis-
cussed in ‘SVM-RFE + CBR’ section. Since SVM-RFE + CBR cannot
automatically guarantee the optimal number of the selected
features, we first removed the last 25% features in the ranked
feature set and then empirically extracted the optimal number
of the features from the remaining ranked feature set. We started
by feeding the first 50 features to the SVM-RBF classifier and
then gradually increased with the step size of 50. We assessed

Table 4. Performance comparison of SVM-RBF with and without SVM-
RFE + CBR on 10-fold cross validation using the benchmark training
dataset

Feature set Acc (%) meanAUC stdAUC

tradFus2 + Deep 84.91 0.9813 0.0051
Sup-400 85.95 0.9818 0.0046

the performance of each feature set by macroaverage F1 or F1-
ScoreM, and Matthews correlation coefficient (MCC) (see Text S3
in SI for details about F1-ScoreM and MCC) using the training set
on 10-fold cross validation. The variation curves of F1-ScoreM

and MCC are shown in Figure 6. The obtained F1-ScoreM and
MCC results for different number of features are provided in SI
Supplementary Table S3, available online at http://bib.oxfordjou
rnals.org/, under Text S5. In addition, Text S5 in SI also shows
the effectiveness of our proposed two-layer feature selection
strategy in comparison to the single-layer feature selection strat-
egy. (The result for the single-layer feature selection strategy is
provided in Supplementary Table S4, available online at http://bi
b.oxfordjournals.org/, under Text S5 in SI).

It can be observed from Figure 6 that when the selected
features (SF) set consisted of the first 400 ranked features, the
corresponding F1-ScoreM and MCC on the 10-fold cross vali-
dation achieved the best result. When 50 ≤ SF ≤ 400, both
F1-ScoreM and MCC were increased with a little fluctuation;
however, both were slowly decreased when SF > 400. Thus,
our final feature subset included the 400 top-ranked features,
referred to as Sup-400.

To further examine the effectiveness of SVM-RFE + CBR,
Table 4 shows the performance result of two feature sets,
with SVM-RFE + CBR (Sup-400) and without SVM-RFE + CBR
(tradFus2 + Deep) feature selection. The experiments were
conducted under the SVM-RBF classifier on the benchmark
training dataset using 10-fold cross validation. From Table 4,
it is clear that the results obtained with Sup-400 consistently
outperformed those obtained with tradFus2 + Deep. The results
in Table 4 show that the performance of the model could indeed
be improved in terms of the performance by applying the
SVM-RFE + CBR feature selection.

We then fed the Sup-400 to the SVM-LNR classifier and
conducted experiments using the benchmark training dataset
on 10-fold cross validation. The accuracy, meanAUC and stdAUC
of SVM-LNR were 84.66%, 0.98 and 0.0063, respectively, which are
clearly better than those of tradFus2 + Deep (see Supplementary
Table S5, available online at http://bib.oxfordjournals.org/, under
Text S6 in SI).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
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Figure 6. Variation curves of F1-ScoreM and MCC values against different number of selected features based on the ranked features.

To better reflect the performance of the models, Figure 7A
and B shows the predictive performance of the SVM-LNR and
SVM-RBF models on the Sup-400 feature set in terms of ROC
curve, while the distribution of AUC is given in Figure 7C and D.
We further measured the performance of the models using
macroaverage precision, macroaverage recall, macroaverage F1
and MCC (see the details about performance metrics in SI Text
S3) and the results are given in Supplementary Table S6, available
online at http://bib.oxfordjournals.org/, under Text S6 in SI. The
results of the confusion matrices of both models are also given in
Supplementary Figure S4, available online at http://bib.oxfordjou
rnals.org/, and can be found in SI under Text S6.

By carefully examining the prediction results of our proposed
method, we found that vesicles and mitochondrion were
relatively harder to predict before applying the SVM-RFE + CBR.
About 5.1–13.0% of the protein images with mitochondrion
pattern were predicted as vesicles, while 4.6–9.7% of vesicles
were predicted as nucleus by the SVM-RBF classifier. Similarly,
under the SVM-LNR classifier, 5.1–15.0% of protein images with
mitochondrion pattern were predicted as vesicles and 9.4–
11.0% of protein images with vesicles pattern were predicted as
mitochondria. Considering the biological structure (hierarchy)
of these cellular compartments (i.e. mitochondrion wrongly
predicted as vesicles and vesicles that were wrongly predicted
as nucleus and mitochondrion), they have no similar part
of the cell (nucleus and mitochondrion are located in the
intracellular part of the cell, while vesicles is located in the
secreted pathway [19]) that could have made the prediction
harder. The difficult prediction was because of two reasons: 1)
both the mitochondrion and vesicles are vesicular and 2) the
mitochondrial-derived vesicles (MDVs), in which mitochondria
bud vesicles [79]. However, after employing the SVM-RFE + CBR
feature selection technique in our method, the prediction
accuracy of mitochondrion and vesicles was improved as shown
in Figure 7.

Table 5. Performance comparison of the proposed PScL-HDeep with
other existing methods on 10-fold cross validation using the bench-
mark training dataset

Method Acc (%) meanAUC stdAUC

Yang et al. 77.62 0.9661 0.0229
SC-PSorter 80.45 0.9702 0.0193
SAE-RF 81.76 0.9715 0.0185
PScL-HDeep 85.95 0.9818 0.0046

Performance comparison of PScL-HDeep against
existing predictors

To show the efficacy of our proposed PScL-HDeep method,
we further compared it with several published models of HPA
bioimage-based protein subcellular localization predictors. As
in the current research, we dealt with the single-label data,
thus, we only compared the proposed method to existing single-
label methods. These included the method proposed by Yang
et al. [1], SC-PSorter [19] and SAE-RF [31]. Table 5 provides the
performance results of the existing methods derived from
Liu et al.’s research [31] and the proposed method. Table 5
reveals that our developed method PScL-HDeep substantially
outperformed all the existing predictors in terms of three
performance metrics on the benchmark training dataset. In
particular, our method achieved an accuracy of 85.95% using
SVM-RBF on the benchmark training dataset over 10-fold cross
validation, while the latest method SAE-RF, which is the runner-
up, achieved an accuracy of 81.76%. Our method has achieved
4.19% increase in accuracy than this latest method (SAE-RF).
Besides, the meanAUC of our method was increased by 1.03%,
while stdAUC was decreased by 1.39% in comparison with
SAE-RF.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab278#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 7. ROC curves and AUC distribution of the Sup-400 feature set: (A) shows the ROC curves under the SVM-LNR classifier; (B) shows the ROC curves under the

SVM-RBF classifier; (C) shows the AUC distribution under the SVM-LNR classifier and (D) shows the AUC distribution under the SVM-RBF classifier.

Compared with the other existing methods by Yang et al.
and SC-PSorter, the accuracy of PScL-HDeep was 8.33 and 5.5%
higher, while meanAUC was improved by 1.57 and 1.16%, respec-
tively. The stdAUC of the proposed method was also decreased
by 1.83 and 1.47%, respectively. These results again highlight the
efficiency of PScL-HDeep compared with other predictors.

Performance comparison with existing predictors
on the independent test dataset

To validate PScL-HDeep against the existing predictors, we fur-
ther performed experiments on the independent test dataset
and compared their performance. Here, we only considered the
accuracy index for performance evaluation because it is not
worthy to calculate the seven classes’ meanAUC and stdAUC for
the independent test dataset, which only contained five classes.
The result is shown in Figure 8. Note that part of the performance
results in Figure 8 was excerpted from Liu et al.’s SAE-RF work
[31].

Figure 8 shows that the prediction performance of PScL-
HDeep was better than the existing models on the independent
test. In particular, the accuracy of PScL-HDeep was 71.02%, which
was increased by 8.04, 4.9 and 3.87% in comparison with Yang
et al., SC-PSorter and SAE-RF, respectively. Together, the inde-
pendent validation test results suggest that our proposed PScL-
HDeep method has a better generalization capability than the
existing methods.

Conclusion
In this work, we have developed a novel computational
approach, referred to as PScL-HDeep, for multiclass prediction
of protein subcellular location from bioimage data. Specifically,
we leveraged a variety of handcrafted features, including DNA,
Har, LBP, CLBP, AHP, LET, RICLBP and HOG, as well as deep learned
features as the initial features. We then extracted the optimal
feature set from each original raw feature set using the SDA
feature selection technique. After combining all the optimal
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Figure 8. Performance comparison of the proposed PScL-HDeep with other existing methods on the independent test dataset.

feature spaces obtained through SDA, we fed the integrated
features to the SVM-RFE + CBR and obtained a more powerful
feature subset termed Sup-400. We then fed the Sup-400 feature
set to SVM-RBF and SVM-LNR classifiers and evaluated the
classification performance on both 10-fold cross validation
and independent test. The experimental results revealed that
our proposed method has significantly outperformed several
existing protein subcellular localization prediction methods.
Several important attributes contribute to the performance
improvement of PScL-HDeep, including the careful selection
of appropriate training set, embedding of Deep features, more
discriminative feature selection and vigilant design of the
prediction model.

Several strategies have proven to be effective through the
integration of different feature sets such as kernel combina-
tion [19], weighted feature combination [80] etc. Although PScL-
HDeep achieved a much promising result, in future works, we
plan to further improve PScL-HDeep by applying the combina-
tion strategies other than the serial combination. As demon-
strated in several other studies [81–85], to better make PScL-
HDeep easily accessible to the public, development of a user-
friendly webserver is also included in the future direction of our
study as well. Moreover, another limitation of this study is that it
only takes into consideration single-label multiclass problem. In
future work, we will consider multilabel classification problems.

Key Points
• A novel computational approach is developed, which

uses the SVM algorithm with the ensemble of unique
characteristics from traditional global and local hand-
crafted features along with deep learned features to
accurately predict protein subcellular location.

• Two-layered feature selection strategy is proposed to
design an ensemble of the optimal feature set, where
in the first layer, the unique features are extracted
from each individual feature set, and in the second
layer, the training and testing model-based strategy

is applied to the ensemble of the optimized features
from the first layer.

• Based on the designed pipeline, a novel protein sub-
cellular localization predictor, PScL-HDeep, is imple-
mented. Benchmarking experiments on the newly cre-
ated training and independent datasets demonstrate
the efficacy of PScL-HDeep compared to state-of-the
art subcellular location predictors.

• The main advantages of PScL-HDeep include the care-
ful selection of appropriate training set, embedding of
deep features, more discriminative feature selection
and vigilant design of the prediction model.
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